
Appendix A: Derivation of R0

In this part, we will describe the determination procedure for the implicit formula of the basic

reproductive ratio of system (2.1) according to the general procedure established by Wang and

Zhao [1]. It is easy to see that system (2.1) has exactly one disease-free solution E0 = (0, 0, 0).

Let x = (P1, P2, y)
T . Then model (2.1) can be written as

dx

dt
= F (t, x)− V (t, x),

where

F (t, x) =


a1(t)∆y(1− P1)

a2(t)∆y(1− P2)(
b1(t)Σ1P1 + b2(t)Σ2P2

∆

)
(1− y)

 ,

and

V (t, x) =


g1P1

g2P2

µy

 .

By the arguments similar to those in [2], it then follows that

DxF (t, E0) = F (t) and DxV (t, E0) = V (t).

We can get

F (t) =


0 0 a1(t)∆

0 0 a2(t)∆

b1(t)Σ1

∆

b2(t)Σ2

∆
0

 , V (t) =


g1 0 0)

0 g2 0)

0 0 µ

 .

It is easy to see that F (t) is non-negative, and −V (t) is cooperative in the sense that the off-

diagonal elements of V (t) are non-negative. Let ΦV (t) be the monodromy matrix of the linear

ω-period system
dz

dt
= V (t)z and ρ(ΦV (ω)) be the spectral radius of ΦV (ω).

Let Y (t, s) (t ≥ s) be a 3× 3 matrix solution of the system

d

dt
Y (t, s) = −V (t)Y (t, s), ∀t ≥ s, and Y (s, s) = I,

where I is the 3 × 3 identity matrix. Thus, the monodromy matrix Φ−V (t) of
dy

dt
= −V (t)y is

equal to Y (t, 0), t ≥ 0.

In view of the periodic environment, we assume that ϕ(s), ω-periodic in s, is the initial

distribution of infectious individuals. Then F (s)ϕ(s) is the rate of new infections produced by
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the infected individuals who were introduced at time s. Given t ≥ s, then Y (t, s)F (s)ϕ(s) gives

the distribution of those infected individuals who were newly infected at time s and remain in

the infected compartments at time t. It follows that

ψ(t) =

∫ t

−∞
Y (t, s)F (s)ϕ(s)ds =

∫ ∞

0
Y (t, t− a)F (t− a)ϕ(t− a)da

is the distribution of accumulative new infections at time t produced by all those infected

individuals ϕ(s) introduced at time previous to t.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R3, which is

equipped with the maximum norm ∥ ·∥ and the positive cone Cω := {ϕ ∈ Cω : ϕ(t) ≥ 0, ∀t ∈ R}.

Then we can define a linear operator L : Cω → Cω by

(Lϕ)(t) =

∫ ∞

0
Y (t, t− a)F (t− a)ϕ(t− a)da, ∀ t ∈ R, ϕ ∈ Cω

where L is called the next infection operator. The basic reproduction rate of system (2.1) is

defined as the spectral radius of L, i.e. R0 = ρ(L).

In order to characterize R0, we consider the following linear ω-periodic equation

dw

dt
=

[
−V (t) +

F (t)

λ

]
w, t ∈ R (A.1)

with parameter λ ∈ (0,∞). Let W (t, s, λ), t ≥ s, s ∈ R be the evolution operator of system

(A.1) on R3 . We have

W (ω, 0, λ) = exp

[∫ ∞

0

(
−V (t) +

F (t)

λ

)
dt

]

= exp


∫ ω

0


−g1 0 a1(t)∆

λ

0 −g2 a2(t)∆
λ

b1Σ1
λ∆

b2Σ2
λ∆ −µ

 dt

 , ∀ λ > 0.

It is easy to verify that system (2.1) satisfies assumptions (A1)–(A7) in Wang and Zhao [1].

Thus, we obtain the following two results, which will be used in our numerical computation of

the basic reproduction ratio and the proof of our main result, respectively.

Lemma A.1. The following statements are valid:

(i) If ρ(W (ω, 0, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L, and hence

R0 > 0.

(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, 0, λ)) = 1.

(iii) R0 = 0 if and only if r(W (ω, 0, λ)) < 1 for all λ > 0.

Lemma A.2. The following statements are valid:

(i) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1.
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(ii) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1.

(iii) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

Thus, the disease-free solution E0 is locally asymptotically stable if R0 < 1, and unstable if

R0 > 1.

Lemma A.1(ii) shows that the basic reproduction rate is determined by parameter λ of

ρ(W (ω, 0, λ)) = 1. We can calculate the basic reproduction ratio R0 using the numerical method.

Appendix B-Proof of the main result

Here we define X := {(P1, P2, y) : 0 < P1 ≤ 1, 0 < P2 ≤ 1, 0 < y ≤ 1} for system (2.1). It is

easy to obtain the following theorem.

Theorem B.1. System (2.1) has a unique solution with the initial value

(P 0
1 , P

0
2 , y

0) ∈ X := {(P1, P2, y) : 0 < P1 ≤ 1, 0 < P2 ≤ 1, 0 < y ≤ 1},

and this compact set is positively invariant.

Define

X0 = {(P1, P2, y) ∈ X : P1 > 0, P2 > 0, y > 0}, ∂X0 = X/X0.

Let H : X → X be the Poincaré map associated with system (2.1), that is,

H(x0) = u(ω, x0), ∀x0 ∈ X,

where u(t, x0) is the unique solution of system (2.1) with u(0, x0) = x0 . It is easy to see that

Hm(P 0
1 , P

0
2 , y

0) = u(mω, (P 0
1 , P

0
2 , y

0)), ∀m ∈ Z+,

where Z+ is the set of all non-negative integers. Next, we establish the following lemma which

will be useful in the proof of our main result.

Lemma B.1. If the basic reproduction ratio R0 > 1, then there exists a σ∗ > 0, such that

for any (P 0
1 , P

0
2 , y

0) ∈ X0 with

∥(P 0
1 , P

0
2 , y

0)− E0∥ ≤ σ∗,

we have

lim sup d(Hm(P 0
1 , P

0
2 , y

0), E0) ≥ σ∗. (B.1)

Proof. Since R0 > 1, Lemma A.2 implies ρ(ΦF−V (ω)) > 1. It follows that ρ(ΦF−V−Mσ(ω)) >

1 holds for sufficiently small σ > 0, where
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Mσ =


0 0 a1(t)∆σ

0 0 a2(t)∆σ

b1(t)Σ1σ�∆ b2(t)Σ2σ�∆ 0

 .

By the continuity of the solutions with respect to the initial values, there exists a σ∗ > 0 such

that for all (P 0
1 , P

0
2 , y

0) ∈ X0 with ∥(P 0
1 , P

0
2 , y

0) − E0∥ ≤ σ∗, there holds ∥u(t, (P 0
1 , P

0
2 , y

0)) −

u(t, E0)∥ ≤ σ, for all t ∈ [0, ω]. Next, we claim that lim supm→∞ d(Hm(P 0
1 , P

0
2 , y

0), E0) ≥ σ∗.

Assume, by contradiction, that (B.1) does not hold. Then we have

lim sup
m→∞

d(Hm(P 0
1 , P

0
2 , y

0), E0) < σ∗

for some (P 0
1 , P

0
2 , y

0) ∈ X0. Without loss of generality, we assume that d(Hm(P 0
1 , P

0
2 , y

0), E0) <

σ∗ , for all m ≥ 0 . It follows that ∥u(t,Hm(P 0
1 , P

0
2 , y

0))−u(t, E0)∥ = ∥u(t,Hm(P 0
1 , P

0
2 , y

0))∥ <

σ,∀m ≥ 0, ∀t ∈ [0, ω]. For any t ≥ 0, let t = mω + t′, where t′ ∈ [0, ω), and m is the largest

integer less than or equal to t/m. Therefore, we have

∥u(t, (P 0
1 , P

0
2 , y

0))− u(t, E0)∥ = ∥u(t′,Hm(P 0
1 , P

0
2 , y

0))∥ < σ, for all t ≥ 0.

Note that (P1(t), P2(t), y(t)) = u(t, (P 0
1 , P

0
2 , y

0)). It then follows that P1(t) < σ,P2(t) < σ, y(t) <

σ, for all t ≥ 0. From system (2.1), we get

dP1

dt
≥ a1(t)∆y(1− σ)− gP1,

dP2

dt
≥ a2(t)∆y(1− σ)− gP2,

dy

dt
≥
(
b1(t)Σ1P1 + b2(t)Σ2P2

∆

)
(1− σ)− µy.

(B.2)

We then consider the following system

dP̂1

dt
= a1(t)∆ŷ(1− σ)− gP̂1,

dP̂2

dt
= a2(t)∆ŷ(1− σ)− gP̂2,

dŷ

dt
=

(
b1(t)Σ1P̂1 + b2(t)Σ2P̂2

∆

)
(1− σ)− µŷ.

(B.3)

By Zhang and Zhao ([3], Lemma 2.1), we know that there exists a positive, ω-period function

(P̄1(t), P̄2(t), ȳ(t))
T such that (P̂1(t), P̂2(t), ŷ(t))

T = eξt(P̄1(t), P̄2(t), ȳ(t))
T is a solution of sys-

tem (B.3), where ξ =
1

ω
ln ρ(ΦF−V−Mσ(ω)). It follows from ρ(ΦF−V−Mσ(ω)) > 1 that ξ is a

positive constant. Let t = nω, here n ∈ Z+. We have

(P̂1(nω), P̂2(nω), ŷ(nω))
T = eξnω(P̄1(nω), P̄2(nω), ȳ(nω))

T → (∞,∞,∞)T as n→ ∞.
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For any nonnegative initial condition (P1(0), P2(0), y(0))
T of system (B.2), there exists a suf-

ficiently small m∗ > 0 such that (P1(0), P2(0), y(0))
T ≥ m∗(P̄1(0), P̄2(0), ȳ(0))

T . By the com-

parison principle, we have (P1(t), P2(t), y(t))
T ≥ m∗(P̂1(t), P̂2(t), ŷ(t))

T , for all t > 0. Thus, we

obtain P1(nω) → ∞, P2(nω) → ∞ and y(nω) → ∞, as n→ ∞, a contradiction. This completes

the proof.

Based on the above work, we give the main result as mentioned in Materials and Methods,

which may be written in the form of following theorem.

Theorem B.2. If the basic reproduction ratio R0 < 1, then the unique disease-free solution

E0 = (0, 0, 0) is globally asymptotically stable. Whereas if the basic reproduction ratio R0 > 1,

then there exists a constant δ > 0 such that any solution (P1(t), P2(t), y(t)) of system (2.1) with

initial value (P1(0), P2(0), y(0)) ∈ X0 satisfies

lim inf
t→∞

P1(t) ≥ δ, lim inf
t→∞

P2(t) ≥ δ, and lim inf
t→∞

y(t) ≥ δ.

Proof: In the case R0 < 1, Lemma A.2 implies that the disease-free periodic state E0 is

locally asymptotically stable. It is sufficient to prove that E0 is globally attractive if R0 < 1.

From system (2.1), we have

dP1

dt
≤ a1(t)△y − gP1,

dP2

dt
≤ a2(t)△y − gP2,

dy

dt
≤ b1(t)Σ1P1 + b2(t)Σ2P2

△
− µy.

(B.4)

Consider the following comparison system

dh(t)

dt
= (F (t)− V (t))h(t). (B.5)

Applying Lemma A.2, we know that R0 < 1 if and only if ρ(ΦF−V (ω)) < 1. By Zhang and Zhao

([3], Lemma 2.1), it follows that there exists a positive, ω-period function h̄(t) such that h(t) =

eθth̄(t) is a solution of system (B.5), where θ =
1

ω
ln ρ(ΦF−V (ω)). Since ρ(ΦF−V (ω)) < 1, then

θ < 0. Therefore, we have h(t) → 0 as t → +∞. This implies that the zero solution of system

(B.5) is globally asymptotically stable. For any nonnegative initial value (P1(0), P2(0), y(0))
T

of system (B.4), there is a sufficiently large M∗ > 0 such that (P1(0), P2(0), y(0))
T ≤ M∗h̄(0)

holds. Applying the comparison principle [4], we have (P1(t), P2(t), y(t))
T ≤ M∗h(t), for all

t > 0, whereM∗h(t) is also the solution of system (B.5). Therefore, we get P2(t) → 0, P2(t) → 0

and y(t) → 0 as t→ +∞. We finish the proof of the first part.
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By Theorem B.1, the discrete-time system {Hm}m≥0 admits a global attractor in X. Now

we prove that {Hm}m≥0 is uniformly persistent with respect to(X0, ∂X0). Clearly, there is

exactly one fixed point E0 = (0, 0, 0) of H in ∂X0. Lemma B.1 implies that E0 = (0, 0, 0) is

an isolated invariant set in X and WS(E0)
∩
X0 = ∅. By Zhao ([5], Theorem 1.3.1), it follows

that H is uniformly persistent with respect to (X0, ∂X0). By Zhao ([5], Theorem 3.1.1), the

solutions of system (2.1) are uniformly persistent with respect to (X0, ∂X0), that is, there exists

a constant δ > 0 such that any solution (P1(t), P2(t), y(t)) of system (2.1) with initial value

(P1(0), P2(0), y(0)) ∈ X0 satisfies

lim inf
t→∞

P1(t) ≥ δ, lim inf
t→∞

P2(t) ≥ δ, and lim inf
t→∞

y(t) ≥ δ.
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