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Results Summary

Data Set Meth PCs Adj PCs Adj PCs II Barfield et al. EPISTRUCTURE Measurement

GALA II

R2 = 0.01 R2 = 0.83 R2 = 0.70 R2 = 0.02 R2 = 0.83 Genotype-based PC 1

R2 = 0.02 R2 = 0.32 R2 = 0.27 R2 = 0.03 R2 = 0.32 EU fraction

R2 = 0.01 R2 = 0.81 R2 = 0.69 R2 = 0.03 R2 = 0.81 NA fraction

R2 < 0.01 R2 = 0.79 R2 = 0.67 R2 < 0.01 R2 = 0.78 AF fraction

CHAMACOS

R2 = 0.04 R2 = 0.15 R2 = 0.14 R2 = 0.05 R2 = 0.38 Genotype-based PC 1

R2 = 0.03 R2 = 0.11 R2 = 0.08 R2 = 0.01 R2 = 0.46 EU fraction

R2 = 0.04 R2 = 0.14 R2 = 0.11 R2 = 0.01 R2 = 0.60 NA fraction

R2 = 0.01 R2 = 0.01 R2 = 0.01 R2 = 0.01 R2 = 0.06 AF fraction

GALA II
450K-specific

CpGs excluded

R2 = 0.01 R2 = 0.83 R2 = 0.70 R2 = 0.04 R2 = 0.82 Genotype-based PC 1

R2 = 0.02 R2 = 0.32 R2 = 0.28 R2 = 0.03 R2 = 0.31 EU fraction

R2 = 0.01 R2 = 0.81 R2 = 0.69 R2 = 0.04 R2 = 0.80 NA fraction

R2 = 0.01 R2 = 0.55 R2 = 0.46 R2 = 0.03 R2 = 0.55 AF fraction

CHAMACOS
450K-specific

CpGs excluded

R2 = 0.04 R2 = 0.15 R2 = 0.14 R2 = 0.05 R2 = 0.33 Genotype-based PC 1

R2 = 0.03 R2 = 0.11 R2 = 0.08 R2 = 0.04 R2 = 0.45 EU fraction

R2 = 0.04 R2 = 0.14 R2 = 0.11 R2 = 0.04 R2 = 0.58 NA fraction

R2 = 0.01 R2 = 0.01 R2 = 0.01 R2 = 0.04 R2 = 0.08 AF fraction

Table S1: Summary of the results in the GALA II data set and in the CHAMACOS data set. In the
first part of the table, squared linear correlations were measured between several measurements of ancestry
information and linear predictors using the first two PCs of the data (Meth PCs), the first two PCs after
adjusting the data for cell type composition (Adj PCs), the first two PCs after adjusting the data for cell
type composition and excluding probes containing SNPs from the data (Adj PCs II), the first two PCs when
considering only CpGs in close proximity to SNPs (Barfield et al.) and the first two EPISTRUCTURE PCs.
The second part of the table presents the results of the same experiments, only after excluding all the CpGs
of the 450K array that were not included in the EPIC methylation array.
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Figure S1: Correlation of methylation sites with cis-SNPs in the KORA data set. An R2 score was calculated
for each CpG available in the data from cis-SNPs (see Methods). The results are presented in a log scaled
histograms, showing that in most of the CpGs only a small portion of the variance can be explained by
cis-SNPs.
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Figure S2: Capturing ancestry fraction estimates in the GALA II data using EPISTRUCTURE. Presented
are linear predictors of European (EU), Native-American (NA) and African (AF) fraction estimates of the
individuals in the data using the first two EPISTRUCTURE PCs.
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Figure S3: Capturing ancestry information in the GALA II data from Puerto-Rican (PR) individuals and
from Mexican (MX) individuals separately. Presented are linear predictors of the first genotype-based PC
using the first two methylation PCs computed from each subpopulation separately after adjusting the data
for cell composition, before and after excluding probes containing SNPs from the data (top and middle
panels, respectively) and using the first two EPISTRUCTURE PCs (bottom panel).
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Figure S4: Capturing ancestry fraction estimates in the GALA II data. Presented are linear predictors of
European (EU), Native-American (NA) and African (AF) fraction estimates of the individuals in the data
using the first two methylation PCs of the data (top panel), the first two PCs after adjusting the data for
cell composition (adjusted methylation PCs; middle panel) and using the adjusted methylation PCs after
excluding from the data all probes containing SNPs (bottom panel).
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Figure S5: Capturing ancestry fraction estimates in the CHAMACOS data set. Presented are linear pre-
dictors of European (EU), Native-American (NA) and African (AF) fraction estimates of the individuals
in the data using the first two methylation PCs (top panel), the first two PCs after adjusting the data for
cell type composition (adjusted methylation PCs; middle panel) and using the first two EPISTRUCTURE
PCs (bottom panel). The methylation PCs in this experiment were computed without excluding probes
containing SNPs from the data.
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Figure S6: Most of the available SNPs used in creating the reference list of genetically-informative CpGs
were found to be predictors of no more than one CpG in the reference list. Only 26,244 out of the available
SNPs in KORA (657,103) were used in the prediction of the CpGs that were included in the reference list.
Out of these sites 82.2% were found to be predictors of only one CpG and 93.3% were found to be predictors
of at most two CpGs.
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Supplementary note

PCA is well-known to efficiently capture ancestry information when applied to genotypes data [1]. In this

supplementary note we show why applying PCA on CpGs that are linear combinations of SNPs is expected

to capture population structure as well. The algorithm of EPISTRUCTURE can be divided into two main

steps. First, a reference list of genetically-informative methylation sites is compiled from a group of CpGs,

each found to be well approximated by its cis-located SNPs. Second, given a new methylation data set, the

first several PCs of the data are calculated only from the sites that were included in the reference list. The

reason for applying PCA in the second part of the algorithm is motivated by the success of PCA to capture

ancestry information in genotyping data. In the case of genotyping data coming from different populations,

the first several PCs capture population structure by highlighting groups of individuals differing at the

level of allele frequencies. Given an n × s centered genotyping data matrix G of s SNPs collected from n

individuals, the generative model underlying PCA assumes:

G = ZW + Σ (1)

Σj ∼MVN
(
0, τ2In

)
where Z is an n× k matrix representing k-dimensional latent structure of the ancestry information for each

individual and W is a k × s matrix representing ancestry-specific differences in allele frequencies for each

SNP. Σ is an n×s error term, typically assumed to have independent entries (that is, no relatedness between

the n individuals and independence between the SNPs).

Any methylation site can be modeled as a linear function of SNPs and additional error term, and therefore

the methylation level of a specific site in a given individual can be approximated to some extent using merely

the individual’s SNPs. Formally, given an n×m centered methylation data matrix O of m methylation sites

coming from the same n individuals in G, we can describe Oj , the j-th column of O as:

Oj = GBj + Ej (2)

Ej ∼MVN
(
0, σ2

j

)
where Bj is an s × 1 coefficients vector of the linear model and Ej is an n × 1 error term. In particular,

methylation site j that cannot be even partially explained by SNPs will have a corresponding Bj vector of
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only zeros. In the first step of the EPISTRUCTURE algorithm we find a group of methylation sites which

can be well explained by their cis-located SNPs. Restricting the data matrix O to be consisted only of such

methylation sites increases the signal-to-noise ratio in the data.

Plugging (1) into (2) we get

Oj = (ZW + Σ)Bj + Ej (3)

= ZWBj + ΣBj + Ej (4)

where ΣBj and Ej are normally distributed as before. This model can be equivalently described as follows:

Oj ∼MVN
(
ZWBj ,

(
Bt

jBjτ
2 + σ2

j

)
In
)

(5)

Under this formulation there is a dependency between every two methylation sites. However, based on

previous reports showing clear predominance of associations between CpGs and cis-located SNPs over trans-

located SNPs [2–4], we assume that only cis-located SNPs are informative for explaining a given methylation

site. As a result, B is expected to be very sparse with values concentrated around the diagonal, assuming

the SNPs and CpGs are ordered by physical position. In particular, every two distant methylation sites are

independent. In our case the matrix B was estimated from the KORA data for which both genotyping and

methylation levels were available. We observed that the vast majority of the rows in the estimated matrix

are sparse and only rarely have more than one non-zero entry (Supplementary Figure S6). The main reason

for this is the fact that we consider only a sparse set of methylation sites from the genome, resulting from the

first step of the algorithm in which only sites that can be well approximated by SNPs are selected. Therefore,

we neglect the theoretical dependency between close sites and assume no dependency between any of the

columns in B. Now, the model can be summarized as:

Oj ∼MVN(ZW̃j , ψ
2
j In) (6)

where W̃j = WBj and we are interested in extracting Z, the latent ancestry information structure of the

individuals in the data. The maximum likelihood solution to the model in (3) is given by factor analysis,

and the first k factors can be used as estimates of the latent population structure Z. In practice, factor

analysis iteratively scales each site and the first iteration is equivalent to PCA after standardization of each
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of the sites. Empirically, applying more than one iteration did not improve the performance, therefore, in the

second step of the EPISTRUCTURE algorithm we suggest to perform a standardized PCA and to consider

the first k PCs as the estimate of the population structure.
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