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Proof of Proposition 1

We consider a star graph with p nodes and hence p−1 edges. We denote the hub
node of the graph by k. In order to reach any node j 6= k from any node i 6= k,
one needs to pass through k and hence takes two hops. Through symmetry
we only need to consider the following four cases: (i) i → k → j, (ii) i → k,
(iii) i → i and (iv) k → k. Due to the similiarity of the steps, we only detail
the steps for case (i). Generally, for any (i, j) the transitive closure (8) (of the
main text) in component form without exploiting the graph structure reads

A∗ij = Aij +

∞∑
s=1

 p∑
m1=1

· · ·
p∑

ms−1=1

Aim1Am1m2 . . . Ams−1j

 . (1)

For case (i) the lowest order contribution to A∗ij is quadratic and corresponds
to the path of minimal length connecting i and j. For a star graph that path is
unique and hence any non-zero higher order term in (1) must contain all edges of
that path at least once. Hence, one can factor out those edges and can conclude
that the remaining edges need to form cycles. Finally, observing that a star
graph only contains trivial cycles and that after appropriate edge permutation1

they are of the form k → l→ k we can write

A∗ij = AikAkj

1 +

∞∑
s=1

p∑
m1=1

· · ·
p∑

ms−1=1

Akm1Am1k . . . Akms−1Ams−1k


≡ AikAkj(1 + Zkk), (2)

where we introduce the cycle contribution Zkk. Hence, any path contributing to
A∗ij can be seen as a minimal path decorated with trivial cycles, represented by
Zkk. Every summand in Zkk can now be characterized by counting how many
times the p− 1 available cycle terms Ml ≡ AklAlk are used. Hence, for a cycle
budget n determined by the power s in As (i.e. for case (i) the cycle edge count
in Zkk is the even number s−2 and hence the number of cycles is n = (s−2)/2),
one is left with counting how many ways we can distribute n cycles over the

1We note that the path weight computation is commutative in that two distinct paths
showing the same edge utilization (which edge was used how many times) will receive the
same weight; that is, any edge permutation keeps the weight invariant.
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p− 1 different cycle types Ml. That is,

A∗ij = AikAkj

∞∑
n=0

n∑
l1=0

· · ·
n∑

lp−1=0

l1+···+lp−1=n

(
n

l1, l2, . . . , lp−1

)
M l1

1 M
l2
2 . . .M

lp−1

p−1

= AikAkj

∞∑
n=0

(M1 + · · ·+Mp−1)n =
AikAkj

1−
∑p

l=1Ml

=
AikAkj

1−
∑p

l=1AklAlk
= AikAkj/c with c ≡ 1−

p∑
l=1

AklAlk,

(3)

where we assumed convergence of the geometric series through |M1 + · · · +
Mp−1| < 1. Using the same procedure we can write the closed form expressions
for the remaining cases:

(ii) i→ k : Ã∗ij = Aik/c,

(iii) i→ i : Ã∗ii = AikAki/c,

(iv) k → k : Ã∗kk = c−1
p∑

l=1

AklAlk = (1− c)/c = 1/c− 1.

Proof of Proposition 2

Proof. With Proposition 1 and the construction for the covariance matrix Σ =
D−1(I + A∗)D−1 with D the diagonal scaling matrix entries (d1, . . . , dp), we
obtain for the four cases of the star graph

Σij =
AikAkj

cdidj
, Σik =

Aik

cdidk
, Σkj =

Akj

cdkdj
,

Σii = (1 +AikAki/c)
1

d2i
= (1−

p∑
l=1
l 6=i

AklAlk)
1

cd2i
=

ci
cd2i

,

Σkk = (1 + 1/c− 1)
1

d2k
=

1

cd2k
,

(4)

for i, j ∈ {1, . . . , p} \ {k} with ci = 1 −
∑p

l=1,l 6=iAklAlk. Now we perform an
element-wise conversion of entries of the covariance matrix Σ to entries of the
correlation matrix C = Λ−1ΣΛ−1 with Λ a diagonal scaling matrix with entries

Λii =

√
ci
cd2i

, Λkk =

√
1

cd2k
, i ∈ {1, . . . , p} \ {k} (5)
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and compute the normalized entries

Cij = Λ−1ii ΣikΛ−1jj =

√
cd2i
ci

AikAkj

cdidj

√
cd2j
cj

=
AikAkj√
cicj

Cik = Λ−1ii ΣijΛ
−1
kk =

√
cd2i
ci

Aik

cdidk

√
d2kc =

Aik√
ci

Ckj = Λ−1kk ΣkjΛ
−1
jj =

√
d2kc

Akj

cdkdj

√
cd2j
cj

=
Aik√
cj
.

(6)

Now define a graph Ĝ = (Γ, E, ŵ) which contains the same set edges as a star
graph G with ŵik = Cik and ŵkj = Ckj . Then the edge weights of a minimal

transitive closure of the graph T (Ĝ) are defined as

w̃ik = ŵik, w̃kj = ŵkj and w̃ij = ŵikŵkj

from which it directly follows

w̃ik = Cik, w̃kj = Ckj and w̃ij = CikCkj ,

hence T (Ĝ) = G′.

Determining the concentration graph by hard-thresholding
the covariance matrix

Here, we ask if it is possible to threshold the covariance graph and obtain a
similar graph as in the concentration graph. For a demonstration, we consider
a chain graph and conduct simulation experiments on the correlation matrix
rather than the covariance matrix.

In particular, we analyze two cases:
(i) The thresholded covariance graph is a good approximation of the concentra-
tion graph.
(ii) The thresholded covariance graph is not a good approximation of the con-
centration graph.

In order to examine these two points, we consider a simple four-node chain
graph (Figure 1d (left)).

Case (i): In this case, we expect that in the covariance graph, the indirect
edge weights are smaller than the direct edge weights. Because when performing
a thresholding operation, the indirect edges will be eliminated first and therefore
it is possible to obtain a good thresholded graph similar to the concentration
graph. The relationship between concentration and covariance graphs we estab-
lished in the previous section allows to infer the thresholding scenario directly
from the edge weights of the concentration graph. We therefore check whether
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the following conditions hold:

A12A24 < A12 ⇒ C12C24 < C12

A12A24 < A24 ⇒ C12C24 < C24

A12A24 < A13 ⇒ C12C24 < C13

A12A13 < A12 ⇒ C12C13 < C12

A12A13 < A24 ⇒ C12C13 < C24

A12A13 < A13 ⇒ C12C13 < C13

A12A13A24 < A12 ⇒ C12C13C24 < C12

A12A13A24 < A24 ⇒ C12C13C24 < C24

A12A13A24 < A13 ⇒ C12C13C24 < C13

(7)

The condition (7) indicates that in the concentration graph, if the absolute
values of indirect edge weights are smaller than those of direct edges, then this
condition also holds for the covariance graph. If this condition holds, then by
thresholding one will get edges in the covariance graph corresponding to direct
edges in the concentration graph. To check this condition, we fix the edge
values in the concentration matrix corresponding to the four-node chain graph:
A12 = A13 = 0.4 and A24 = 0.3 so that ||A|| < 1 and (7) hold,

A =


0 0.4 0.4 0

0.4 0 0 0.3
0.4 0 0 0
0 0.3 0 0


We then compute the covariance matrix using Σ = D−1(I + A∗)D−1 with
A∗ =

∑∞
m=1 A

m = A(I − A)−1, and further convert it to the correlation
matrix

C =


1 0.46 0.44 0.15

0.46 1 0.20 0.33
0.44 0.20 1 0.07
0.15 0.33 0.07 1

 .

Hence, we observe C12 = 0.46, C13 = 0.44 and C24 = 0.33, which satisfies
(7). This implies that it is possible to find an optimal threshold that separates
direct edges from indirect ones. In order to get the same sparsity as in the
concentration graph, we set all the values smaller than Cij < 0.3 (i, j = 1, 2, 3, 4)
and the diagonal elements to zero and get a thresholded correlation matrix

CT =


0 0.46 0.44 0

0.46 0 0 0.33
0.44 0 0 0

0 0.33 0 0


We see that the thresholded correlation matrix has the same zero patterns as
in the concentration matrix. Analogously, the corresponding covariance graph
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contains the same edges as in the concentration graph (Figure 1e (left)). We
can conclude that when the condition (7) for this example holds, it is possible
to obtain a good approximation of the concentration graph by the covariance
graph.

Case (ii): Next, we check the case when the covariance graph is not a
good estimator for the concentration graph. We verify the case when one sub-
condition of (7) is violated. In this case, we choose A12 = A24 = 0.6 and
A13 = 0.2, so that A12A24 > A13. Performing the same procedure as before, we
obtain the correlation matrix

C =


1 0.77 0.3 0.58

0.77 1 0.23 0.76
0.3 0.23 1 0.18
0.58 0.76 0.18 1


where C12 = 0.77, C24 = 0.76 and C13 = 0.3, from which we get C12C24 > C13.
This indicates that the condition (7) is violated

A12A24 > A13 ⇒ C12C24 > C13 (8)

To get the same sparsity as in the concentration matrix, we choose the threshold
Cij < 0.4 (i, j = 1, 2, 3, 4) and and compute the thresholded correlation matrix

CT =


0 0.77 0 0.58

0.77 0 0 0.76
0 0 0 0

0.58 0.76 0 0


So, the predicted edge weights are C12 = 0.77, C24 = 0.76, C13 = 0 and C14 =
0.58. Thresholding predicts two direct edges correctly C12 and C24, fails to
predict C13 and additionally predicts a false positive edge C14 which is not
present in the concentration graph. In this case, the thresholded correlation
matrix is not a good estimator for graph topology (Figure 1e (middle and
right)).

Next, we extended the comparison to high-dimensional chain graphs. In this
case, the condition (7) can be extended to p number of variables:

Ai(i+1)A(i+1)(i+2) < Ai(i+1) ⇒ Ci(i+1)C(i+1)(i+2) < Ci(i+1),

Ai(i+1)A(i+1)(i+2) < A(i+1)(i+2) ⇒ Ci(i+1)C(i+1)(i+2) < C(i+1)(i+2),

...

A12A23 · · ·A(p−1)p < Ak(k+1) ⇒ C12C23 · · ·C(p−1)p < Ck(k+1),

i = 1, . . . , p− 2, k = 1, . . . , p− 1.

(9)

In order to select edges that satisfy these conditions, we choose a chain graph
with p = 500, Ai(i+1) ∼ N (µ, σ2), i = 1, . . . , p − 1 and assume µ = 0.4 and
σ = 0.0005. This way selected edge weights are scattered around the mean
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µ = 0.4 and satisfy (9). Using the same operations, we computed distributions
of direct and indirect edges in the covariance graph (Figure 1f and g). It can
be observed that when Ai(i+1) are sampled from the narrow distribution with
σ = 0.0005, the distributions of direct and indirect edges in the covariance graph
are narrow and clearly distinguishable (Figure 1f). In this case, it is possible to
select a good threshold that can separate these two distributions.

Next, we consider the case with µ = 0.4 and σ = 0.5, where the edge
weights Ai(i+1) are sampled from the broad distribution. In this case, both
the direct and indirect edges are highly overlapping and it is hard to separate
two distributions with the optimally selected threshold (Figure 1g). One can
find many edges that violate the condition (9). Consequently, the thresholded
covariance graph contains some false positive edges and lacks some true edges
after hard-thresholding. Eventually, the conditions (9) also hold for star graphs
which we numerically verified.
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