Protective effect of butin against ischemia/reperfusion-induced myocardial injury in diabetic mice: involvement of the AMPK/GSK-3β/Nrf2 signaling pathway

Jialin Duan^{a,b 1}, Yue Guan^{a1}, Fei Mu^{a1}, Chao Guo^{a1}, Enhu Zhang^{b1}, Ying Yin^a, Guo Wei^a, Yanrong Zhu^a, Jia Cui^a, Jinyi Cao^a, Yan Weng^a, Yanhua Wang^a, Miaomiao Xi^{a*}, Aidong Wen^{a*}

^aDepartment of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.

^bCollege of Pharmacy, Shaanxi University of Chinese Medicine, XianYang 712083, PR China

¹ These authors equally contributed to this work.

*Corresponding authors. Prof. Wen and Prof. Xi both are contacted at Changle West Road 127,

Xi'an, Shaanxi, China. Tel.: +86 29 8477 3636; Fax: +86 29 8477 3636.

Email address: aidongwen2015@163.com (AD. Wen), miaomiaoxi2014@163.com (MM. Xi).

Supplementary table 1: Effect of BUT on the levels of blood glucose.									
Parameter	Control	Model	BUT(10)	BUT(20)	BUT(40)	MET			
Blood glucose	77-71	22 4 + 2 2#	20 3 - 2 8	16 3 + 3 3**	13 6 - 3 1**	13 1 - 2 7**			
(mM)	1.1 <u>12</u> .4	22.4 ± 3.2	20.3 12.8	10.5 ± 0.5	15.0±5.1	13.1 ±2.7			

Supplemental figures Supplementary table 1: Effect of BUT on the levels of blood glucose.

Values (n=6–8 per group) are expressed as means \pm SD. ^{##}*P*<0.01 vs control group, ***P*<0.01 vs model group. Control group: normal mice; Model: diabetic mice; BUT(10), BUT(20), BUT(40): diabetic mice were treated with 10, 20 and 40 mg/kg BUT, respectively; MET: diabetic mice were treated with 50 mg/kg MET.

Supplementary table 2: The relationship between the size of AAR and the size of Infarct was plotted and analyzed using analysis of covariance.

Dependent Variable: Infarct									
Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
Corrected Model	2662.247 ^a	8	332.781	70.258	.000				
Intercept	.026	1	.026	.005	.942				
AAR	13.605	1	13.605	2.872	.111				
GROUP	1253.281	7	179.040	37.800	.000				
Error	71.048	15	4.737						
Total	6031.069	24							
Corrected Total	2733.295	23							

Tests of Between-Subjects Effects

andant Variable: Inforat

a. R Squared = .974 (Adjusted R Squared = .960)

Supplementary figure 1: (A) Plasma creatine kinase-MB (CK-MB) and (B) lactate dehydrogenase (LDH) levels. Values (n=6–8 per group) are expressed as means \pm SD. ^{##}*P*<0.01 vs DM+sham group, ***P*<0.01 vs DM+I/R group, [&]*P*<0.05 vs I/R group.

Supplemental figure 2: BUT up-regulated the expression of GSH-Px, GSH, CAT, GR in the heart. Mice received I/R treatment in the presence or absence of BUT pre-treatment, the expression level of GSH-Px (A), GSH (B), CAT (C) and GR (D) in the heart were measured as described in Materials and methods. Values (n=6–8 per group) are expressed as means \pm SD. ^{##}*P*<0.01 vs DM+ sham group, ***P*<0.01 vs DM+I/R group.

Supplemental figure 3: Effects of BUT on AMPK, Akt and GSK3 β phosphorylation and Nrf2 expression in heart treated with I/R. Immunoblotting of protein extracts from heart of mice treated with BUT (40 mg/kg). Levels of Nrf2 expression and AMPK, Akt, GSK3 β phosphorylation in the hearts of mice treated with BUT. The columns and errors bars represent means ±SD. ^{##}*P*<0.01 vs sham group, ***P*<0.01 vs I/R group.

Supplemental figure 4: BUT induced the cytoplasm expression and nuclear translocation of Nrf2 determined by immunofluorescence staining. Left panel: green fluorescence showing Nrf2 localization; Middle panel: stained nucleus with DAPI.

Supplemental figure 5: Cell viability (A) and Ros (B) levels were determined after siRNA transfection. The columns and errors bars represent means \pm SD. ***P*<0.01 vs I/R group. ^{##}*P*<0.01 vs control group. ^{&&}*P*<0.01 and ^{\$\$}*P*<0.01 vs crambled control RNA.

