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ABSTRACT Principal component analysis (PCA) discovers patterns in multivariate data that include spectra, microscopy, and
other biophysical measurements. Direct application of PCA to crowded spectra, images, and movies (without selecting peaks or
features) was shown recently to identify their equilibrium or temporal changes. To enable the community to utilize these capa-
bilities with a wide range of measurements, we have developed multiplatform software named TREND to Track Equilibrium and
Nonequilibrium population shifts among two-dimensional Data frames. TREND can also carry this out by independent compo-
nent analysis. We highlight a few examples of finding concurrent processes. TREND extracts dual phases of binding to two sites
directly from the NMR spectra of the titrations. In a cardiac movie from magnetic resonance imaging, TREND resolves principal
components (PCs) representing breathing and the cardiac cycle. TREND can also reconstruct the series of measurements from
selected PCs, as illustrated for a biphasic, NMR-detected titration and the cardiac MRI movie. Fidelity of reconstruction of series
of NMR spectra or images requires more PCs than needed to plot the largest population shifts. TREND reads spectra frommany
spectroscopies in the most common formats (JCAMP-DX and NMR) and multiple movie formats. The TREND package thus pro-
vides convenient tools to resolve the processes recorded by diverse biophysical methods.
INTRODUCTION
Plotting the course of biomolecular or physiological pro-
cesses typically uses procedures specific to the field. In
the case of spectroscopy and imaging, tracking the process
can be laborious because of the steps of assigning the peaks
of the spectra or features in the images, manually choosing
peaks or image features subjectively judged optimal for
monitoring the process of interest, and managing compli-
cations from any concurrent processes. Spectral overlap
and peak broadening (e.g., from chemical exchange in
NMR) can prevent correct fitting (1). A more elegant alter-
native to such efforts is to apply unsupervised, multivariate
statistical pattern recognition such as principal component
analysis (PCA). PCA has provided insight from series
of measurements from diverse techniques of molecular
biophysics that include magnetic resonance, vibrational,
optical, and dichroic spectroscopies; x-ray scattering and
diffraction; mass spectrometry; calorimetry; hydrody-
namics; atomic force microscopy; electron microscopy;
and imaging by fluorescence, Raman or light scattering, as
well as functional magnetic resonance imaging (Table S1
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in the Supporting Material and references therein). Biophys-
ical studies have often used PCA to determine dependencies
of various reactions upon time, concentration, or other con-
ditions, e.g., in protein folding (Table S1). PCA applied
directly to spectra, images, and movies appears to be a
convenient and general way to determine the main trends
of change among measurement frames that record many
localized changes. PCA is much more accommodating of
many data distributions than is often appreciated (2). It
transforms many measured variables to far fewer and uncor-
related principal components (PCs) that each capture part of
the trends of covariation among measured variables (2).

PCA of NMR peak lists was used to track equilibrium
transitions of proteins due to pH (3) and binding of partners
(4–6). Closely related singular value decomposition (SVD)
of NMR peak pick lists was used to reconstruct filtered
basis spectra for use in fitting biphasic ligand binding (7)
or for identifying binding sites (8). The applications of
PCA were recently extended directly to NMR spectra,
images, and movies without choosing any peaks or features
for analysis. Moreover, applying PCA directly to NMR
spectra makes binding isotherms easily accessible in
all chemical exchange regimes, including intermediate
exchange where severe broadening and nonlinearity of
peak shifts ordinarily mask the true course of molecular
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TABLE 1 Executable File Components of TREND

Executable File Roles Interface

trendmain.exe preprocess and compute

PCs or ICs

CLI

trendmaingui.exea preprocess and compute

PCs or ICs

GUI

trendplot.exe plot selected PCs or ICs with

choice of normalization

CLI

Software to Resolve Trends
association (1,9). Application of SVD to series of time-
dependent two-dimensional (2D) images or spectra ex-
tracted the dominant time course as PC1. The approach
also detected multiple time-evolving processes in magnetic
resonance imaging (MRI) movies as PCs. Similarly, when
two sequential steps of binding were monitored by NMR,
PCA detected both binding steps and the intermediate state
with a single ligand bound (9). Accomplishments with
SVD (PCA) have usually been limited to the laboratories
that wrote task-specific code to perform the calculations,
however.

Independent component analysis (ICA) can complement
PCA. ICA aims instead to find independent components
(ICs) (2). The quest of ICA for statistical independence is
more demanding than PCA’s aim of correlation coefficients
of zero. These objectives are equivalent for Gaussian
(normal) distributions. ICA can be regarded as more general
than PCA and is effective for non-Gaussian data and situa-
tions where PCA fails (2). However, ICA can be very slow
to compute compared with PCA, lower in convergence, and
require repeated calculations. Like PCA, ICA has been
used to reduce dimensionality and filter or separate data in
processing signals, images (10), large biological data sets
(11), and NMR spectra of mixtures (12–14).

To make these capabilities available for application to
a variety of spectroscopic and imaging techniques used
in biophysics, we have developed a software package
named TREND (Tracking and Resolving Equilibrium and
Nonequilibrium population shifts in Data). Its main means
of tracking the shifts is PCA implemented with SVD. Its
secondary means is an ICA algorithm, which recapitulates
the PCA results we examined, provided the correct number
of ICs is specified. We first sought to extract binding iso-
therms, equilibrium shifts, and time courses (all potentially
with multiple components) from series of NMR spectra.
Because of the suitability of PCA for many other kinds of
series of 2D digital data frames, we utilized the Python
community’s support of file I/O in multiple data formats
(e.g., movies and spreadsheets) and wrote code for addi-
tional spectroscopic formats, enabling wide application
(e.g., JCAMP-DX, Sparky peak list). For example, we
analyzed a cardiac MRI movie (15) with TREND to isolate
multiple aspects of the cardiac cycle and to reconstruct
movies from combinations of PCs. This software package
can resolve biologically relevant reactions and processes
with relative ease from many biophysical sources of compli-
cated spectral and imaging data.
trendplotgui.exea plot selected PCs or ICs with

choice of normalization

GUI

trendreconstruct.exe reconstruct spectra, images,

or movies from PCs

CLI

trendreconstructgui.exea reconstruct spectra, images,

or movies from PCs

GUI

CLI is command-line interface; and GUI is graphical user interface.
aExecutable files with GUI are trendmaingui.app, trendplotgui.app, and

trendreconstructgui.app for OS X or macOS platforms.
MATERIALS AND METHODS

Implementation of TREND

TREND was written in Python 2.7 and calls NumPy for linear algebra and

random number generation. It implements PCA (SVD) with function calls

to NumPy. We first wrote TREND for operation at the command line. We

added a graphical user interface (GUI), supported by Gooey, using function
calls to wxPython. Most users will prefer to use the GUI to operate TREND.

TREND comprises three programs, each with both interfaces (Table 1). The

executable files trendmaingui and trendmain compute the PCs or ICs across

the 2D series of measurements, create temporary files used by the plotting

or reconstruction programs run afterward, and plot the first three compo-

nents plus benchmarks of their significance. Trendplotgui and trendplot

provide optional plotting that is customizable in terms of the number

and choice of normalization of the components. Optional reconstructions

of the measurement series are available from trendreconstructgui and

trendreconstruct (Table 1). Explanations of the flags and parameters for

the command line versions are available online in the manual for TREND

(https://trendmizzou.gitbooks.io/trend-manual/content/). For convenience

of installation, we packaged TREND and the public domain software it de-

pends upon using PyInstaller. Consequently, TREND does not need Python

on the host system. Distributions are available for Windows 7 and later, Mac

OS X 10.7 and later, and these versions of Linux: Ubuntu 14.04/Fedora 23,

Ubuntu 16.04, and Red Hat 7.1/CentOS 7 (http://biochem.missouri.edu/

trend).
Conversion of a stack of 2D measurements into a
matrix for analysis

A wide variety of 2D measurements can be read and analyzed by

trendmaingui and trendmain. This includes images or movie frames

comprising pixels, one-dimensional (1D) and 2D spectra from many

spectroscopies, lists of peak positions and heights, and unprocessed NMR

spectroscopic data in the time domain (free induction decays, FIDs;

Fig. 1). The program reads NMR spectra in NMRpipe, Sparky, and Bruker

Topspin formats (as well as FIDs in NMRpipe and Topspin formats)

(Table 2) using code from Nmrglue (16). Trendmaingui and trendmain

also read Agilent (Varian) VNMRJ format and JCAMP-DX formats of

Bruker, Agilent, and Jeol spectrometers. To analyze the measurements

from many other kinds of spectroscopy and biophysical measurements

(Table S1), the program reads the most common JCAMP-DX formats, as

well as spreadsheet and text formats commonly written by instruments

(Table 2). Trendmaingui and trendmain read NMR peak lists either in the

format of Sparky peak lists (17) or plain text files, before converting

them into column vectors (3,7). Movies are read in multiple formats (i.e.,

avi, mov, mp4, ogv, webm) by the MoviePy module into three-dimensional

(3D) arrays with color layers. Trendmaingui and trendmain convert the

movie frames to gray-scale (8-bit depth) and rearrange them into 2D

matrices (Fig. 2). Time-lapse series of PNG images are read, using the

Scipy module of Python, and handled similarly.

In the case of NMR data, spectra very recently emerged as probably the

preferred format for application of PCA (9). In the examples below, NMR
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spectra (collected with a uniform set of parameters) were processed with

NMRPipe (18) and converted to the UCSF format of Sparky (17,19).

NMR spectra in UCSF format were read by trendmaingui or trendmain

for conversion into 2D matrices (Fig. 2). Unprocessed NMR data in

the time domain (FIDs) can also be read, processed, and the solvent

signal subtracted. (Analysis of time domain data is justified by Parseval’s

theorem regarding the equivalency of signals in the time and frequency

domains (20)).
Preprocessing

Regardless of original data format, columns from each 2D measurement

read are positioned end-to-end into a single 1D vector for convenience

(9) (Fig. 2). These 1D columns are arrayed over the experimental variable

(concentration, pH, time, etc.) into the data matrix X, which has F1 � F2

points in the column dimension and n points per row for the n experimental

conditions. To expedite manipulations of this matrix X and facilitate

calculations on a modest laptop computer, each vector is compressed by de-

leting unchanging positions, resulting in matrix X0 (Fig. 2). For SVD of

spectra, the user is encouraged to use a threshold that is three- to sevenfold

the noise level to filter out low intensity regions of the spectra, which

compresses matrix X0 further. However, it is better to use a lower threshold

where intermediate exchange broadening significantly weakens NMR

peaks.
FIGURE 1 Workflows to TREND extraction of the main components of

change across a series of measurements. TREND reads a series of spectra,

peak lists, FIDs, images, or a movie and extracts the dominant trends from

them. Spectral or electronic data series in general-purpose JCAMP-DX,

text, or spreadsheet formats, NMR formats, and video formats are readable.

The dashed lines signify reconstruction of measured data from the principal

components chosen. To see this figure in color, go online.
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As required by PCA and ICA algorithms, the rows of compressed

matrix X0 are centered and then optionally scaled. Scaling enlarges weaker

signals relative to large signals. The options for scaling methods include

autoscaling, Pareto scaling, or no scaling (21). No scaling appears accept-

able in most titrations, but autoscaling generally enhances fits to the bind-

ing isotherms. Autoscaling obviates the systematic scaling of 15N NMR

peak shifts down by several-fold relative to 1H shifts that were used in

PCA of lists in (3). Autoscaling also generalizes to 1H-13C correlation

spectra. Pareto scaling is recommended for NMR titrations with substantial

intermediate exchange broadening (9). Range, vast, and level scaling (21)

are also implemented in trendmain but do not work well with NMR spectra.

No scaling has been used for MRI movies. Column centering and scaling

are not necessary in our experience, but are available in trendmaingui

and trendmain as they are sometimes used for PCA (22) and ICA (11).

The descriptions of the data scaling and centering methods (21) are listed

in Table S2.
Calculating principal components via SVD

The compressed, preprocessed matrix X0 has m points per column and

n points or experimental conditions in each row, with m > n. X0 can be

decomposed into three matrices as follows:

X
0
mn ¼ UmnSnnV

T
nn; (1)

where U and VT are orthogonal matrices and S is a diagonal matrix that

contains the square roots of eigenvalues for vectors in U or V in descending

order. To obtain the trends of change across the measurements, we are inter-

ested in VT, whose rows span X0 and are called the right singular vectors.

The VT matrix has row vectors VT
nn ¼ ðVT

1 ;V
T
2 ;V

T
3.VT

n Þ. Importantly,

the first row in the VT matrix is PC1 and the second row PC2, i.e., the

two largest trends of change among the series of spectra or images

measured. To obtain these PCs that record the relationships among columns

in X0 (Fig. 2), it suffices to calculate VT. The rows of VT are orthonormal

eigenvectors of the symmetric matrix X
0TX

0
(Fig. 2). (The normalized

form of X
0TX

0
is equivalent to the covariance matrix, the alternative algo-

rithm for computing PCA (2).) The normalized PC1 values from the first

row of VT indicate the fractional population of the main change at each

measurement in the series of measurements. When obtained from a typical

titration of ligand binding, PC1 represents the binding isotherm; a dissoci-

ation constant may be fitted to it (9).
Reconstruction of spectra, images, or movies
by PCA

The reconstructed data set Xreconst, with size of m � n, can be calculated as

follows:

Xreconst ¼ Ua

�
SaV

T
a

�þ Ua

�
SbV

T
b

�þ Uc

�
ScV

T
c

�

þ Ud

�
SdV

T
d

�þ Ue

�
SeV

T
e

�
.; (2)

where a, b, c, d, e . refer to the index of PCs generated by trendmain

or trendmaingui to use in the reconstruction by trendreconstruct or

trendreconstructgui. (Note a, b, c, d, e . can be nonconsecutive integers.

To enable this, the ‘‘reconst’’ box should be selected in trendmaingui. When

using trendmain, the –reconst flag should be included.) The U matrix is

used for the reconstruction. It can be rewritten as column vectors:

Umn ¼ ðU1; U2;U3.UnÞ, which lie in the column space of X0. U can be

calculated similarly to VT, by solving eigenvectors of the matrix X
0
X

0T . To

recover the original 2D data series, the preprocessing steps of centering,

scaling, and compression (filtering) can be reversed as described in themanual

for TREND. The user can choose to reconstruct the centered and scaled

matrix, matrix X0, or matrix X in the format of the original data (Fig. 2).



TABLE 2 File Formats Read and Reconstructed by TRENDa

Choice in Trendmaingui Format Reconstruction Support Comment

NMR Data Formats

fid NMRPipe FID yes

ft2 NMRPipe Ft2 yes

ucsf Sparky UCSF yes

brukerfid Bruker Topspin FID yes fid, ser in/1/pdata/subfolderb

brukerft2 Bruker Topspin spectra yes 1r, 2rr files

agilentfid VnmrJ, OpenVnmrJ FID yes fid

agilentspectra VnmrJ, OpenVnmrJ spectra no Phasefilea

sparkylist Sparky peak list yes duplicate peaks not allowed

JCAMP-DX (Joint Committee on Atomic and Molecular Physical data—Data Exchange format)

jcamp JCAMP-DX no Only supports X..(YþY) and (XY..XY)c

Text File Formats

txt floating point yes for series of text files

complextxt complex numbers yes for series of text files

singletxt complex or floating point yes for single .TXT file containing entire series

Spreadsheet Formats

csv comma-separated floating point no for series of .CSV files

complexcsv comma-separated complex numbers no for series of .CSV files

singlecsv comma-separated complex or floating point no for single .CSV file containing entire series

excel Excel format no for series of Excel files

singleexcel Excel format with tabs no for single file with single or multiple tabs

Images and Movies

png images in PNG format yes For series of .PNG files

movie common video formats yes .ogv, .mp4, .mpeg, .avi, .mov, .webm

aSee the online TREND manual (https://trendmizzou.gitbooks.io/trend-manual/content/).
bCurrently the processed spectra must be saved by setting processed directory to 1.
cJCAMP-DX is a general format for exchanging and archiving data frommany instruments, including but not limited to infrared (IR), Raman, ultraviolet-visible

(UV-Vis), fluorescence, NMR, and electron paramagnetic resonance (EPR). The data stored in JCAMP-DXfiles can be spectral plots, contours, or peak tables.

TREND supports the most common JCAMP-DX formats. The digital data in JCAMP-DX can be AFFN (ASCII FREE FORMAT NUMERIC) form or ASDF

(ASCII SQUEEZEDDIFFERENCEFORM). TREND supports decoding compressed data, including PAC, SQZ,DIF, SQZDUP, andDIFDUP. Twomost com-

mon tabular data forms, (Xþþ(Y..Y)) and (XY..XY) are supported. TREND reads a series of JCAMP-DXfiles, or a single JCAMP-DXfilewith one ormultiple

blocks. TREND supports NTUPLE format (introduced by JCAMP-DX 5.0), which is designed for multidimensional techniques with data sets with multiple

variables. For example, JCAMP-DX NMR uses NTUPLE to show mixed real/imaginary FID data sets. See format details in http://www.jcamp-dx.org/,

https://badc.nerc.ac.uk/help/formats/jcamp_dx/, and http://wwwchem.uwimona.edu.jm:1104/spectra/testdata/index.html.
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ICA calculations

ICA is available in TREND and implemented using scikit-learn (http://

scikit-learn.org/stable/modules/decomposition.html#ica). Despite the po-

tential generality of ICA, two limitations need to be respected. Since

the magnitudes of ICs cannot be determined, their contributions cannot

be ranked. ICA is also prone to local minima during optimization, requiring

comparisons of repeated calculations (10,11). TREND implements the

FastICA algorithm for computational efficiency. FastICA preprocesses

data by PCA to reduce dimensions and avoid overlearning (23–25). (Over-

learning is an underdetermined situation that interferes in obtaining param-

eters and introduces artifacts to ICs (24,25)).

ICA decomposes the data matrix X as follows:

X ¼ AS; (3)

where A is the unknown mixing matrix that is invertible, square, and mixes

the components in X, and S is the matrix containing underlying independent

sources. The aim of ICA is to solve for the mixing matrix A because it

contains the ICs that may contain the meaningful trends sought. However,

A and S both being unknown makes ICA calculations challenging (10). The

equation can be rewritten as follows:

S ¼ WX ¼ VXw; (4)

where W is the unmixing matrix that is calculated as A�1. To simplify and

improve convergence of ICA, X is preprocessed to remove correlations and
to normalize it, a process called whitening, which generates Xw. FastICA

implements this whitening step using PCA to calculate the whitened data

matrix Xw as follows:

Xw ¼
�
D�1

2ET
�
X (5)

Where E is the matrix whose columns are normalized eigenvectors of

the covariance matrix of XXT, and D is the diagonal matrix of the corre-

sponding eigenvalues. The preprocessing with PCA also removes noise

and reduces dimensions for ICA. The whitening simplifies the ICA problem

to finding the unknown rotation matrix V that is defined as D�ð1=2ÞET .

In FastICA, V is estimated by maximizing non-Gaussian character. The

equations lead to the following:

A ¼ W�1 ¼
�
VD�1

2ET
��1

(6)

RESULTS AND DISCUSSION

Workflows of TREND

For wide application of SVD or ICA to diverse series of
2D measurements, we wrote TREND in Python to read
and analyze multiple types of data. These include diverse
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FIGURE 2 TREND implementation of PCA

(SVD), ICA, and reconstruction. The algorithm

reorganizes a series of 2D measurements as a

series of 1D columns. The dashed box indicates

the unfolding of the first 2D data (marked by black

edges) with F2 rows and F1 columns to a long 1D

column with F1 � F2 points. The data matrix X

is compressed to X0 and used for SVD. (No user

selection of spectral peaks or image features is

involved). The resulting first several right singular

vectors in the decomposed matrix VT represented

the largest trend(s). ICA can be used to corroborate

SVD results. Single or multiple PCs can be used

to reconstruct the original data series. To see this

figure in color, go online.
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spectra, images, movies, or lists in text or spreadsheet
formats available from many modern instruments (Fig. 1).
The spectral formats include widely used JCAMP-DX
standards and NMR formats. TREND can also apply PCA
or ICA to a single 2D data matrix read in from a text file,
spreadsheet file, or multiblock JCAMP-DX file containing
multiple spectra (Table 2). The algorithm of the trendmain
and trendmaingui executable files includes the following
steps:

1) Convert each 2D measurement into a 1D vector ar-
rayed by the experimental condition varied, in the data
matrix X.

2) Preprocess X with compression to X0 and optional
scaling.

3) Perform streamlined SVD or ICA to identify compo-
nents (PC1, PC2, . or IC1, IC2, .) representing the
major trend(s) varying with the experimental variable
(Fig. 1).

The TREND package provides additional executable
files for plotting the course of selected PCs or ICs or for
rebuilding spectra, images, or movie from selected PCs
228 Biophysical Journal 112, 224–233, January 24, 2017
(Table 1). For convenience, the plotting and reconstruction
routines read temporary files just created by trendmain or
trendmaingui; this frees the user from specifying input files,
which is optional. The user may operate and customize these
computations by a choice of GUI or command line argu-
ments described in documentation for the software.

Althoughwe used the Python routineNumPy to implement
PCA (SVD) and scikit-learn (http://scikit-learn.org/stable/
modules/decomposition.html#ica) to implement ICAcalcula-
tions, corresponding routines are available in R (https://mran.
microsoft.com/packages/), MATLAB (The MathWorks,
Natick, MA, https://www.mathworks.com/matlabcentral/
fileexchange/38300-pca-and-ica-package), and theMATLAB
Statistics Toolbox. Recreating the workflows and functions
depicted in Figs. 1 and 2 in an R or MATLAB environment
would require code to parse the file formats of interest, reduce
their dimensionality (i.e., ‘‘unfold’’ them), preprocess for
readiness for the SVD or ICA routine, and interpret or recon-
struct the results in the appropriate format. TREND spares the
user this effort with a package that is user-friendly for NMR
and other measurements from a variety of instrumentation,
including spectroscopies and imaging; see Table 2 for data

http://scikit-learn.org/stable/modules/decomposition.html#ica
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formats handled. TREND is free for academics, avoiding the
cost of licensing MATLAB. TREND requires <200 MB of
disk space whereas the MATLAB environment occupies 2
to 3 GB. TREND is portable and its installation lacks depen-
dencies, other than the need for Internet access upon first
usage.

We present examples of uses of TREND that illustrate
1) its performance in resolving two or more processes,
which is nonroutine by conventional means, and 2) its
wide applicability to trace and reconstruct concurrent, com-
plex transformations recorded by biophysical means such as
spectra or imaging.
Examples of ligand binding to two sites detected
by NMR

Antecedents to TREND’s direct application of PCA to
spectra and images were previous PCA studies of NMR
peak lists. SVD was used to filter noise out of the lists, in
turn used to reconstruct clean basis spectra to resolve three
pH transitions (3) or two binding events (4,7). With TREND
we demonstrate a direct spectrum-driven approach to the
latter examples of two biphasic associations. Fig. 3 A plots
a two-site binding scheme, where P and L denote [protein]
and [ligand], respectively. KD1 and KD2 are dissociation con-
stants from site 1 and 2. PLn1 and PLn2 are intermediates
with ligand at site 1 or 2, where n1 and n2 indicate the
numbers of ligand molecules that bind cooperatively to
site 1 and 2, respectively. PLn1Ln2 stands for the fully bound
state. Equations 3 to 6 from (7) were used to simulate pop-
ulations of species from the two-site binding scheme in a
series of 15N HSQC spectra (Fig. 3 B) using methods given
in Supporting Material. The curvature in the simulated shifts
of several peaks (red arrows in Fig. 3 B) accompanies more
than one mode of binding (7). PCA on the peak lists (chem-
ical shifts) captures two smooth components, PC1 and PC2
(purple in Fig. 3 C), contributing 90% and 6% of the vari-
ance, respectively. The PC1 and PC2 components of the
peak lists were recreated using trendreconstruct. PC1 cap-
tures from the curved trajectories of peak movements the
main linear paths of change (Fig. S1, A and B). PC2 iden-
tifies the peak shifts orthogonal to PC1 (Fig. S1 C).
Computing PC1 and PC2 instead directly from the simu-
lated HSQC spectra using trendmain (green in Fig. 3 C)
FIGURE 3 TREND identifies two components

in titrations of two binding sites. (A) Scheme of

the two-site binding model is shown. The number

of ligands that bind to sites 1 and 2 are n1 and

n2, respectively. (B) 15N HSQC spectra simulated

according to the two-site model, as described in

Supporting Material, are plotted for ligand:protein

ratios of 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.25, 1.5, 1.75,

2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 with different contour

colors. Both n1 and n2 equal 1 (7). In (B) and (D),

linear and curved peak shifting are indicated by

linear and curve arrows, respectively. (C) compares

PCs from the spectra and peak lists from (B). PC1

and PC2 are normalized to the maximum amplitude

of each. In the inset, each PC2 is instead normal-

ized by the amplitude of PC1, which is symbolized

by the PC20 labeling of the ordinate. (D) Measured
15N HSQC spectra of b-lactoglobulin titrated with

ANS additions of 0, 1.6, 3.2, 4.8, 6.4, 8.0, 9.6,

11.2, and 12.8 mM (4) are plotted with different

contour colors; while n1z 2, n2z 1 (4). (E) com-

pares PCs from the spectra and peak lists of (D).

The circles plot the PCA results from peak lists re-

ported by (4). The plots are normalized and labeled

as in (C). To see this figure in color, go online.
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reproduces their counterparts extracted from peak lists very
well, although each component contributes much less of the
variance (38% and 15%, respectively). However, when PC2
values are normalized by PC1, there is a systematic differ-
ence in amplitude of PC2 consistent with its percentage of
the variances listed above (inset in Fig. 3 C). This simulated
two-site binding example and a number of 1:1 ligand-binding
examples (2,9) suggest that normalized PCs extracted from
lists of picked peaks in the fast-exchange regime can be re-
producedwell by applying PCA to the series of spectra. How-
ever, PC1 and PC2 extracted by TREND from the FIDs from
the simulated two-site binding example are skewed with
sigmoidal deviation from the PCs obtained from either the
peak lists or spectra (Fig. S2, A and B). In the investigation
of a titration of b-lactoglobulin with 1-anilinoaphthalene-8-
sulfonate (ANS),Konuma et al. resolved two binding compo-
nents using PCA of the assigned peaks from theNMR spectra
of the titration (4). They observed curved trajectories (red
arrows in Fig. 3 D) and linear trajectories (blue arrows in
Fig. 3 D), suggesting the presence of multiple binding sites.
Fast exchange behavior supported reliable PCA of the chem-
ical shift data in peak lists, which provided binding isotherms
(4). TREND extracted the PCs from the spectra (green in
Fig. 3 E) and unprocessed FIDs from the titration (green
in Fig. S2, A and B). These PCs are compared with the
previously reported binding isotherms (purple in Fig. 3 E).
The binding populations of (4) are reproduced well by the
normalized PC1 and PC2 derived from the spectra despite
the t1-noise present (Fig. S3), and less well by PC1 and
PC2 obtained from the FIDs. (The residual solvent signal
was subtracted on-resonance from the FIDs using the
trendmaingui option of a convolution difference window
(26). In cases of especially poor solvent suppression, this
subtraction might not be enough for reliable PCs.) When
choosing the form of NMR data to analyze, application of
TREND directly to spectra appears to be the most consis-
tently accurate.

Reconstruction of the spectra of the ANS titration with
trendreconstructgui using only PC1 and PC2 introduces
artifacts that are ghosts of the peaks from each spectrum
of the titration (not shown). The cumulative contribution
ratio (reported by trendmaingui) saturates at eight PCs,
suggesting eight is sufficient to represent the series of
spectra. Using eight PCs in the reconstruction removed
the ghosts of peaks and reproduced well the spectra and
their biphasic trajectories of peak shifts upon additions
of ANS (Fig. S3). The need for eight or more PCs is
typical of the need for faithful reconstruction of series
of spectra and images. Nonlinearity is typical of such se-
ries and spreads their variances across many PCs; see
Fig. S7 in (9). This spreading of variances to many PCs
could account for the need for many PCs for faithful
reconstruction. Inspection of the reconstructed and orig-
inal spectra finds both fast and fast-intermediate exchange
regimes (Fig. S3). Application of PCA directly to the
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spectra, followed by reconstruction, accommodated this
mixture of behaviors, as recently proposed (9).
ICA for confirming components

TREND supports optional use of ICA. If the number or
significance of PCs obtained comes into question, ICA
can be used to test the significance and validity of the
PCs. It is also conceivable that ICA may be able to resolve
components from some experiments that are not resolvable
by PCA. ICA of peak pick lists from the two-site binding
example of Fig. 3 B yields ICs equivalent to PC1 and PC2
(Fig. S4). We tested ICA with various numbers K of trial
components with series of spectra containing N true compo-
nents. When K % N, ICA derives components that are very
similar to those from PCA (Fig. S5). However when K > N,
which means trying to extract more ‘‘independent compo-
nents’’ than true components, ICA always fails in our expe-
rience, as evident from components that are jagged and
meaningless (Fig. S5, E and F). Consequently, we propose
that this failure of ICA can be used to count the meaning-
ful components. The ICA should be repeated with incre-
mentally higher K trial components. The lowest value of
K at which ICA fails implies K � 1 significant components
(see Fig. S5 for two examples of the iterative process). The
drawback of ICA validation of components is in repeating
FastICA calculations N þ 1 times for each trial number of
components, preferably with three to five repetitions of
each, to escape local minima. Though the process is repeti-
tive, it requires no previous knowledge of the number of
components. Deciding the PCs that are significant may be
quicker by identifying the PCs that contribute the most to
scree plots (the convention) and which have large autocorre-
lation coefficients (smoothness) (7). However, recapitula-
tion of PCs by ICs may engender more confidence in the
reproducibility of the analysis.
Cardiac MRI movie resolved into components

Real-time imaging by MRI generates complex movies
that are suitable to showcase the capabilities of TREND.
An MRI movie of a slice through the four chambers
of the heart (15; http://www.biomednmr.mpg.de/images/
stories/movies/Media18.ogv) was analyzed by TREND. A
movie for each of the first four individual PCs was recon-
structed using trendreconstructgui, aiding interpretation of
the PCs. PC1 follows the time course of breathing where
the trough represents inhalation (Fig. 4 A; Movie S1).
Fig. 4 B plots a frame from the PC2 movie (Movie S2)
where the left ventricle is relaxed and open, known as dias-
tole. Fig. 4 C plots a frame from the PC2 movie where the
left ventricle and heart overall are contracted in systole.
The time course of PC2 follows the alternation between
the crests representing diastole and narrow troughs repre-
senting systole (Fig. 4 A). In the crests of PC2, the phases
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FIGURE 4 SVD captures from a cardiac MRI

movie the time courses of breathing, diastole, and

systole from a ‘‘four-chamber’’ angle of view. (A)

PC1 represents respiration is shown. PC2 tracks

the oscillation between diastole and systole. (B)

This frame in the reconstructed PC2 movie is

during diastole with the open cavities especially

evident in the ventricles (Movie S2). (C) In this

frame from the same movie, all four chambers

are contracted (systole). RA is right atrium; RV is

right ventricle; LV is left ventricle; and LA is left

atrium. To see this figure in color, go online.
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of rapid filling and subsequent slower filling of the ventri-
cles can be observed. (An overview of the cardiac cycle is
provided by Cardiovascular Physiology Concepts, Indianap-
olis, IN, http://www.cvphysiology.com/Heart%20Disease/
HD002b.htm). The troughs of PC3 coincide with the isovo-
lumetric contraction phase that begins systole (Fig. 4 A).
The left ventricle and atrium walls and interiors alternate
in appearance in the PC3 movie (Movie S3). Bright density
between the left ventricle and atrium in the PC3 movie at
the troughs in the PC3 time course suggests the closed
state of the left atrioventricular (mitral) valve. Coinciding
with this is detectable rotation of the right atrium and
ventricle. The PC4 movie represents sudden overall
rotations of the heart (Movie S4). The time courses indicate
synchronization of these rotations (PC4) with both the car-
diac cycle (PC2) and each inspiration of a breath (PC1);
see Fig. S6 A. The rotations appear largest when a breath
in begins and ends. These observations illustrate the ability
of TREND to resolve and aid interpretation of concurrent
processes.

A movie reconstructed from all four of these PCs
using trendreconstructgui captures the major morpholog-
ical changes of the cardiac cycle (Movie S5), but is not
as smooth and nuanced as the original (15; http://www.
biomednmr.mpg.de/images/stories/movies/Media18.ogv).
Trendmaingui reports autocorrelation coefficients exceeding
0.7 for the first 44 PCs, suggesting their information content.
Inspection of the scree plot and the cumulative contribution
plot generated by trendmaingui indicates that the first four
PCs account for ~69% of the statistical variance across
the movie, 10 PCs account for 85%, and 20 account for
93% (Fig. S6 B). Reconstruction of the cardiac MRI movie
using the first 10 PCs imparts much increased realism to the
depiction of the turbulent blood flow in the cardiac cham-
bers and smoothness to the cardiac movement (Movie S6).
Doubling the PCs to the first 20 enhances the fidelity
further but more subtly (Movie S7). Omission of PC1 re-
moves the largest background of breathing changes to
the chest cavity, while preserving the cardiac cycle portrayal
(Movie S8).

In reconstruction of other movies and NMR spectra,
we also observed the faithfulness of the reconstruction
to increase with number of PCs. Eight or more PCs may
often be desirable for satisfying reconstruction of a
measurement series. The scree plot and secondarily the
autocorrelation coefficients appear useful for anticipating
the number of PCs beneficial for reconstruction of the
measurement series.
CONCLUSIONS

Direct application of PCA (or ICA) to 2D measurements
using TREND will expand the accessibility of equilibrium
and time-evolving processes measured by spectra and
imaging. No curation, selection, assignment, or resolution
of specific spectral peaks or image features is necessary
using this unsupervised statistical approach. TREND can
be applied ‘‘on-the-fly’’ on an instrument host computer
during data collection to assess if the process or reaction
has progressed far enough. Multiple concurrent processes,
measured by biophysical techniques, have been readily
resolved into principal or independent components. Movies
and spectra can be reconstructed with TREND from the
user’s choice of principal components. These capabilities
will introduce, to our knowledge, new convenience and
insight to analyses of spectrally detected reactions and im-
aging-detected processes studied by biophysics, physiology,
and other disciplines.
SUPPORTING MATERIAL
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Supplemental Methods  

2D Spectral Simulations of Two Site Ligand Binding 

15N HSQC spectra were simulated with Gaussian line shapes using Nmrglue (1). The 

total [protein], Pt, was set to 50 µM and KD1 and KD2 to 32 and 10.2 µM, respectively, 

per ref (2). These simulations in fast exchange (Fig. 3A,B) are similar to simulations of 

1:1 ligand binding; see SI in ref (3). However, free, intermediate, and bound populations 

were simulated using Equations 3 to 5 given in ref (2). Chemical shifts of peaks were 

calculated as population weighted averages of the simulated free, fully-bound, and two 

hidden intermediate states. Peaks of the free and fully-bound states were modeled after 

the FHA domain (BMRB: 5564) and its peptide-bound form. Peak positions of hidden 

intermediate states were generated by random perturbation from the linear path 

connecting the pairs of free and bound states. Gaussian noise was added to each 

spectrum to set the S/N to 5.0 for peaks of median intensities in the free state spectrum 

(3). Linewidths were also randomly perturbed by 5% in both dimensions. The 

corresponding FIDs were calculated by inverse Fourier transformation of simulated 

spectra.  

  



Table S1: Types of biophysical measurements that PCA has interpreted 
successfully. The purposes of the PCA usages are indicated by the letter symbols 
defined in the legend. These sources of data are amenable to analysis by TREND. Most 
of the techniques can supply files in JCAMP-DX, spreadsheet, or text format, each 
readable by TREND. Images from microscopy and other imaging methods can be read 
into TREND either as a series of PNG images or in one of several movie formats listed 
in Table 2. NMR spectra are read in one of the formats listed in Table 2.  

Biophysical Technique    Objective of PCA         References 
Spectroscopy 

Circular Dichroism A, B (4, 5) 
Electron Paramagnetic Resonance B (6) 

Electronic Absorption B (7) 
Fluorescence, fluorescence correlation A, B (4, 8, 9) 

Linear Dichroism B (10) 
Magnetic Optical Rotatory Dispersion B (11) 

Multi-wavelength B (12) 
Nonlinear IR F (13) 

Raman H, I (14) 
UV-Vis B, D, E, G (15-17) 

X-ray absorption A (18) 
Imaging 

Atomic Force Microscopy B, G (19) 
Electron Energy Loss Spectrum C (20) 

Fluorescence B, G, H (21, 22) 
Functional Magnetic Resonance Imaging B, D (23) 

Raman C (24) 
Scattered-Light G (25) 

Transmission Electron Microscopy C (26) 
X-ray scattering techniques 

Small-angle X-ray Scattering B, D (27, 28) 
Wide-angle X-ray Scattering B (29) 

X-ray Free Electron Laser C (30) 
X-ray Diffraction B (31, 32) 

Other techniques 
Chromatographic Data H (33) 

Differential Scanning Calorimetry B, I (34) 
Mass Spectrometry I (35) 

A: Plot concentration-dependent curve     B: Plot time course 
C: Noise filtering     D: Determine meaningful components 
E: Find pH dependent curve   F: Plot temperature-dependent curve 
G: Extract important components   H: Find basis data set (deconvolution) 
I:   Classification  
  



Table S2. Scaling options that TREND supports. Element 𝑥𝑖𝑖 represents the data 
point in the ith row and jth column of matrix X’. 𝑥�𝑖𝑖 stands for the scaled value of 𝑥𝑖𝑖. �̅�𝑖 
and 𝑠𝑖 represent the mean value and standard deviation, respectively, of the ith row. �̅�𝑖 
and 𝑠𝑖 represent mean value and standard deviation, respectively, of the jth column. Van 
den Berg et al. define these formulae and discuss usage of scaling (36). 

Scaling option Definition Formula (row scaling) Formula (column scaling) 

none do nothing 𝑥�𝑖𝑖 = 𝑥𝑖𝑖  𝑥�𝑖𝑖 = 𝑥𝑖𝑖 

noscaling Centering 𝑥�𝑖𝑖 = 𝑥𝑖𝑖 − �̅�𝑖 𝑥�𝑖𝑖 = 𝑥𝑖𝑖 − �̅�𝑖 

auto Autoscaling 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖
𝑠𝑖

 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖
𝑠𝑖

 

pareto Pareto scaling 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖
�𝑠𝑖

 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖
�𝑠𝑖

 

vast Vast scaling 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖
𝑠𝑖

∙
�̅�𝑖
𝑠𝑖

 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖
𝑠𝑖

∙
�̅�𝑖
𝑠𝑖

 

range* Range scaling 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖

𝑥𝑖𝑚𝑚𝑚 − 𝑥𝑖𝑚𝑚𝑚

 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖

𝑥𝑖𝑚𝑚𝑚 − 𝑥𝑖𝑚𝑚𝑚

 

level Level scaling 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖
�̅�𝑖

 𝑥�𝑖𝑖 =
𝑥𝑖𝑖 − �̅�𝑖
�̅�𝑖

 

 

* trendreconstruct does not support reconstruction of dataset that was pretreated with 
Range scaling.   

 



 

Figure S1. Peak pick lists from the simulated spectra of Fig. 3B were reconstructed by 

TREND and plotted as circles.  A) The peak lists from the simulated two-site ligand-

binding titrations of Fig. 3B are plotted and overlaid. TREND reconstruction of the PC1 

and PC2 portions of the peak lists is plotted in (B) and (C), respectively. 



 

Figure S2. SVD of the unprocessed FIDs from the two site binding titrations identifies 

two components similar to those from the spectra or the peak lists. (Upper panels) PC1 

and PC2 derive from the simulated spectra of Fig. 3B, c.f. Fig. 3C.  (Lower panels) PC1 

and PC2 derive from Figure 3D regarding ANS binding titrations, c.f. Fig. 3E.  

 

  



 

Figure S3. Reconstruction with eight PCs using trendreconstructgui reproduces the 

spectra of Konuma et al. (2013) for the titration of bovine β-lactoglobulin with ANS (37). 

Arrows mark part of the curved trajectories of peak shifts upon succession of additions 

of ANS from blue contours at no addition to red contours at 12.8 mM ANS. Some 

instances of fast-intermediate exchange broadening are pointed out with an asterisk (*).  



 

Figure S4. ICA extracts binding components nearly identical to those from PCA when 

the number of components is chosen correctly. IC1, IC2, PC1, and PC2 obtained from 

peak lists from the simulated two-site binding titration of Fig. 3B.  

 

  



 

Figure S5. Validating the number of significant principal components using ICA. The 

examples have two components. The failure of ICA suggests the independent 

components that are meaningful in titrations. (A, C, E) report on the simulated two site 

binding events of Fig. 3B.  (B, D, F) report on ANS binding in Fig. 3D. The first row (A, 

B) colors PC1 black, PC2 red, and PC3 with blue dashed lines. (C, D) plot the IC1 and 

IC2 (green or purple, respectively) when calculating two independent components 

(inherently unordered). The third row (E, F) shows computed IC1 to IC3. These three 

ICs have lost the shape of IC1 and IC2 when only two ICs were computed (panels D to 

I). This loss of the shapes of IC1 and IC2 indicates the failure of ICA when choosing 

three components, implying that only two components are significant and needed. 

 



 

 

Figure S6. (A). PC4 (blue) from the cardiac MRI  movie of Figure 4 reports sudden 

overall rotations of the heart which synchronize with both the cardiac cycle (gray dashed 

curve) and each inspiration of a breath (gray dotted curve). (B) The scree plot for the 

analysis of Figure 4 is black. The cumulative contribution ratio is blue.  

 

Movie S1. Movie reconstructed from PC1 from the cardiac MRI movie of Fig. 4 (38), 

showing the effects of breathing on the chest cavity.  

Movie S2. Movie reconstructed from PC2 from the cardiac movie of Fig. 4, showing 

cycling between contraction (systole) and relaxation (diastole).  

Movie S3. Movie reconstructed from PC3 from the cardiac movie of Fig. 4, which is 

likely to show isovolumetric changes of the cardiac cycle.  

Movie S4. Movie reconstructed from PC4 from the cardiac movie of Fig. 4, revealing 

sudden overall rotations of the heart.   

Movie S5. Movie reconstructed from PCs 1 through 4 calculated from the cardiac MRI 

movie. 

Movie S6. Movie reconstructed from PCs 1 through 10 from the cardiac MRI movie. 



Movie S7. Movie reconstructed from PCs 1 through 20 from the cardiac MRI movie. 

Movie S8. Movie reconstructed from PCs 2 through 20 from the cardiac MRI movie. 
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