Supplementary Figures and Tables

Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae)

Xiaojian Qu^{1,2}, Jianjun Jin^{1,2}, Dezhu Li^{1*} & Tingshuang Yi^{1*}

¹Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China, ²Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.

*Correspondence and requests for materials should be addressed to D.L. (email: <u>dzl@mail.kib.ac.cn</u>) and T.Y. (email: <u>tingshuangyi@mail.kib.ac.cn</u>).

Supplementary Figure S1. Phylogenies of Cupressoideae inferred from multiple maximum likelihood (ML) analyses under GTRGAMMA model. Support for the branches was estimated from 1,000 bootstrapping replicates. The bootstrap values are shown on branches, and bootstrap values of 100% are not shown. The trees are from analyses of PCG12, AA, PCG-GB-relaxed, PCG-GB-default, PCG-GB-strict, $PCG-R^{2}-11$, $PCG-R^{2}-71$, PCG-Iss-9, PCG-slope-12, PCG-slope-70, PCG-OV-medium-partition, PCG-OV-slow-partition, PCG-OV-fast-partition, PCG-TIGER-slow-partition, PCG-TIGER-fast-partition, PCG-TIGER-medium-partition, PCG-OV-sorted, PCG-GTR-CAT and PCG-ASTRAL.

Cunninghamia lanceolata

-{ Taiwai

J

С

нсх

(e) PCG-slope-70

Cunninghamia lanceolata

0.04

(g) PCG-OV-slow-partition

(g) PCG-OV-fast-partition

(h) PCG-TIGER-slow-partition

0.006

(k) PCG-ASTRAL

Supplementary Figure S2. Density plots of gene-specific saturation indices for the 82 PCG genes. (a) Slopes of the linear regression between patristic and uncorrected pairwise distances. (b) R^2 for the linear regression between patristic and uncorrected pairwise distances. Dashed line indicates the starting shoulder value. Red areas in the left-hand side are genes that might be saturated.

Supplementary Figure S3. Estimated evolutionary rates for nucleotide sites in the concatenated PCG data set. Parsimony informative sites in the concatenated dataset were sorted by the Observed Variability (OV) method or the Tree Independent Generation of Evolutionary Rates (TIGER) method and divided into three equal partitions.

Supplementary Figure S4. OV-sorting analysis. (a) Bootstrap support in ML phylogenetic reconstruction for three alternative relationships. Digits on the y-axis indicate bootstrap support values, and on the x-axis indicate length of A partitions. (b) Pearson correlation analyses. The blue dotted line indicates the Pearson correlation coefficient (r) of ML distances for A (conserved) and B (varied) partitions. The red dotted line represents the r value for uncorrected p distances and ML distances for the B partition. The optimal stopping point for varied site removal was identified at position 77,173. Digits on the y-axis indicate Pearson correlation coefficient and digits on the x-axis indicate length of A partitions.

Supplementary Figure S5. Chronogram of Cupressoideae based on the PCG matrix inferred by using treePL. Blue bars represent the minimum and maximum estimation of node ages. Red dots represent fossil calibration points in Supplementary Table S3. Red line indicates the Cretaceous/Tertiary boundary.

Supplementary Table S1. Cupressaceae taxa sampled in this study. The plastome sequences from KX832620 to KX832629 were generated in this study.

Subfamily	Species	Accession	Collection
		no.	no.
Cupressoideae	Callitropsis nootkatensis	NC_026295	-
	Calocedrus formosana	KX832620	Yi16045
	Calocedrus macrolepis	KX832621	Yi16046
	Chamaecyparis lawsoniana	KX832622	Yi16050
	Cupressus gigantea	NC_028155	-
	Cupressus sempervirens	NC_026296	-
	Fokienia hodginsii	KX832623	Yi16052
	Hesperocyparis glabra	KX832624	Yi16053
	Juniperus bermudiana	NC_024021	-
	Juniperus formosana	KX832625	Yi16054
	Juniperus monosperma	NC_024022	-
	Juniperus scopulorum	NC_024023	-
	Juniperus virginiana	NC_024024	-
	Platycladus orientalis	KX832626	Yi16058
	Thuja standishii	KX832627	Yi16059
	Thujopsis dolabrata	KX832628	Yi16060
	Xanthocyparis vietnamensis	KX832629	Yi16061
Cunninghamioideae	Cunninghamia lanceolata	NC_021437	-
Sequoioideae	Metasequoia glyptostroboides	NC_027423	-
Taiwanioideae	Taiwania cryptomerioides	NC_016065	-
	Taiwania flousiana	NC_021441	-
Taxodioideae	Cryptomeria japonica	NC_010548	-

Supplementary Table S2. Index of substitutuion saturation (Iss) values of 82 protein-coding genes for 22 Cupressaceae species. Iss: an entropy-based index of substitution saturation. Iss.c: the critical value of Iss. *: Iss value was greater than Iss.c value.

Order	Gene	Iss	Iss.c	(symmetrical	<i>P</i> -value	Iss.c	(asymmetrical	<i>P</i> -value
			tree)			tree)		
1	petN	0.0142	0.4176		0	0.3619	1	0
2	psbL	0.0156	0.4865		0	0.3555		0
3	petG	0.0167	0.4802		0	0.3555		0
4	psbN	0.0169	0.5144		0	0.3571		0
5	rbcL	0.0366	0.7827		0	0.563		0
6	psbI	0.0379	0.4736		0	0.3556		0
7	ycf3	0.0382	0.7151		0	0.4645		0
8	psaB	0.0434	0.797		0	0.5961		0
9	ndhE	0.0514	0.6571		0	0.4127		0
10	ndhA	0.0571	0.7719		0	0.54		0
11	ndhJ	0.0574	0.7179		0	0.4665		0
12	ndhB	0.0649	0.7841		0	0.5659		0
13	atpH	0.0659	0.6281		0	0.3939		0
14	psaC	0.066	0.6281		0	0.3939		0
15	psaA	0.0699	0.7979		0	0.5974		0
16	psbA	0.0707	0.77		0	0.536		0
17	rps7	0.0719	0.7064		0	0.456		0
18	psbK	0.0748	0.5826		0	0.3727		0
19	ndhC	0.0777	0.6793		0	0.4302	,	0
20	petA	0.0782	0.7653		0	0.5268		0
21	rpl14	0.0783	0.6812		0	0.4318		0
22	psbD	0.0806	0.77		0	0.536		0
23	psbB	0.0827	0.7849		0	0.5687		0
24	petB	0.085	0.7395		0	0.4866	i la	0
25	rps8	0.0873	0.6899		0	0.4397		0
26	ndhH	0.0895	0.7748		0	0.5462	,	0
27	psbH	0.0957	0.6166		0	0.3876	i la	0
28	atpI	0.0966	0.7502		0	0.5009	1	0
29	chlB	0.0973	0.785		0	0.5696	i i	0
30	psbC	0.0975	0.7825		0	0.5626	i	0
31	rps14	0.0985	0.6571		0	0.4127		0
32	ycf4	0.1007	0.7248		0	0.4719	1	0
33	psbZ	0.1026	0.5854		0	0.3738	i	0
34	psbE	0.1118	0.6351		0	0.398		0
35	rpl36	0.1151	0.4802		0	0.3555		0
36	chlN	0.116	0.7815		0	0.5604		0
37	rpl2	0.1253	0.7572		0	0.5121		0
38	atpF	0.1254	0.7254		0	0.4724		0
39	psbF	0.1254	0.4925		0.0001	0.3557		0.0069

40	chlL	0.1287	0.7601	0	0.517	0
41	atpE	0.1394	0.6939	0	0.4435	0
42	rpl33	0.1429	0.5961	0	0.378	0
43	rps11	0.1455	0.6899	0	0.4397	0
44	rps15	0.1465	0.64	0	0.401	0.0001
45	cemA	0.1486	0.7538	0	0.5064	0
46	psbM	0.1511	0.4736	0	0.3556	0
47	atpA	0.1533	0.7849	0	0.5686	0
48	ndhF	0.1613	0.7977	0	0.597	0
49	ndhG	0.1637	0.723	0	0.4705	0
50	ndhI	0.1747	0.7112	0	0.4611	0
51	psbT	0.1904	0.4667	0.0035	0.3559	0.0603
52	rps4	0.1993	0.7387	0	0.4857	0
53	petL	0.2013	0.4357	0.0054	0.3589	0.0495
54	psaM	0.2025	0.452	0	0.357	0.0079
55	atpB	0.2092	0.785	0	0.5691	0
56	psaI	0.22	0.4736	0	0.3556	0.0194
57	matK	0.2219	0.7852	0	0.5707	0
58	ndhK	0.2366	0.7552	0	0.5087	0
59	rps2	0.2451	0.7471	0	0.4963	0
60	ndhD	0.2729	0.7849	0	0.5689	0
61	rps19	0.2812	0.6597	0	0.4145	0.1181
62	rpl20	0.2895	0.6774	0	0.4286	0.0658
63	psaJ	0.3104	0.5193	0.1521	0.3577	0.7439
64	rps12	0.3325	0.6848	0.0014	0.4351	0.3414
65	rpl23	0.336	0.6584	0.002	0.4136	0.4495
66	psbJ	0.3522	0.4983	0.127	0.3559	0.969
67	ccsA	0.4041	0.7656	0	0.5274	0.0494
68	infA	0.4557	0.6446	0.0527	0.404	0.5939
69	petD	0.4929	0.7158	0.1791	0.465	0.8661
70	rpoB	0.5052	0.8089	0	0.6209	0.0042
71	rpoA	0.5057	0.7709	0	0.5379	0.6189
72	rpl16	0.6311	0.7025	0.6574	0.452	0.2674
73	rpoC1	0.6989	0.7999	0.0505	0.6005	0.0568
74	rpoC2*	0.7345	0.8095	0.0308	0.6262	0.0019
75	ycf2*	0.8376	0.8389	0.9496	0.6405	0
76	rps3*	1.0073	0.7518	0.0302	0.5033	0
77	rpl22*	1.1283	0.7172	0	0.466	0
78	$clpP^*$	1.1514	0.7729	0	0.542	0
79	ycf1*	1.1606	0.8414	0	0.6404	0
80	rpl32*	1.3362	0.6976	0	0.4471	0
81	$accD^*$	1.4705	0.8085	0	0.6188	0
82	rps18*	1.9964	0.7371	0	0.4839	0

Supplementary Table S3. Fossil calibrations implemented in this study. Detailed fossil calibration for these five nodes are in Materials and Methods. Ma: million years ago. MRCA: most recent common ancestor.

Calibration point	Assigned minimum age (Ma)	Note
Crown of Cupressoideae	157.2	Justification by
		Mao <i>et al</i> . ¹
Crown of Thuja-Thujopsis clade	58.5	Justification by
		Mao <i>et al</i> . ¹
Crown of Chamaecyparis-Fokienia clade	61.1	Justification by
		Mao <i>et al</i> . ¹
MRCA of Platycladus and Calocedrus	28.3	Justification by
		Mao <i>et al</i> . ¹
Crown of Juniperus	33.8	Justification by
		Mao <i>et al.</i> ¹

1. Mao, K. S. *et al.* Distribution of living Cupressaceae reflects the breakup of Pangea. *Proc. Natl. Acad. Sci. USA* **109**, 7793-7798 (2012).

Supplementary Table S4. The estimated divergence time for the Cupressoideae clades based on the PCG matrix. Penalized likelihood (PL) point represents the point age estimation in the maximum likelihood best tree. PL min and PL max represent the minimum and maximum estimations from 1,000 maximum likelihood bootstrap trees. Ma: million years ago. MRCA: most recent common ancestor. J-C-HCX: Juniperus-Cupressus-Hesperocyparis-Callitropsis-Xanthocyparis.

Clade	PL point	PL min	PL max
	(Ma)	(Ma)	(Ma)
Crown of Cupressoideae	97.29	94.73	99.65
Crown of Thuja-Thujopsis clade	58.50	58.50	58.50
MRCA of Chamaecyparis and Juniperus	92.77	90.25	95.10
Crown of Chamaecyparis-Fokienia clade	61.10	61.10	61.10
MRCA of Platycladus and Juniperus	70.29	68.03	72.60
MRCA of Platycladus and Calocedrus	51.92	49.02	55.75
Crown of J-C-HCX clade	48.79	47.48	50.29
Crown of J-C subclade	47.64	46.16	48.87
Crown of Juniperus	33.80	33.80	33.80
Crown of HCX subclade	14.26	12.36	16.23
MRCA of <i>Hesperocyparis</i> and <i>Callitropsis</i>	11.64	10.05	13.30