
SUPPLEMENTARY NOTE 1: INFORMATION
ON THE VIDEO DEMONSTRATION

The prototype is constructed of commercially available
plastic “K’NEX” parts. A rigid triangle consists of three
rods extending from a central white connector. There are
two species of triangles of different shapes (red and blue,
as shown in Fig. 1): those ending in blue hinge-parts and
those ending in black hinge-parts. Note that although
there are no direct connections between two hinge-parts
in the same triangle the length between them is fixed by
the rods joining them to the central part (which cannot
rotate relative to one another) so the triangles are rigid.
Each pair of blue hinge-part and black hinge-part form
one flexible hinge. Connected triangles are thus able to
rotate freely relative to one another. This is a realization
of the deformed kagome lattice described in the main
text.

The frame consists of four metal rods connected to tri-
angles on the edge of the structure and manipulated by
hand. The triangles are free to slide along the lengths
of the rods so that the spacing between edge triangles
changes even as they remain collinear. The rods are ro-
tated relative to one another, resulting in a uniform soft
twisting as described in the main text that alters the
lattice structure of the prototype.

Supplementary Figure 1. The plastic prototype used in
the video demonstrations.

SUPPLEMENTARY NOTE 2: GENERALIZED
MAXWELL’S COUNTING RULE AND

UNIFORM SOFT TWISTINGS

The number of zero modes (modes of deformation
which cost no energy) Nz of a structure is determined by
the numbers of degrees of freedom Nd.o.f., constraints Nc

and states of self stress (i.e., possible ways to distribute
internal stress without net forces on any parts) Nss

through the generalized Maxwell’s counting rule [2, 3]

Nz = Nd.o.f. −Nc +Nss. (1)

One simple setup to demonstrate this relation is a frame
consisting of Nc struts connected at N free hinges (e.g.,
the structure in Fig. 1b in the Article). For a system with
spatial dimension d, each hinge needs a d-component co-
ordinate to describe its location, so it has d degrees of
freedom and Nd.o.f. = Nd. Each strut fixes the distance
between two hinges and thus enforces one constraint. It
is worthwhile to note that the constraints enforced by
struts may not be independent, i.e., some of the struts
may be redundant and thus do not introduce new con-
straints. As shown in Ref. [3], each redundant constraint
contributes one state of self-stress (i.e., stress may be in-
troduced if the length of the strut change), which is the
last term in Eq. (1). The term isostatic refers to the spe-
cial marginal state where Nz = d(d + 1)/2 (only trivial
zero modes corresponding to rigid translations and ro-
tations of the whole system exist) and Nss = 0 where
the structure is both stable and stress-free. A critical
mean coordination number 〈z〉 = 2d for isostaticity [4–6]
follows from Nd.o.f. = Nc, which is a weaker condition
of mechanical stability that assumes all struts are inde-
pendent. Following the nomenclature of Ref. [7] we call
periodic lattices with 〈z〉 = 2d “Maxwell lattices”.

When the generalized Maxwell’s counting rule is ap-
plied to periodic lattices, as shown in Refs. [7, 8], an inter-
esting consequence follows that all lattices with 〈z〉 = 2d
(Maxwell lattices) must have d(d − 1)/2 homogeneous
deformations that are of zero energy. For 2D lattices,
the case this Article is mainly concerned with, Maxwell
lattices have at least one such soft deformation (which
we name the uniform soft twisting). These floppy modes
have also been called “Guest modes” [7, 8].

Certain lattices with 〈z〉 > 2d, such as the deformed
checkerboard lattice in Fig. 2 in the Article, also possess
uniform soft twistings, with these necessarily accompa-
nied by states of self stress.

In addition, this type of counting rules and the result-
ing floppy deformations apply equally to simple frames
with struts-hinges and more complicated structures, pro-
vided that the degrees of freedom and constraints are
countable. For example, a sub-class of these floppy de-
formations, the “rigid-unit-modes” (RUMs), has been
studied in the context of crystals with the structure of
periodic corner-touching polyhedra and argued to be re-
sponsible for negative thermal expansion in some crys-
tals [9, 10], as well as utilized to realize negative Poisson’s
ratio metamaterials [11, 12]. In this Article we discuss
more general situations which do not necessarily involve
rigid polyhedra.
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SUPPLEMENTARY NOTE 3: NUMERICAL
CALCULATION OF EDGE STIFFNESS

Systems of 60 × 60 unit cells were generated. Three
of the four sides were held fixed, while one triangle from
the free side was pressed into the structure in the lin-
ear regime (qualitatively similar behavior was observed
under nonlinear deformations). The Conjugate Gradient
method was used to obtain the minimum-energy config-
uration and the ratio of force to displacement was ex-
tracted as the edge stiffness. Units were chosen such
that the spring constant of the struts and the length of
the strut that is horizontal in Fig. 1a (in the Article)
were both unity.

The residual edge stiffness of the soft edge is due to
finite size effects as the sides of the lattice are clamped.
Because the zero modes are exponentially localized to the
soft edge, the stiffness of this edge falls exponentially with
system size. In real systems this soft edge stiffness will be
controlled by friction or bending stiffness at the hinges.
In addition, the sharp rise in the edge stiffness of the
soft edge at θ3 is due to the fine-tuned geometrical effect
of the line of struts being pulled taut in the transverse
direction.

SUPPLEMENTARY NOTE 4: ELASTICITY
THEORY OF UNIFORM SOFT TWISTINGS AND

FLOPPY MODES

A. Elastic deformations and the strain tensor

In order to provide a self-contained discussion, here we
first briefly review some basic concepts on elasticity.

In an elastic system, if we focus on macroscopic phe-
nomena at length scales much longer than the scale of the
microscopic structure, we can ignore microscopic details
and treat the system as a continuous medium. In such a
picture, each point in the elastic medium can be labeled
by its coordinate r (here we use bold symbols to repre-
sent vectors and tensors). Under deformation, the point
r is now displaced to a new location with coordinate R.
Such a deformation is described by a mapping r→ R(r).
In this language, the space that r lives in is called the
reference space, i.e., the space before the deformation.
and the space that R lives in is dubbed the target space,
i.e. the space after deformation.

For a slowly varying displacement field, one can keep

only the first order derivative ∂iRj =
∂Rj

∂ri
(where i, j are

Cartesian indices denoting x, y in 2D) in the elastic en-
ergy and ignore higher order derivatives. This derivative,
∂iRj , appears to be a rank-2 tensor. However, it is im-
portant to realize that the two indices of this matrix live
in two different spaces. The index i is from r, which lives
in the reference space, but the other index j is from R,
which lives in the target space. Symmetry transforma-
tions are independent in these two spaces (e.g., a rotation
before deformation and the same rotation after deforma-

tion result in different strains of the elastic medium). To
express the strain field as a true tensor one can contract
either the reference space or the target space indices. A
convenient choice is the metric tensor

gij = ∂iRk∂jRk, (2)

which is a tensor that lives in the reference space (i, j
here are both indices in the reference space, and indices
in the target space are contracted). Here we follow the
Einstein summation convention, i.e. the repeated index
k is summed over.

It is easy to verify if there is no deformation, R(r) = r
up to rigid translations and rotations, the metric tensor
is the identity matrix. To describe the strain, the left
Cauchy Green strain tensor is defined by subtracting the
identity matrix from the metric tensor,

εij =
1

2
(gij − δij), (3)

where δ represents an identity matrix (δij = 1 for i = j
and δij = 0 otherwise).

B. Elastic energy and zero energy deformations

In this section, we prove that if there exists one uniform
deformation that does not cost any elastic energy, the
system must also support a series of spatially varying
zero-energy deformations.

In general, the energy cost for a elastic deformation,
i.e., the elastic energy, is a functional of the strain tensor.
To the leading order, the elastic energy is

E =

∫
dr cijklεij(r)εkl(r), (4)

where cijkl are elastic constants. We have assumed that
the elastic medium has no internal stress. This form
for elastic energy is a standard description for an elas-
tic medium. For an isotropic medium, these elastic con-
stants reduces into two independent ones, bulk and shear
moduli. Here, because we are considering a generic sys-
tem, we will maintain this general form and allow the
elastic constants to be independent. Same as above, here
we adopt the Einstein summation convention, so all re-
peated indices are summed over. The higher order terms,
which are not shown in Eq. (4), contain both higher order
terms of the strain tensor as well as spatial derivatives on
the strain tensor. Here, we will first ignore these higher
order terms and their contributions will be examined in
Sec. D.

If an elastic medium has (at least) one uniform defor-
mation, which can be written as a position-independent
strain tensor ε̃, that costs no elastic energy, we have

E =

∫
dr cijklε̃ij ε̃kl = 0. (5)
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Because ε̃ is position independent, this indicates

cijklε̃ij ε̃kl = 0. (6)

Next, we search for additional spatially varying zero-
energy deformations in this system. It is easy to verify
that a deformation described by the following strain ten-
sor

εij(r) = ε̃ijφ(r), (7)

where φ(r) is an arbitrary scalar function, has zero elastic
energy,

E =

∫
dr cijklεij(r)εkl(r) = cijklε̃ij ε̃kl

∫
dr φ(r)2 = 0,

(8)

where we have used the fact that cijklε̃ij ε̃kl = 0 [Eq. (6)].

C. Constraints on the function φ(r) from curvature

It is important to point out that although the elas-
tic energy [Eq. (8)] vanishes for any arbitrary function
φ(r), not every function φ(r) corresponds to an elastic
deformation. This is because the strain tensor is not an
arbitrary rank-2 tensor. According to the definition of
the strain tensor, in order to ensure that a strain ten-
sor indeed describes a physical deformation, there has to
exist a deformation R(r) such that

εij(r) = (∂iRk∂jRk − δij)/2, (9)

is satisfied. This condition enforces strong strain con-
straints on the function φ(r) and in this section we will
find the necessary and sufficient condition to guarantee
a physical zero-energy deformation.

For this purpose, it is more convenient to use the metric
tensor instead, which relates to the strain tensor through
Eq. (3). The question now translates to finding the cri-
terion, under which a metric tensor corresponds to a real
physical deformation, i.e. to decided whether or not there
exists a deformation R(r) exist such that

gij(r) = ∂iRk∂jRk (10)

is satisfied. The answer to this question has been re-
vealed in the study of differential geometry, where the
same question is known as the problem of flat (local)
coordinates. According to Riemann’s Theorem, the nec-
essary and sufficient condition for the existence of such
an R(r) is that the metric tensor must have a zero cur-
vature. The proof of this statement can be found in liter-
ature on Riemannian geometry or differential geometry.
Here, instead of going through the full proof, we provide
a physical picture to demonstrate the origin of this zero
curvature condition. Because both our reference space
and the target space (i.e. the material before and after
the elastic deformation) are defined in a flat space, the

mapping between these two spaces, R(r), must not have
any nonzero curvature associated with it. Therefore, the
metric tensor defined from this mapping must have zero
curvature [1].

To determine the curvature for an arbitrary metric ten-
sor gij(r), we first define the Levi-Civita connection, i.e.
the Christoffel symbols, using the derivative of gij ,

Γkij =
1

2
(∂jgki + ∂igkj − ∂kgij). (11)

Then, by taking another derivative to the Levi-Civita
connection, the Riemann curvature tensor is obtained,

Rijkl = ∂kΓilj − ∂lΓikj + gmnΓikmΓnlj − gmnΓilmΓnkj ,
(12)

where gmn is the matrix inverse of the metric tensor gij .
For a physical deformation in a flat space, the Ricci

curvature tensor must vanish, Rijkl = 0. For the zero
energy deformations shown in Eq. (7), the corresponding
metric tenor is

gij(r) = ε̃ijφ(r) + δij . (13)

In 2D, generically, the function φ(r) depends on both
coordinates x and y. However, the zero curvature condi-
tion enforces a constraint on φ(r). Using Eq. (12) it is
straightforward to verify that the curvature vanishes, if
and only if φ(r) takes one of the following two forms

φ(r) = f+(x+ λ+y) (14)

or

φ(r) = f−(x+ λ−y) (15)

Here, f+(s) and f−(s) are arbitrary functions of s. and
λ+ and λ− are two constants that are determined by the
strain tensor of the uniform zero-energy deformation

λ+ = (ε̃xy +
√
−det ε̃)/ε̃xx, (16)

λ− = (ε̃xy −
√
−det ε̃)/ε̃xx, (17)

where det ε̃ is the determinant of ε̃. It is worth pointing
out that this result is independent of the choice of the
coordinate. If the directions of x, y are chosen differently,
λ± will change accordingly, but the two directions given
by x+ λ±y are invariant.

We have shown in Eq. (8) that these deformations cost
no elastic energy. Because the zero curvature condition is
the necessary and sufficient condition which guarantees
that the strain tensor defined in Eq. (7) corresponds to
a physical deformation, we conclude that the following
spatially varying deformations are all zero energy modes
of the system

εij(r) = ε̃ijf+(x+ λ+y),

εij(r) = ε̃ijf−(x+ λ−y). (18)
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Because we can choose arbitrary f+ and f−, the number
of these zero energy deformations is infinite in the contin-
uous theory. In a real system, with lattice structure and
with finite size, the number of zero modes scales with the
linear size of the system ∼ L/a, where L is the size of the
system and a is the lattice constant. Thus the number
of these zero modes is sub-extensive.

In summary, we prove here that for a 2D elastic system,
as long as there exists one uniform zero-energy mode,
which is described by a spatially independent strain ten-
sor ε̃, there must exist two families of spatially varying
zero-energy modes, as shown in Eq. (18).

D. Higher order terms in the elastic energy

In our analysis above, we ignored higher order terms in
the elastic energy. These higher order terms involve both
higher powers in ε and higher order derivatives, such as
∂ε.

In the previous section we solved for modes that have
zero elastic energy in the leading order theory. Restoring
contributions from higher order terms, the elastic energy
of these modes is

E = 0 +O(ε3) +O(∂ε∂ε), (19)

which is small when the strain is small and slowly vary-
ing in space. Thus, strictly speaking, these zero modes
should be called floppy modes because they are not nec-
essarily exactly zero energy.

In addition, in the Article, we consider frequencies of
plane waves (in the bulk or on the surface) that belong
to these two families of floppy modes with wave number
k. Our theory then predicts that the frequency of these
waves are

ω = O(k2). (20)

Ordinary plane waves in stable elastic medium have ω =
c k, where c is the speed of sound. In contrast, these
floppy modes correspond to plane waves with zero speed
of sound.

This zero sound velocity is a key signature of the sys-
tems with floppy uniform deformations that we study
here. Regardless of the details of the system, these con-
clusions hold universally.

In special families of structures with uniform floppy
twisting (e.g., Maxwell lattices), these floppy modes may
have exactly zero elastic energy, even if higher order
terms are taken into account. This phenomenon is dis-
cussed in our Article, where we show that the exact zero
elastic energy is protected by Maxwell’s counting rule.
Nevertheless, it is worthwhile to emphasize that although
in the general case (where there is no protection from the
counting rule) the elastic energy receives higher order cor-
rections, the acoustic sound velocity for these modes will
always be zero.

SUPPLEMENTARY NOTE 5: DOMAIN SOFT
TWISTINGS

As we have discussed, periodic Maxwell lattices can un-
dergo smooth, zero-energy transformations under gener-
alized twisting coordinate θ, which transforms their prim-
itive vectors. The magnitudes of the primitive vectors
vary smoothly and are bounded, and hence have local
maxima and minima. Only at such local maxima and
minima does the Guest mode (uniform soft twisting) not
couple to uniaxial strain along the lattice direction, and
hence there are self stresses present along these lines.
These are precisely the configurations discussed in the
main text in which lines of linear zero modes enter the
bulk. However, these may also be extended to nonlinear
zero modes. Previously, we considered a uniform lattice
in which every unit cell underwent the same deformation
parametrized by θ. Now let us instead consider a lat-
tice in which configurations may differ between individual
crystal cells but which nevertheless repeat periodically:

θi,j = θi,j+L = θi+L,j , (21)

where i, j is the cell index, L is the number of cells along
one side of the system, and θi,j is the cell’s configuration
coordinate. Consider, in particular, a configuration in
which the coordinate is uniform for all j along a row
but differs for rows i and i + 1, as depicted in figures
in the main text. A necessary and, for Maxwell lattices,
sufficient condition to ensure that these two rows may
meet without stretching any bonds is simply that the
primitive vector along the interface be equal in length
(differences in orientation may be met by rotating one of
the rows relative to the other):

|a1(θi,j)| = |a1(θi+1,j)|. (22)

As shown in Fig. S1, this condition may be satisfied not
only by the uniform solution but one in which two subse-
quent domains have distinct configurations (diagrams of
such lattices are shown in the main text). At the critical
points a domain structure may be induced in a previously
uniform material. At such a point, the system is neces-
sarily homogenous, as there is a unique maximum (or
minimum, which generally involves self-intersecting con-
figurations). However, each row separately may twist in
a positive or negative direction. To linear order, these are
simply the L bulk zero modes of the lattice with Ny rows,
but this formulation shows that they may be extended
to the nonlinear regime. Hence, there are 2L different
uniform soft twistings accessible from a critical point.
The point is “critical” not just in the sense of altering
the topological polarization, but in determining which of
the many nonlinear elastic instabilities will be induced.
However, once the domain structure is induced and the
system is twisted away from the critical point there is
once again only a single global mode that preserves the
periodic boundary conditions, the Domain Soft Twisting.
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|a1(θ)|

Supplementary Figure 2. Change in the magnitude of the
first primitive vector under soft twisting. Points and
arrows denote the allowed configurations and transformations
of adjacent domains. The leftmost (black) point represents
two identical regions which twist in the same manner. The
blue points connected via the dashed line represent adjacent
domains which require equal magnitudes of their primitive
vectors, hence the soft twisting carries them in opposite direc-
tions. Only at critical points (red) where the magnitude has
local extrema can domain structure be induced or removed—
here there is uniform soft twisting (black arrows below point)
and domain soft twisting (blue arrows above point).

For the deformed kagome lattice, the soft twistings in
the two domains have a particularly simple configuration.

The primitive vector is simply the sum of two vectors
r1, r2 along sides of the triangular tiles. The twisting
coordinates θt, θb in the two domains each rotate the two
vectors relative to one another. Hence, the condition of
preserving the length of the primitive vector is, in terms
of a rotation matrix R(θt(b) − θa1) simply

|r1 + R(θt − θa1)r2| = |r1 + R(θb − θa1)r2|
⇒ cos(θt − θa1) = cos(θb − θa1), (23)

where we have used the fact that the two edges are
collinear at the critical configuration. Hence, for the de-
formed kagome the only two possible types of domains in
the a1 direction satisfy

θt − θa1 = − (θb − θa1) , (24)

as shown in Fig. 6 in the main text.
More generally, there is no reason a Maxwell lattice

cannot have more complicated configurations in which
there are several compatible twisting angles and more
varied domain structures are possible. However, it is not
generally possible to have domain structure along two
lattice conditions simultaneously, since Supplementary
Equation (22) fixes the relation between two subsequent
twisting coordinates, with no additional degrees of free-
dom available to satisfy the analogous condition in an
additional lattice direction.
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