S2 Appendix

Optimal density maximizing alternative quality functions.

We considered alternative quality functions combining E_g , E_l and ρ . For each new J, we checked analytically the existence of an optimal density maximizing J in both regular lattices and random networks. We excluded the quality functions for which we obtained indefinite, non-closed or trivial solutions.

• $J = E_g + E_l - \rho \simeq 1/L + C - \rho$

By substituting the expression of L and C for random networks we obtain:

$$J_1 = \frac{\log k}{\log n} + \frac{k}{n} - \frac{k}{n-1} \tag{S5}$$

For the sake of simplicity we solved with respect to k, knowing that $\rho = k/(n-1)$. When derivating and equating to zero we had $k = \frac{n(n-1)}{\log n}$, which leads to the impossible condition $\rho = n/\log n > 1$.

• $J = E_g - \rho \simeq 1/L - \rho$

By using the expression of L for lattices we obtain:

$$J_0 = \rho \left(2\frac{(n-1)}{n} - 1 \right) \tag{S6}$$

When derivating and equating to zero we had n = 2 and we cannot solve with respect to ρ .

• $J = E_l - \rho \simeq C - \rho$

By substituting the expression of C for random networks we obtain:

$$J_1 = \frac{k}{n} - \frac{k}{n-1} \tag{S7}$$

When derivating and equating to zero we had 1/n = 1/(n-1) and we could not solve with respect to ρ .

• $J = E_g E_l / \rho \simeq (C/L) / \rho$

By substituting the expression of L and C for random networks we obtain:

$$J_1 = \frac{n-1}{n\log n}\log k \tag{S8}$$

When derivating and equating to zero we had the trivial solution k = 0.

Similarly, it is easy to prove that neither $J = E_g/\rho$ nor $J = E_l/\rho$ admitted meaningful solutions in lattices or random networks.