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Figure S1. RNA-sequencing strategies to identify heterozygous SNPs. RNA-sequencing was
performed using female hF clones in which reciprocal X chromosome pairs were active/inactive (e.g.
XjaX,i and X;iXsa in clone types a and b, respectively). In the first strategy (strategy1) the reads from
clone a (e.g. clone 11 and 12) and clone b (e.g. clone 27 and 34) were separately aligned to the reference
genome sequence and those positions at which a different variant nucleotide was identified were
considered heterozygous. In the second approach (strategy2) reads from both clones were merged

before variant identification and processed as genomic DNA [1].
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Figure S2. Induction of a human pluripotency gene program in hF clones upon fusion with mouse
ESCs. (a) Functional enrichment analysis of Gene Ontology categories [2] for significantly up-
regulated (red) and down-regulated (green) human genes in hFxmESC at day 4 and day6 versus day 0
(FDR <0.05; fold change > 2). Graphs show the GO categories plotted against the p values (logarithmic



scale). (b) Enrichment of genes that are NANOG or OCT4 targets in human ESCs, and among genes
that show differential expression in hFxmESC at days 4 and 6, versus day 0. Lines represent average
OCT4 or NANOG immunoprecipitation (normalised read density in hESC) [3] within the set of
differentially expressed genes (red), a random set of genes (black) or the input (grey). (¢) Hierarchical
clustering of genes that are up-regulated in hFxmESC but not in hESC (H9) and vice versa (black lines
in figure 2b). H9 and H9 Reset represent primed and naive hESC respectively, as described in [4].
Values correspond to the expression level (rlog, regularized logarithmic transformation) in each sample

(hF clones 12 and 34; days 0, 4 and 6) scaled by the mean expression of each gene across samples.



HiC Interactions MMM.A £

Cantone et al. - Figure S3

m\m‘m’m A& MMMMMAW&&

Scale
chrX: 100000001 800000001 1100000001
XAR e XCR
PAR1_§é;4
— SS S2 S1 PAR2
TADS n HIIE . I NE B = I_. .lw- - I_I_I- --ll_rl_-_il__l I BN . _.I-
|
HII\HH Ll i | | i ||
| | |
| 1 | | |
o ] ::HH N IHII N :HlH I I
H3K27me3 :: : | : ' :
|
30 |
H3K9me3 :

RefSeq Genes (1) FINMHIINNNE NI | {08010 ) AR

CpG Islands UL 110NN TOBER 0 01 00 000 MO OO OO OO0 OO0 COOBMORON 0 0 W0 00| (OO NN O OO0 A
b Global Fold Change C Xa Fold Change Xi Fold Change
4202 4 G S S o 2 10
day 44 } ............ m]l day 44 } ....... A - | day 41 | E,|:D ........ {
day 64 | .......... E]] ....... | day 6 - |§ ..... { day 64 i[l],l *
day4{ - }[ﬂ{ - day 4+ |H]| <= |4 day 41 —i[ﬂh x
day6{ .. }v,,m,,{ day 61 . |ﬂ}{ day 6{ - _.},{[I,,,F__
day 44 - }m{ day 41 | “““““ D:|| day 4[[]]
day 6 }m ----- | - day 6 - }Dﬂ{ day 6{- }{:ﬂ.{
d NANOG binding in hES e H3K27me3
T
Y i b A ;
|
R L i EEEE 31— EEEEEE 1
R IS SN EEEEEE 1
00 02 04 06 08 10 00 02 04 _ 06 08 10
RPKM RPKM
OCT4 binding in hES H3K9me3
I T
I+ F--CIE- 4| 1
|
-+ +-! b 1
-0 -4 3 —
00 02 0.4 [oX 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
RPKM RPKM

Figure S3. Influence of local chromatin environment on the reactivation of human Xi genes upon

pluripotent reprogramming. (a) Schematic

representation of the human X chromosome showing

genetic and epigenetic features and the positions of genes that accordingly to RNA-seq in clone 12 and

34 have significant Xi expression across reprogramming (purple), are reactivated (green) or remain



inactive (red). TADs have been described previously [5] on the basis of HiC data. Regions showing
different evolutionary conservation are represented as lines parallel to the X chromosome ideogram and
are defined as in [6]: X Added Region (XAR), X Conserved Region (XCR), and evolutionary strata
(PAR1,PAR2 and S1-5). H3K27me3 and H3K9me3 enrichment levels were defined using histone ChIP
data from female human fibroblasts previously published in [7]. Reference gene sequences (RefSeq
Genes) and CpG islands are obtained from the USCS Genome Browser. (b)-(e) Box plots showing
reactivated (green), stably active (purple) or inactive (red) genes. (b) Fold change difference between
transcript levels in hFxmESC at day 4 (grey-filled boxes) and day 6 (white-filled boxes) versus day 0.
Fold change was calculated from our RNA-seq dataset by edgeR and represents the average of 3-4
independent experiments in clone 12 and clone 34. Dashed lines indicate zero change. Asterisks mark
significant differences among gene categories (*) p <0,05 and (**) p <0.0005 (Mann-Whitney U test).
(¢) Xa- and Xi-specific fold change was computed using allele-specific reads and is represented as
described in (b). (d) NANOG and OCT4 binding at gene transcriptional start sites (+/- 4kb) in male
human ESC (H1) [3]. Dashed lines indicate mean X chromosome values. (¢) H3K9me3 and H3K27me3
enrichment along the gene body. Data are represented as reads per kilobase per million (RPKM)
obtained from published data of human fibroblasts [7]. Dashed lines indicate mean X chromosome

values.
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Figure S4. Reactivated genes have similar H3K9me3 and H3K27me3 in expressing and non-

expressing clones. (a) Enrichment of H3K27me3 (blue) and H3K9me3 (orange) at three distinct X

chromosome TADs (marked) neighboring genes with different status upon reprogramming: reactivated

(green), active (purple) or inactive (red). (b)-(c) Xi-specific enrichment of H3K27me3 and H3K9me3

in hF clone 12 and 34. Data represent enrichment relative to H3 immunoprecipitation.
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Figure S5. DNA demethylation does not induce reactivation of stochastically expressed Xi genes

ahead of reprogramming. (a) Confocal images show 5-methyl-cytosine (5mC) immunofluorescence

and DNA staining (Propidium Iodide, PI) of human fibroblasts that were cultured for 3 days in the

presence of 1uM 5-deoxy-azacytidine (+5azaC) or were untreated (control). Box plots on the right show



SmC intensity density across nuclei of 5azaC treated (n=302) and control (n=254) cells. (b) Xi gene
expression in hF clone 12 and 34 after culture for 3 days in the presence (+5azaC) or absence of 5-
deoxy-azacytidine. Data represent the average of 2 independent experiments + SEM for each clone.
Asterisks (*) marks significant differences (p<0.05, two-sided t-test). (¢) Xi allelic expression in hF
clone 34 treated for 3 or 4 days with 5azaC and then reprogrammed by fusion with mESCs. Data
represent the average of 2 independent experiments + SEM for each clone. Asterisks (*) marks

significant differences (p<0.05, two-sided t-test).
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