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Web-based Supplementary Materials for ”Dynamic models for estimating the

effect of HAART on CD4 in observational studies: application to the Aquitaine

Cohort study and the Swiss HIV Cohort Study” by M. Prague, D.

Commenges, B. Ledergerber, J. Young, H. Furrer and R. Thiébaut.

A - Additional information on the simulated data analysis

1 - Generation of simulated data

Biomarkers trajectories for given values of the parameters are numerically computed by an

ODE solver; we use the R package deSolve (Soetaert and others , 2010). Patients’ parameters

are related with steady state values for biomarkers without treatment; as there is no analytic

solution for this system, this steady state may be found by running the solver long enough to

reach stabilisation to an equilibrium defined by: 1) difference between two consecutive values

of CD4 is lower than 10−3; 2) two consecutive value of log10 viral load are lower than 10−5).

Random effects are simulated so that the steady state baseline distributions of CD4 counts

and viral load are approximately consistent with the baseline values distributions found in

Aquitaine cohort and SHCS dataset (see Table 1).

[Table 1 about here.]

2 - Estimation of weights for treatment attribution in the simulated data

Figure 1 shows the box-plot of the weights for Model 3 estimated by the treatment model

using a logistic regression; we found values close to the theoretical probabilities of treatment

attribution.

[Figure 1 about here.]
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3 - Estimation of mechanistic parameters in the simulated data

Table 2 shows the a posteriori means and standard deviations for the log-transformed

biological parameters. To some extent, these values can be compared to the generating

values in Table 1 in the manuscript. For instance, the viral clearance is 13 virions/day and

is estimated at around 7 virions/day with our misspecified model.

[Table 2 about here.]

4 - Are these simulations giving a competitive advantage to Model 7?

The first question is: ’Are the Adams et al. model and Model 7 different enough?’. The model

7 (Target cells model) and simulation model (the Adams et al. (2005) ) are not the same

and there is no mapping between the two. Even in the most dramatic case, where all the

parameters in the Adams et al. model are equal to zero except λ1, d1, (1−ε1)k1, δ, (1−ε2)NT δ, c

(which is not the case in the simulations - See Table 1 in the main manuscript for the used

values), the structure of the dynamical model is different. Actually, the simulation model will

have three-compartments compared to four-compartments for the model 7. Drylewicz and

others (2010) showed that the dynamics of these two mechanistic models is very different

because the three-compartment model allows a delay between the creation of the CD4 and

its infection/production of virus. We acknowledge that if, in this same extreme case, α and ρ

were put to 0 in the Model 7, this would make the two dynamics models very close. However,

Table 2 in this Web-Supplementary Material shows that in our estimations α > 2.88 day−1

and ρ > 8.76 day−1. Thus we believe that these models are different enough not to give a

major advantage to dynamical approaches compared to MSM.

The second question is: ’Are the marginal models appropriate for catching the dynamics

produced by the simulation model?’. In this simulation, we know that the marginal model

is not correctly specified. However, in reality we have the same assumption and the model

for data generation is probably way more complicated that the Adams et al. model. Thus
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we do not think that the specification of the marginal model is worse in the simulation than

in the real dataset.

B - Additional information on real data analysis

1 - Sample selection for real data

For the Aquitaine cohort, the raw data set included 4541 patients and a total of 110,663

observations. For the SHCS, we used the same data set as previous methodological work

(Sterne and others , 2005; Gran and others , 2013) which included 2161 patients and a total

of 77,838 observations. Similarly to Cole and others (2005) we took a sub-sample of patients

who were alive, HIV positive, yet untreated and under follow-up in April 1996 when HAART

became available. All patients taking ARV in mono- or bi-therapy instead of HAART were

excluded. Once a patient was on any therapy, we assumed he or she remained on it. For each

of them, the follow-up begins with the first visit after April 1996 and ends with 1) the last

visit at which he or she was seen alive, 2) the last visit before patient discontinued the study,

or 3) April 2004, whichever comes first. Patients with at least 2 observations were included.

Table 3 show the patient selection flow chart. In Sterne and others (2005), last observation

carried forward analysis (LOCF) was used to analyze SHCS to account for missing visits.

However, Cook and others (2004) showed that this approach is not optimal and may lead

to biases. Thus, we preferred to make the assumption that data are MCAR, and we deleted

all observations where viral load or CD4 count were missing. Finally, we had two data sets

of approximately the same size with a total of 1591 patients (19,597 observations) for the

Aquitaine Cohort and 1726 patients (15,158 observations) for the SHCS. Figure 2 describes

trajectories for the biomarkers in the two studies.

[Table 3 about here.]

[Figure 2 about here.]
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2 - Model 2-3 IPW analysis

The one-year increase of CD4 is much smaller for the Aquitaine cohort than for the SCHS (for

Model 3, 36 CD4 versus 208 CD4). Even if Figure 2 shows slightly different trajectories, the

difference seems to be less than 75 CD4. This result of Model 2-3 is potentially due to different

weights distributions between these two cohorts (see Figure 3 for Model 3). In particular,

the large weights are only driven by patients with high viral load (> 10000) and low CD4

count (< 200) who remain untreated. It includes only 5 observations in SHCS dataset and 48

observations in the Aquitaine Cohort. In the Aquitaine cohort the probability to be treated

is overall very high (64%); thus, non-treated patients with high probability of being treated

have even higher weights. In the Aquitaine cohort there is a large number of large weights

denoting a possible practical violations of the experimental treatment assumption Cole and

Hernán (2008).

[Figure 3 about here.]

3 - Model 7 mechanistic modeling

The apparent power of the Wald test in Model 7 seems striking; we looked at a confirmation

with likelihood ratio test. We ran the NIMROD analysis again fixing β = 0 and obtained

log-likelihood under the null hypothesis. The log-Likelihood test ratio gives the following

statistics: LL− ratio = −2 ∗ −13836 + 2 ∗ −12561 = 2550 for the SHCS and LL-ratio=-2*-

25211+2*-24579=1264 for the Aquitaine cohort, also yielding to a very low p-value.

The estimates of the parameters in the mechanistic Model 7 are given Table 4.

[Table 4 about here.]

4 - Impact of MCAR assumption for missing data

The correction for treatment is obviously important since treatment was started mainly in

view of the CD4 counts. Censoring may also depend on the outcome (CD4 counts) but this
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dependance is probably weak because the subjects are regularly followed-up in these cohorts:

in the Aquitaine cohort lost of follow-up represents only 5.6% and 9.2% in the SHCS. To

convince ourselves that censoring is not a major issue in this dataset, we performed a IPTW-

IPCW analysis of the real dataset for Model 3. With the same notations as in the article

and C the censoring indicator for lost of follow up or death, we have :

SWT (t) =
t∏

k=1

Pr(Ak = 1|Āk−1, L0)

Pr(Ak = 1|Āk−1, L̄k)
,

SWC(t) =
t∏

k=1

Pr(Ck = 1|C̄k−1, L0)

Pr(Ck = 1|C̄k−1, L̄k−1)
,

SW (t) = SWT (t)× SWC(t).

The probabilities at time k of being missing are predicted for every subject from logistic

regressions depending on L̄k (L0 ∈ L̄k). We defined the subsets L for treatment model and

censoring model as baseline and time-varying CD4 count in class (< 200, [200; 400], > 400),

viral load in categories (< 401, 401− 10000 and > 10000), and an indicator of undetectable

viral load. This is the same model as in Cole and others (2005). Table 4 shows an extremely

good concordance of the results with and without IPCW. This is partly explained by the

fact that loss of follow-up is almost non-informative which gives IPC weights close to 1 (see

Figure 4 for their distribution). Moreover regarding dynamical model, the MAR assumption

does not request extra modeling because the estimation is likelihood-based.

[Table 5 about here.]

[Figure 4 about here.]

C - Technical details for fitting the models

For Models 1-3 which are fitted by ordinary or weighted GEE, we used the R software

and the function geeglm in the package geepack (Halekoh and others , 2006). Independence

working correlation matrices were used. For models 2 and 3, weights were computed with the
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function ipwtm in the package ipw (van der Wal and Geskus, 2011). Models 4-6 were fitted

using the non linear mixed-effect models package lme4 (Bates and others , 2014), particularly

the function lmer. Standard errors (SE) are estimated with a sandwich approach. However,

adjusting for uncertainty in the estimation of weights would lead to greater SE and thus does

not impact the conclusion in this article. The simulated data analyzed in Section 3 and a R

program implementing models 1-6 are available with this paper at the Biometrics website

on Wiley Online Library. Programs to estimate the parameters with model 7 are available

on a dedicated website: http://www.isped.u-bordeaux.fr/NIMROD.
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Figure 1: Probability of treatment attribution predicted by the treatment model only de-
pending on the CD4 counts for the MSM (Model 2). Theoretical values for these probabilities
are 47% in the group < 200, 28% in the group [200; 400] and 2% in the group > 400.
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Figure 2: Scatterplot and smoothed mean trajectories of viral load and CD4 counts for
patients without treatment and after treatment initiation in the Aquitaine cohort (dashed
blue) and the SHCS (plain red). Artifact horizontal lines for viral load result from points in
the scatterplot due to detection threshold (mainly 250 copies/mL for SHCS and 50 or 500
copies/mL for the Aquitaine Cohort).
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Figure 3: Distributions of weights for inverse probability of treatment in the Aquitaine
cohort and the SHCS cohort. The plot had been truncated for weights > 20. Weights > 20
are only found in the Aquitaine cohort.
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Figure 4: Values of weights for Inverse Probability of Censoring.
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Table 1: Baseline distributions of CD4 counts and viral load in Aquitaine cohort and SHCS
data set combined

Viral load copies/mL
CD4 count cells/mm3 < 500 [500− 10000] > 10000 P(treatment attribution)

< 200 0% 1% 11% 0.46
[200− 400] 1% 8% 18% 0.28

> 400 5% 28% 28% 0.13
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Table 2: Estimates for mechanistic parameters in log-transform with Model 7 on the
simulated data.

Simulated Dataset with Adams and others (2005) model
n=200 n=1500

Parameter Mean sd. Mean sd.
λ 1.99 0.05 1.73 0.01
µT ∗ -2.95 0.06 -3.08 0.01
µQ -9.04 0.99 -9.10 0.99
α 1.06 1.08 1.19 0.51
ρ 2.17 1.06 2.61 0.67
µT -3.02 0.33 -3.12 0.32
γ -3.52 0.33 -3.45 0.32
π -1.92 0.57 -1.98 0.59
µV 1.38 0.57 1.42 0.59
σλ 0.46 0.026 0.65 0.007
σµT ∗ 0.61 0.031 0.55 0.006
σCV 0.82 0.007 0.88 0.003
σCD4 0.19 0.001 0.20 0.001
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Table 3: Real data selection flowchart for Aquitaine cohort and SHCS.

SHCS Aquitaine Cohort
n pat. n obs. n pat. n obs.

Raw dataset 2161 77838 4541 110663
No LOCF values 2161 17307 4541 110663
Date range Apr 97 - Apr 05 2124 17050 3727 59517
Only HAART (no ARV) 2124 17050 3567 49514
Only naive patients at baseline 2066 16237 1792 20288
Nb observations / patient > 2 1726 15897 1591 20087
MCAR assumption 1726 15158 1591 19597
Selection Ratio 80% 20% 35% 18%
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Table 4: Estimates for mechanistic parameters in log-transform with Model 7 on the SHCS
and the Aquitaine cohort data sets.

Real Dataset observational studies
SHCS Aquitaine Cohort

Parameter Mean sd. Mean sd.
λ 0.61 0.04 0.94 0.05
µT ∗ -2.74 0.04 -2.88 0.01
µQ -5.42 0.06 -5.39 0.08
α -5.63 0.09 -5.28 0.09
ρ -1.35 0.60 -2.22 0.42
µT -3.02 0.28 -2.91 0.29
γ -2.39 0.54 -3.41 0.35
π 2.80 0.65 2.11 0.66
µV 2.82 0.66 3.07 0.65
σλ 0.63 0.011 0.67 0.006
σµT ∗ 0.73 0.013 0.71 0.006
σCV 0.87 0.004 1.18 0.005
σCD4 0.43 0.001 0.50 0.001
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Real Dataset observational studies
SHCS Aquitaine Cohort

Model β treatment Effect Sd. Z-stat† Effect Sd. Z-stat†
Model 3 < 1 yr 208 18 11.31 36 20 1.87
IPTW > 1 yr 50 9 5.79 53 5 9.62

∞ +∞ - - +∞ - -
Model 3 < 1 yr 207 18 11.26 36 19 1.86
IPTW + IPCW > 1 yr 51 8 6.15 53 5 9.78

∞ +∞ - - +∞ - -
†Estimates for treatment effect (β) are significant at level 10% if the Z-stat is greater than 1.64
and significant at level 5% if the Z-stat is greater than 1.96.
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