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Appendix: Optimal Down Regulation of
mRNA Translation

Yoram Zarai, Michael Margaliot and Tamir Tuller

A. PROOFS

Proof of Proposition 2.Consider Problem 2, and suppose that (11) holds. We need to show thatλ∗

i = λ̄i.
Seeking a contradiction, assume thatλ∗

i < λ̄i. By Prop. 1,λ∗ = λ̄ − bdi, so in particularR(λ̄ − bdi) ≤
R(λ̄−bdj). SinceR is a homogeneous function of the rates, we conclude thatR(cλ̄−cbdi) ≤ R(cλ̄−cbdj)

for any c > 0. Now takingc > 0 sufficiency small yields∂R(λ̄)
∂λi

≥ ∂R(λ̄)
∂λj

. This contradicts (11).
Proof of Proposition 3.In the case where all the rates are equal there exists a closed-form expression

for the sensitivities [1], namely,
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π
)
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)

2(n+ 3) cos3
(
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) , i = 0, . . . , n.

This means that

si =
a− cos

(

2i+3
n+3

π
)

b
, (1)

wherea, b > 0 are constants that do not depend oni. If n is even then the cosine function in (1) admits
a unique minimum ati = n/2, and combining this with Proposition 2 completes the proof.If n is odd
then the cosine function in (1) admits two minima: at⌊n/2⌋ and at⌊n/2⌋ + 1. Now arguing as in the
proof of Proposition 2 and using the particle-hole symmetryof the RFM completes the proof.

Proof of Proposition 4.If ē1 = · · · = ēn := ec, then (3) yields

λ̄i =











1, i = 0,

e−1
c , i = 1, . . . , n− 1,

e−1
c − 1, i = n,

(2)

where we scaled̄λ0 to one w.l.o.g. In this case, the Perron eigenvectorv ∈ R
n+2
++ of the matrixA(λ̄) is

given by (see also [1]):

vi =











1, i = 1,

µ(i−1)/2e
−1/2
c , 2 ≤ i ≤ n+ 1,

µn/2, i = n+ 2,

(3)

whereµ := ec/(1− ec). We consider two cases.
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If ec = 1/2 thenv′v = 2(n+ 1) and applying Theorem (1) yields the sensitivities:

si =











1
2(n+1)

, i = 0,
1

4(n+1)
, 1 ≤ i ≤ n− 1,

1
2(n+1)

, i = n.

(4)

Thus, s0 = sn > sj, for all j 6∈ {0, n}, and arguing as in the proof of Proposition 2 and using the
particle-hole symmetry implies that the two optimal solutions areλ̄− bd0 and λ̄− bdn.

If ec 6= 1/2 then Theorem 1 yields

si =











1−2ec
1−µn+1 , i = 0,
ec(1−2ec)
1−µn+1 µi, 1 ≤ i ≤ n− 1,
µn+1(1−2ec)

1−µn+1 i = n.

(5)

Whenec < 1/2 [ec > 1/2] (5) yields s0 > sj , for all j 6= 0 [sn > sj , for all j 6= n]. Combining this with
Proposition 2 completes the proof.

B. TASEPAND RFM COMPARISON

To show that the predictions obtained using the RFM, and specifically the results obtained in this
paper, are biologically relevant, we compared the predictions of RFM and TASEP using real biological
data as follows. We considered100 S. cerevisiae genes with various mRNA levels (all genes were sorted
according to their mRNA levels, and100 genes were uniformly sampled from the list).

Similarly to the approach presented in the biological example section in the main text, to model the
translation dynamics in these mRNAs using the RFM we dividedthe mRNAs related to these genes to
non-overlapping pieces. Here we choose the piece size to be10 codons, which is the size of the ribosome
footprint (other than the first piece that includes9 codons, and the last piece that includes between5 and
15 codons). The estimation of the codons decoding times, elongation rates, and initiation rates were done
as described in the biological example section in the main text.

To model the translation dynamics in these mRNAs using TASEP, we simulatedTASEP with extended
objects [2], where each site is a codon, and where the ribosome size was set to10 codons.

Figure B.1 depicts the correlation between the steady-state production rates in the TASEP and the RFM
over the100 genes. The Pearson correlation coefficient, and the corresponding p-value are also given in
the figure, indicating that the correlation between the two models is close to perfect. Figure B.2 depicts
the correlation between the steady-state mean coverage density in the TASEP and the RFM over the same
100 genes. Again, in this case the correlation between the two models is close to perfect. These results
validate the predictions obtained by the RFM.
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Fig. B.1. Steady-state production rate in the RFM (R) vs. extended objects TASEP (J) over the100 genes. Also shown are the Pearson
correlation coefficientr value and thep-value.
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Fig. B.2. Steady-state mean coverage density in the RFM vs. extended objects TASEP over the100 genes. Also shown are the Pearson
correlation coefficientr value and thep-value.


