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Figure S1. Related to Figures 1 and 8, Basic compensatory eye movements in the single global KO 

mice for GluA1 or GluA3 as well as in PC-specific KO for GluA3 are relatively normal, whereas those 

in the double PC-specific KO for GluA1 and GluA3 show pronounced gain deficits.  

(A) The optokinetic reflex (OKR), which stabilizes gaze with respect to a moving visual field (Stahl et 

al., 2000), showed a normal baseline gain in GluA1-KO and GluA3-KO mice (F(2,29)=2.361, p = 0.11; 

Repeated measures ANOVA and Tukey post hoc analysis), whereas phase values in both mutants 

presented a small, but consistent, delay across the entire frequency range tested (F(2,29)=14.86, p < 



 

0.01, Tukey’s multiple comparisons test revealed differences for the 95% confidence intervals of both 

mutants with respect to wild-type controls, but not between them). L7/GluA3-KO mice presented intact 

gain and phase values compared to controls (F(1,26) = 0.21, p = 0.64 and F(1,26) = 1.24, p = 0.27, 

respectively). In contrast, PC-specific double GluA1 and GluA3 KO mice (L7/GluA1&3-dKO) showed a 

highly significantly impaired OKR response (F(1,20) = 21.30, p = 0.0001) 

(B) During VOR compensation GluA1-KO and GluA3-KO showed both a normal gain (F(2,29)=1.745, 

p = 0.17) and normal phase (F(2,29)=1.382, p = 0.26). In addition, L7/GluA3-KO mice also showed a 

normal basic eye movement performance (F(1,26) = 1.65, p = 0.21 and F(1,26) = 1.53, p = 0.22, for 

gain and phase, respectively). Interestingly, L7/GluA1&3-dKO showed significantly improved VOR 

performance when compared to control mice (F(1,20) = 5.245, p= 0.033), most likely as a 

compensation for their impaired OKR. 

(C) When we combined optokinetic stimulation with vestibular stimulation (i.e. VOR in the light or 

VORL) as occurs in daily life, all mutants also showed normal performances for both gain and phase 

compared to those in wild-type littermates (F(2,29) = 1.33, p = 0.29 for GluA1-KO, GluA3-KO and their 

WT littermates and F(1,26) = 1.51, p = 0.23 for L7/GluA3-KO vs. control littermates gain values). 

(D) Oculomotor adaptation was assessed through paradigms aiming to either increase (i.e. gain-up 

paradigm, in which the visual stimulus moves with the same amplitude as the vestibular stimulus, but 

with opposite direction, resulting in improved VOR compensation) or decrease (i.e. gain-down 

paradigm, in which both visual and vestibular stimuli move with the same amplitude in the same 

direction, resulting in cancelation of compensatory eye movements) the amplitude of the VOR. 

Schematic drawings of the training stimuli are shown in the left column. Our results show that whereas 

GluA1-KO mice show a comparable increase (p=0.23 for final catch trials) and decrease (p=0.11) of 

gains compared to those in WT mice, GluA3-KO mice show significantly impaired gain-up (p=0.009) 

as well as gain-down (p=0.001) paradigms. The deficits observed in the global GluA3-KO mice were 

also present in the PC-cell specific KO (L7/GluA3-KO compared to WT littermates, p = 0.006 and p = 

0.04 for gain-up and gain-down, respectively). 

Error bars indicate SEM, * indicates p<0.05. 

 

 

 



 

 

Figure S2. Related to Figure 1, (A) The full range of the 2 variables that explain ocular movements (0 

to 1 for the gain and 0 to 360 for the phase) determine a circular bi-dimensional Cartesian plane 

(shown as a polar plot), in which every eye movement can be defined. Given that phase-reversal 

learning takes place through a defined common learning trajectory over several days during which 

phase covariates with gain (left polar plot), we performed statistics on the Cartesian coordinates 

defining gain and phase using the paired Hotteling’s T2-Test. 



 

(B) Polar plots of gain and phase vectorial representation during phase-reversal VOR learning data to 

illustrate the data analysis procedure. The data are composed of 5 individual learning vectors (one per 

day) moving across a constant learning trajectory towards the target set by the training paradigm 

(Phase of 180 degrees; Gain of 1). Based on the raw gain and phase data (A), we first calculate the 

learning extent for each mouse as the vectorial difference between the final performance and the initial 

performance (recording 6 of day 5 – recording 1 of day 1) and subsequently average these values per 

group. Between days of training there is partial retention of motor memories; to calculate the overall 

consolidation we calculate the ratio between the learning extent and the absolute summed extent of 

the learning vectors as if there was no memory loss overnight (100% consolidation). This ratio 

calculated per mouse is then also averaged across the mice, generating consolidation values for each 

group. 

(C) Eye movement behavior of 4-6 week old GluA3-KO mice is virtually identical to that of 3-5 month 

old mice. Scatter plots of gain and phase values of 4-6 week old mice during the visuo-vestibular 

training for VOR phase-reversal shows no significant differences in the ability to follow the training 

signal (p>0.05 for last training recording on day 5 for comparison of GluA1-KO vs GluA3-KO and of 

WT vs GluA3-KO). 

(D) Scatter plots of gain and phase values of the VOR catch trials show that WT and GluA1-KO mice, 

but not GluA3-KO mice, are able to reverse the phase of the VOR after training (p<0.01 for last catch 

recording on day 5 for comparison of GluA1-KO vs GluA3-KO and of WT vs GluA3-KO). For 

comparison with data in 3-5 month old animals see also Figure 1. 

Error bars indicate SEM, * indicates p<0.05. 

 

 

 

 

 

 

 

 

 



 

 

Figure S3. Related to Figure 2, PCs lacking GluA1 or GluA3 have comparable spine density and show 

comparable levels of LTD induction compared to those in wild type (WT) PCs.  

(A) Representative confocal optical planes (0.5 µm thick) of PC distal dendrites used to quantify spine 

densities of WT, GluA1-KO or GluA3-KO PCs.  

(B) Densities plotted for each genotype correspond to the average spine density of at least 20 

dendritic branches of PCs in lobules V to X per animal. Scale bar = 5 µm. The results show that 

neither the lack of GluA1 nor that of GluA3 yielded differences in spine densities of proximal or distal 

dendrites of PCs. 



 

(C) Scheme of cerebellar cortical circuitry (bottom panel) and representative picture of the in-vitro 

preparation (top panel) showing positions of recording electrode (yellow) at PC soma and stimulus 

electrodes (green and purple) at parallel fiber (PF) beam and climbing fiber (CF), respectively. ML, 

PCL and GrCL indicate molecular layer, Purkinje cell layer, and granule cell layer, respectively. 

(D) PCs were recorded in current clamp mode and the location of the stimulus pipettes were 

determined functionally by evoking responses to electrical stimulation at resting potential. Once the 

proper locations were identified, cells were kept in hyperpolarized state (-80 mV approx.) and a 

conjunctive CF and PF stimulation protocol was applied to the cell for 5 minutes (see Suppl. Methods 

for details). 

(E) Both GluA1-KOs (red) and GluA3-KOs (blue) show similar cerebellar synaptic weakening after 

LTD induction (top panel) compared to WT littermates (black) with unchanged PPR over time (bottom 

panel). Representative traces of paired EPSCs before (solid lines) and after LTD induction (dashed 

lines) (right panels; genotypes match the color codes in B). 

 



 

 



 

 

Figure S4. Related to Figures 2, 4 and 6. Kainate receptors do not compensate for weakening of 

glutamatergic transmission at PF to PC synapses in the absence of GluA3.  

(A) To assess possible compensatory components in the glutamatergic transmission of PCs in GluA3-

KO mice we investigated the impact of blocking either AMPA-receptors with 30 µM of GYKI-52466 

(Cossart et al., 2002) or kainate receptors with 5 µM of SYM2081 (Yan et al., 2013) after establishing 

a stable baseline of eEPSCs in WT and GluA3-KO PCs.  

(B) PF stimulation intensity was manually adjusted to obtain comparable EPSC amplitudes between 

100-200 pA in WT and GluA3-KO PCs (p = 0.3, GluA3-KO vs. WT). The average quantal content 

released to produce events of comparable amplitude (estimated as the inverse of the square 

coefficient of variation; Kerchner and Nicoll, 2008), was significantly higher in the GluA3-KO (p < 

0.001), indicating post-synaptic weakening. 

(C) Blocking AMPARs reduced the total glutamatergic transmission in GluA3-KO PCs by 89±2%, 

which was significantly less than that in wild-type PCs (94±2%; p = 0.01 for GluA3-KO vs. WT, top 

panel). However, this difference was exacerbated after normalizing the amplitude to the quantal 

content, revealing that in the absence of GluA3, PCs have about half the normal magnitude of AMPA-

mediated current (p < 0.001, bottom panel).  

(D) To investigate to what extent kainate receptors can compensate for an impairment in GluA3-

dependent transmission in PCs (Yan et al., 2013), we investigated the impact of a blockage of kainate-

receptors in both WT and GluA3-KO PCs. The contribution of kainate-receptor mediated events to 

EPSC amplitude normalized to baseline magnitude was significantly higher in PCs of GluA3-KO 

(21±1.5%) than that in WT PCs (16±3%; p = 0.024 for GluA3-KO vs. WT, top panel). However, when 

normalized to the quantal content, the absolute contribution of kainate receptors was comparable 

among genotypes (p=0.19, bottom panel). Together, these data indicate that glutamatergic 

transmission in GluA3-KO mice can be largely explained by GluA1/GluA2-mediated AMPA-currents 

and to a lesser extent by kainate-currents, none of which is able to compensate for the synaptic 

weakening caused by the absence of GluA3. 

(E) Excised patches of PC somata that received puffs of 100 µm AMPA generated significantly larger 

currents when 8-CPT-2Me-cAMP (8-CPT) was present in the internal solution. Note that the control 



 

patches showed the same probability of presenting AMPA events (left). Fast desensitizing and slow 

decay time kinetics were also unchanged (right panels). 

(F) Super-ecliptic pHluorin (SEP) fused to GluA3 AMPARs showed the expected pH sensitivity. 

Washing in of acidic ACSF (pH 5) produced a dramatic reduction in the fluorescence intensity of 

externalized GluA3-SEP receptors. This is in line with the fact that GluA3-SEP AMPARs internalized in 

acidic vesicles contribute marginally to the fluorescent signal imaged. Scale bar, 200 µm. 

 

 

 

Figure S5. Related to figure 5, GluA1-containing AMPARs single channel properties are unchanged 

after forskolin application. (A) Example of multichannel activity recording. The presence of “escalated” 

openings that produced multiple conductance levels (asterisks) before reaching baseline was used as 

a criterion to discard recordings with multiple channels. (B) Single channels of GluA1-containing 



 

AMPARs showed comparable behavior in the presence and absence of forskolin. Note that under 

baseline conditions (top panel) the conductance level was higher than that of GluA3 channels as 

presented in main Figure 4A (top panel). (C) Conductance of the 3 different open levels of these 

channels was unchanged in the presence of forskolin and also comparable to that of GluA3 channels. 

(D) The relative fraction of openings and overall open probability of GluA1 channels was also 

unchanged after forskolin application and it resembled that of cAMP-activated GluA3 channels.  

 



 

 



 

Figure S6. Related to Figure 8, Cre-dependent tdTomato expression under the L7 promotor confirms 

its Purkinje cells specificity. (A) Example of a L7Cre/floxedGluA3-KO mouse sagittal brain slice in 

bright field. (B) Same brain slice imaged with an epifluorescence microscope reveals how tdTomato 

expression is restricted to cerebellar PCs. (C) PCs in the vestibulocerebellum (flocculus and 

paraflocculus) also express the reporter under the L7 promotor. (D) Quantification of the population of 

PCs expressing tdTomato under the L7 promotor. Nearly all PC’s with tdTomato (E, H) express 

calbindin (F, I with single labeling in green; G, J with double labeling in yellow) and vice versa, proving 

that the L7 promotor can be effectively used to genetically manipulate virtually the entire population of 

PCs. Scale bars 1 mm (A,B), 250 µm (C) and 100 µm (E-J). 

 

 



 

 

Figure S7. Related to Figure 8, GluA3 lacking PCs show intact excitability in-vitro and in-vivo despite 

their reduced synaptic transmission. (A) In-vivo spontaneous firing of L7/GluA3-KO PCs show 

comparable firing frequency and regularity of simple spikes as well as comparable amount of complex 

spikes, suggesting once more that, despite weaker PF to PC synapses, PC excitability is unaffected. 

(B) Short square steps of increasing current injected into PCs of both wild-types and GluA3-KOs 

showed no differences in the I/V relationships between genotypes (F(1,21)=2.3, p = 0.14, Repeated 

Measures ANOVA), showing that despite the weaker synaptic transmission in the absence of GluA3, 

PCs have unchanged excitability in vitro. (C) Synaptic transmission is also reduced in the PC specific 

KO for GluA3 (L7/GluA3-KO) tested in-vitro. Error bars indicate SEM, * indicates p<0.05. 



 

 

 

Figure S8. Related to Figures 2, 3, 6 and 7. Overview of membrane resistance (Rm) and series 

resistance (Rs) of every group of PCs used to generate the experimental figures of the current study. 

Data are plotted with the same color code as in main figures. All PCs that had a change in resistance 



 

bigger than 20% over a period longer than 2 minutes were discarded for further analysis. Rs and Rm 

for data shown in figure 2C (A), figure 2D (B), figure 3A (C), figure 6A (D), figure 6B (E) and figure 7A-

B (F). Error bars indicate SEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXTENDED EXPERIMENTAL PROCEDURES 

 

Mice 



 

Inbred breeding colonies were used to obtain the experimental knockout mice. GluA1-KO mice, kindly 

provided by Dr. R. Huganir (Kim et al., 2005), were generated by mating heterozygous c57bl6/129 

mice; GluA3-KO and wild-type littermates were bred from c57bl6x129P2-Gria3tm1Dgen/Mmnc mutant 

ancestors (MMRRC, Davis, CA) at least 6 times backcrossed to c57bl6 mice; and Purkinje cell specific 

GluA3 knockout mice were generated by crossing floxed GluA3 mice (Sanchis-Segura et al., 2006) 

with L7-Cre mice (Barski et al., 2000). All experiments were conducted in line with the European 

guidelines for care and use of laboratory animals (Council Directive 86/6009/EEC). The experimental 

protocol was approved by the Animal Experiment Committee (DEC) of the Royal Netherlands 

Academy of Arts and Sciences (KNAW). All data of the experiments described below were acquired 

and analyzed in a blinded fashion with respect to the genotype. 

 

Eye movement recordings and oculomotor learning tasks 

Baseline performance of compensatory eye movements and VOR adaptation were first tested in three 

groups of male mice at the age of 4-6 weeks and 3-5 months. These included wild-type littermate mice 

(WT, n = 15 + 14, for both age categories, respectively), GluA1 knockout mice (n = 5 + 6) and GluA3 

knockout mice (n = 8 + 6). Mice were surgically prepared for chronic head restrained experiments (de 

Jeu and De Zeeuw, 2012). During the experiment the mouse was placed head-fixed in a holder tube 

on a vestibular motion platform (R2000 ‘Rotopod’, Parallel Robotic Systems Corporation, Hampton, 

USA). Left eye orientation was measured using video pupil tracking with a table-fixed CCD camera 

(Pulnix TM-6710CL, 120 frames/s) and IR illumination (850 nm LED, 6.5 cm distance from the eye). 

Pilocarpine (2%) eye drops were applied before the experiment to limit pupil dilatation in darkness. 

Online image analysis was performed to extract the location of pupil edges and corneal light 

reflections using custom built software for Labview (National Instruments, Austin, TX, USA). Angular 

eye velocity was computed offline using custom software written for Matlab (The Mathworks Inc., 

Natick, MA) using the algorithm outlined elsewhere (Stahl et al., 2000). Saccadic eye movements and 

quick-phases of the vestibular nystagmus were removed using a 50°/s velocity threshold and 200 ms 

margins at each threshold crossing. Each mouse was accustomed to the setup for a period of three 

training days before the experimental data were collected. The horizontal VOR was characterized in 

both darkness and light using sinusoidal rotation about the vertical axis, using frequencies ranging 



 

between 1/16th to 4 Hz, presented in a sequence of increasing order, holding constant peak velocity 

of 18.8°/s. The number of cycles ranged between 5 at 1/16Hz to 60 at 4 Hz. Mice were subjected to a 

VOR cancellation stimulus on the first day (in-phase sinusoidal movement at 0.6 Hz, 5° amplitude of 

both the table and the visual surround) and a VOR reversal stimulus on subsequent days (2-5), where 

the amplitude of the visual surround was increased to 7.5° (day 2) and 10° (days 3, 4, and 5). The 

amplitude of the turntable remained constant at 5° amplitude (18.8°/s peak velocity). Training sessions 

consisted of 6 VOR measurements (30 cycles, 50 seconds, in darkness) that were alternated with 5 

periods of visuo-vestibular mismatch training (300 cycles, 500 seconds). Apart from the training 

sessions, animals were kept in total darkness during the consecutive training days. The eye 

movement response was expressed as gain and phase relative to head movement, which was 

calculated using multiple linear regression of eye velocity to in-phase and quadrature components of 

the turntable velocity trace. Gain of the eye movement response was defined as the ratio between the 

eye velocity and the table velocity magnitudes. Phase was expressed in degrees and offset by 180°, 

so that a phase of 0° indicates an eye movement that is in-phase with contraversive head movement; 

positive phase values indicate phase leads. Consolidation of the adapted VOR was assessed by 

computing the ratio between the long-term change in VOR and the cumulative sum of short-term 

changes in VOR of preceding training sessions. The long-term change was defined as the absolute 

difference between the ending VOR on day 5 and the naive VOR on day 1. The short-term change 

was defined as the absolute difference between the VOR at the beginning and end of a training 

session. For a period of at least 10 days animals were allowed to rest between different VOR 

adaptation protocols. Bivariate 2-sample Hotelling's T2-test was used to compare gain and phase 

values between groups, and One Way ANOVA/ Tukey post-hoc test was used for cumulative 

consolidation values. 

 

Spine density quantification in Purkinje neurons 

In order to calculate the spine density in PCs, 5 WT, 4 GluA1-KO and 4 GluA3-ko mice received an 

overdose of sodium pentobarbital via IP injection and were perfused intracardially with 10 ml of PB 

0.1M (pH 7.6) followed by 60 ml of fixative (4% paraformaldehyde in 0.1 M PB, pH7.6) at a rate of 5.5 

ml/min. Brains were carefully removed from the skull, post-fixed for a maximum of 2 hours in the same 

fixative solution at 4°C, immersed in 30% sucrose in PB at 4°C until they sank, and subsequently cut 



 

into 40µm thick frontal sections, which were collected as four matching series. For calbindin detection, 

the slices were incubated in blocking solution containing 10% horse serum in 0.1 M PB to minimize 

non-specific binding of the antibodies. After 1 hour, blocking solution was replaced by the primary 

antibody solution containing 5% horse serum in 0.1M PB, rabbit anti-Calbindin antibody (Chemicon, 

Millipore) at a concentration of 1:1000 for 12 hours at 4°C. After several rinses with 0.1 M PB slices 

were incubated for 4 hours in a solution containing 5% horse serum in 0.1 M PB and horse anti-rabbit 

combined with Alexa 488 secondary antibody at a concentration of 1:200. After several rinses, slices 

were mounted and covered with Dako mounting medium (Dako), and imaged under a confocal 

microscope (Leica SP5). All images were acquired with the same settings and the analysis was 

performed with ImageJ. Stacks of pictures across the Z-axis (10-30 μm) were made to count total 

spine number in proximal (max 30 μm away from the PC soma) and distal dendrites of PCs. The spine 

density was calculated for each dendrite dividing the dendrite’s spine count by its length; all images 

were processed using ImageJ. All proximal and distal dendrites counted were averaged for each 

mouse and mice of the same genotype were averaged to obtain the final spine densities (Figure S3A-

B).  

 

In-vitro electrophysiology 

Sagittal slices of the cerebellar vermis (250 to 400 μm thick) from 4 to 6 weeks old mice were obtained 

in ice-cold oxygenated “slicing” solution containing (in mM) 2.5 KCl, 1 CaCl2, 3 MgCl2, 25 NaHCO3, 

1.25 NaH2PO4, 240 sucrose, 25 D-glucose and 0.01 kyneurenic acid. Slices were transferred to the 

same slicing solution at 34°C for 5-10 minutes and then transferred to oxygenated ACSF at 34°C 

containing (in mM) 124 NaCl, 5 KCl, 1.25 Na2HPO4, 1 MgSO4, 2 CaCl2, 26 NaHCO3, 20 D-glucose. 

Subsequently, the slices were allowed to recover for at least 30 minutes until they were moved to the 

recording chamber containing the same oxygenated ACSF with 100 μM picrotoxin to prevent 

GABAergic transmission at near physiological temperature of 30±2°C. Whole-cell patch-clamp 

recordings of Purkinje cells located in lobules Vl to X were performed using an EPC-10 amplifier 

(HEKA, Lambrecht). 3-5 MΩ resistance patch pipettes were filled with (in mM) K-Gluconate 122.5 mM, 

NaATP 4, NaGTP 0.4, HEPES 10, NaCl, KCl 9 and 0.6 mM EGTA (Sigma) at pH 7.25 for all the 

recordings that required current clamp mode (including LTP) or with (in mM) 115 mM cesium 



 

methanesulfonate, 20 mM CsCl, 10 mM Hepes, 2.5 mM MgCl2, 4 mM Na2ATP, 0.4 mM Na3GTP, 10 

mM sodium phosphocreatine (Sigma), and 0.6 mM EGTA (Sigma), at pH 7.25 for the experiments that 

were exclusively done in voltage clamp mode. For both voltage-clamp and current-clamp recordings, 

PC membrane potential was held at -70mV to prevent spontaneous firing. Series resistance (5-10 MΩ) 

was measured before the experiment and compensated with standard procedures. During the 

experiment series and membrane resistances were monitored by applying a 100 ms hyperpolarizing 

pulse (-10 mV). Only cells with stable membrane and series resistance (change < 20% of the last 5 

minutes of recordings compared to the last 5 minutes of baseline) were included in the analysis 

(Figure S8). Whole-cell recordings were digitized at 40 kHz and filtered with a Bessel filter at 4 kHz for 

voltage clamp recordings (8 kHz for current clamp mode). PF to PC LTD was induced by pairing PF 

stimulation at 1Hz for 1 minute with a 100 ms somatic depolarization from 70 mV to 0 mV, mimicking 

climbing fiber input (Linden, 2001; Saab et al., 2012), or by pairing PF stimulation at 1Hz for 5 minutes 

with real climbing fiber stimulation at 1Hz (Schonewille et al., 2011). Instead, PF to PC LTP was 

induced by PF stimulation alone at 1 Hz for 5 min. To monitor EPSC amplitude over time, two test 

responses to a PF pulse (with 50 ms interval) were evoked every 20s in voltage-clamp mode. In LTP 

experiments, cells were switched to current-clamp mode for tetanization. Paired-pulse ratio (PPR) was 

calculated as the ratio of the amplitude of the second evoked excitatory postsynaptic current (eEPSC) 

to that of the first. eEPSC amplitudes and PPR were averaged per minute and normalized for final 

representation. For the experiments on intrinsic excitability recordings were performed in current-

clamp mode, again using an EPC-10 amplifier (HEKA Electronics). Intrinsic excitability was monitored 

through injection of brief steps (550 ms) of increasing depolarizing current (20 steps from 50 to 

1000pA). The spike count was taken as a measure of excitability. Input resistance (Ri) was measured 

by injection of hyperpolarizing test currents (200 pA; 100 ms) and was calculated from the voltage 

transient toward the end of current injection. Recordings were excluded if the input resistance varied 

by > 20%.  

 Single channel activity was measured in cell attached configuration with pipettes between 6-8 

MΩ of resistance, containing the same intracellular solution used for whole cell recordings but 

containing 100 µM of S-AMPA (Tocris). After reaching a patch resistance above 2 GΩ, the patch 

voltage clamp was decreased from close to resting potential (-60 mV approx.) to twice as negative (-

120 mV approx.). In this configuration the ionic driving force across the channel was reversed and 



 

therefore the openings produced depolarizing events in the patch pipette. To determine the actual 

driving force across the AMPAR we broke into whole cell mode after the single channel recording was 

acquired and measured the cell resting potential. The driving potential, resulting from subtraction of 

the resting potential and clamped voltage, was used to calculate the receptor conductance. To further 

corroborate that the openings observed were caused by AMPARs, a subset of channels was also 

recorded close to resting potential voltages (-60 mV) and at 0 mV. When clamped close to cell resting 

potential, the driving force across the channel was minimal and the openings were no longer visible. 

When clamped at 0 mV the events detected by the pipette were of similar size, but the driving force 

was reversed, consistent with AMPARs behavior.  

 For the outside-out patches of AMPA responses, pipettes with 4-6 MΩ resistance were use to 

establish a Giga-seal (1 GΩ resistance) with PC somata. After compensating the capacitance artifact, 

we let the seal rest until it reached a resistance above 2 GΩ. After breaking into whole cell mode, the 

pipette was slowly retracted until both the cell and the outside-out patch were re-sealed again. Every 

20 seconds a 100 ms puff of 100 μM AMPA was delivered with a Picospritzer III (Parker, Hollis, USA) 

to generate an AMPA-dependent response. In each sweep, a 100 ms depolarizing test pulse (-10 mV) 

was applied in order to test series resistance and membrane capacitance. Only patches with a 

constant resistance over 1 GΩ were considered for analysis. Membrane capacitance was used to 

control for outside-out patch size, assuming a specific membrane capacitance of 0.01 pF per 1 µm2 

(Schmidt-Hieber and Bischofberger, 2010). Our patches presented comparable estimated areas of 

12.1±0.9 and 11.8±0.8 µm2 in control and 8-CPT containing patches, respectively (p=0.42). 

 

Drugs and pharmacology 

For mEPSC recordings, tetrodotoxin (TTX, 1 μM, Sigma) was added to the bath solution to block 

network activity in order to only measure excitatory spontaneous release. In order to isolate the 

specific contribution of AMPA and kainate receptors to glutamatergic transmission in WT and KO 

mice, the AMPA specific blocker GYKI52466 (30 μM, Sigma) or the kainate specific blocker SYM2081 

(5 μM, Sigma) were added to the extracellular bath solution. For pharmacological investigation of the 

cAMP-GluA3 dependent pathway the following membrane permeable drugs were added to the bath of 

ACSF: 50 µM Forskolin (adenylyl cyclase activator, Sigma), 20 µM H89 (PKA antagonist, Tocris), 5 



 

µM KT5720 (PKA antagonist, Sigma), and 10 µM ESI-05 (EPAC antagonist, BioLog). In addition, we 

applied the membrane non-permeable agonist for EPAC, 8-CPT-2Me-cAMP (20 µM, Tocris 

Bioscience) to the intracellular whole cell recording solution to investigate the postsynaptic impact of 

EPAC. In order to obtain a monophasic time decay of the AMPA-evoked responses in outside-out 

patches we added a final mixture of 80 µM PEPA (AMPAR flop splice variant desensitization blocker, 

Tocris bioscience) and 100 µM cyclothiazide (CTZ, AMPAR flip splice variant desensitization blocker, 

Tocris bioscience) to the bath solution. 

 

Analysis of cell physiological data  

Spontaneous mEPSC and evoked EPSC recordings were analyzed with MiniAnalysis software 

(Synaptosoft) and ClampFit (Molecular Devices), respectively. To calculate τfast (fast desensitizing 

component) and τslow (slow non-desensitizing component) of AMPA evoked currents in outside-out 

patches a double exponential function was fitted using ClamPFit with DC offset set at 0. The decay of 

the averaged current was fitted to the following equation:  

𝐼 = 𝐴1𝑒
−𝑡/𝜏1 + 𝐴2𝑒

−𝑡/𝜏2 

In this equation τ1 represents τfast. The percentage of the decay represented by the slow component 

(% slow) was calculated by the function A1/(A1+A2), as described elsewhere (Christian et al., 2013). 

The weighted decay time constant for AMPA evoked currents in outside-out patches in the presence 

of desensitization blockers was calculated by dividing the total charge transfer (in fC) by the peak 

amplitude (in pA). Non-stationary fluctuation analysis of outside-out patches traces was carried out 

following previously described methods (Alvarez et al., 2002; Benke et al., 2001; Hartveit and Veruki, 

2007). In short, peak aligned AMPA evoked currents recorded over 10-15 sweeps per outside-out 

patch were binned in 10 equally sized bins of 150 ms each and for each bin the mean amplitude and 

variance were calculated. The data distribution resulting after plotting amplitude versus variance was 

fitted with the following equation: 

𝜎2 = 𝑖𝐼 −
𝐼2

𝑁
+ 𝜎𝑏

2 



 

Where the variance (σ
2
) of the amplitude of the current (I) obtained at each time point is explained as 

a function of the single unitary current (i) and the number of functional conducting channels (N) with an 

offset given by the variance of the baseline noise (σ
2
b). The number of funtional channels was 

extracted from the derivative at I = 0, and the single channel conductance was calculated by dividing 

the unitary current by the applied voltage with respect to the reversal potential (Vholding-Ereversal, -70 mV 

and 0 mV, respectively). The peak open probability (Po), which corresponds to the fraction of available 

functional channels open at the time of the peak current (Ipeak), was calculated from the following 

equation: 

𝑃0 = 𝐼𝑝𝑒𝑎𝑘/𝑁𝑚𝑎𝑥 

In this equation Nmax represents the theoretical maximum of available channels opened at the point 

where the theoretical maximum amplitude reaches the minimum variability (σ
2

b) in the given parabola 

fit. 

Single channel activity was analyzed using ClampFit (Molecular Devices). Three detection thresholds 

were used to detect O1 (1.5 pA), O2 (3 pA) and O3 (4.5 pA) openings in single channel AMPA 

receptors in steady baseline recordings (no holding current fluctuations).  Events with a latency shorter 

than 0.3 ms were ignored to prevent noise to be recognized as openings. 

 

Statistics 

For statistical analysis of behavioral and in-vitro electrophysiological data we used either Matlab 

statistical toolbox (The MathWorks Inc., Natick, MA, 2000) or GraphPad Prism 6 (La Jolla, California, 

USA). Although Matlab always reports exact p-values, GraphPad Prism 6 does not report exact values 

when p < 0.0001. Thus we have reported exact p-values when possible, taken into consideration the 

limitation explained above. 

 

In-vitro two-photon imaging  

Organotypic cerebellar slices were made from P7-9 mice using a protocol adapted from previous 

studies (Hurtado de et al., 2011; Stoppini et al., 1991) and kept in culture 4-7 days prior to the 

experiments. Slices were then transfected with sindbis virus expressing rat flip GluA3 AMPAR fused to 



 

the pH sensitive version of GFP Super Eccliptic pHluorophor (GluA3-SEP) for a period of 24-48 hours 

prior to the imaging session. Electrophysiological recordings of PC mEPSCs were performed in this 

preparation. In our hands, mEPSC amplitudes and frequencies were consistently higher in organotypic 

cultured PCs than in acute (e.g. Fig 2B and 4B, WT-Acute vs. WT-Organotypic p = 0.0002 and p < 

0.0001 for amplitude and frequency, respectively), using the same concentration of TTX and PTX. For 

imaging, slices were transferred from the incubation solution to the recording chamber containing 

ACSF (same composition as mentioned before but with 4 µM calcium and 4 µM magnesium). Three-

dimensional images were collected on a custom-built two-photon microscope based on a Fluoview 

laser-scanning microscope (Olympus). The light source was a mode-locked Ti:sapphire laser 

(Chameleon, Coherent) tuned at 850 nm using a 60x objective. Optical sections were captured every 

0.5 μm from transfected PC dendrites. Fluorescence intensity was quantified from projections of 

stacked sections using ImageJ software (NIH). For single spine bleaching in the FRAP experiments, a 

ROI was selected covering the surface of a single spine, which was used to target the laser for 20-30 

seconds (with the same intensity as for regular imaging).  

 

In-vivo electrophysiology 

Mice (males, 4-6 month old) were prepared for chronic experiments as described previously (Wulff et 

al., 2009). In short, under general anesthesia a pedestal with a magnet was placed on the frontal and 

parietal bones of the animal, and a recording chamber was constructed around a small craniotomy in 

the left occipital bone. After 2 days of recovery, animals were habituated in the setup for 20 min for two 

days. During the experiments, the animals were alert and immobilized in a custom restrainer. 

Extracellular activities were recorded with glass micropipettes filled with 2M NaCl solution and 

advanced into the cerebellar cortex from the surface of Crus I and II. Electrode signals were filtered, 

amplified and stored for off-line analyses (Spike2, CED, and Cambridge, UK). PCs were identified by 

the occurrence of both simple spikes and complex spikes, and single-unit activity was confirmed by a 

brief pause in simple-spike firing following each complex spike (i.e. climbing fiber pause; see De 

Zeeuw et al., 2011).  The whole field visual stimulation was presented by rotating a cylindrical screen 

(diameter 63 cm) with a random-dotted pattern (each element 2°) at 0.6 Hz with an amplitude of 5°. 

Offline analysis was conducted in Matlab (Mathworks, Natick, MA, USA). CV2 of simple spikes was 

calculated as the mean value of (2 × (ISIn+1 - ISIn))/ (ISIn+1 + ISIn) (Wulff et al., 2009). Modulation of 



 

simple spikes and complex spikes was calculated as the amplitude of the sine wave fitted to the 

histogram of spike rate. Statistical analysis was done using Student’s t-test with SPSS (IBM 

Corporation, Armonk, NY, USA). 
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