Supporting Information

Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations

Tuo Wang¹, Hui Yang², James D. Kubicki³, and Mei Hong¹

¹ Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

² Department of Geosciences, The Pennsylvania State University, University Park, PA 16802

³ Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968

Table S1. Structural parameters of non-equivalent glucose units used in the DFT calculation. U and D annotate the two non-equivalent glucose units within the same glucan chain in the I α allomorph, while C and O denote to center and origin chains of the I β allomorph. Apostrophe denotes the atoms in the adjacent glucose residue.

		НС		HH distance (Å)			Torsion angles (°)						
		distance (Å)								5 ()			
		H _{6a} - C4	H _{6b} - C ₄	H _{6a} - H ₄	H _{6b} - H ₄	H'1- H4	θ(H _{6a} -C ₆ •C ₄ -H ₄)	θ(H _{6b} -C ₆ •C4-H4)	X ₁ (0 ₅ - C ₅ -C ₆ -O ₆)	X ₂ (C ₄ -C ₅ -C ₆ -O ₆)	Φ(C5-C4- 04-C1')	Ψ (C4- 04- C1'-05')	
I_{β}	С	2.7	3.5	2.4	3.7	2.1	0.7	114.2	167.9	-74.3	-143.2	-92.7	
tg	0	2.7	3.5	2.5	3.7	2.2	-6.6	106.7	165.1	-76.4	-145.0	-94.2	
I_{β}	С	2.8	2.8	3.0	2.5	2.1	-101.9	6.3	58.1	178.1	-145.1	-93.2	
gt	0	2.9	2.8	3.2	2.6	2.1	-110.8	-2.2	52.1	170.4	-150.7	-92.2	
I_{β}	С	3.5	2.8	3.7	3.0	2.1	137.8	-99.6	-63.9	57.2	-140.5	-86.9	
gg	0	3.5	2.9	3.8	3.3	2.1	115.5	-115.9	-67.3	54.0	-155.7	-85.4	
I_{α}	U	2.7	3.5	2.4	3.6	2.1	-3.3	109.3	165.3	-76.8	-143.1	-92.6	
tg	D	2.7	3.5	2.4	3.7	2.2	-5.7	107.8	165.2	-76.0	-145.6	-95.0	
I_{α}	U	2.8	2.7	3.1	2.5	2.2	-109.6	-2.6	58.4	177.0	-156.1	-89.4	
gt	D	2.7	2.9	2.9	2.7	2.2	-96.1	12.8	77.2	-163.9	-155.9	-85.4	
Iα	U	3.5	2.8	3.7	3.1	2.2	130.4	-107.4	-62.7	57.8	-140.0	-81.3	
gg	D	3.5	2.8	3.8	3.2	2.2	118.4	-116.4	-67.9	52.1	-160.2	-92.9	

Table S2. Estimated fractions of different glucose conformations in crystalline I α (A and A') and I β (B and B') allomorphs. The estimation is based on spectral deconvolution results of Kono and Numata ¹, with an additional assumption that A and A' have equal populations.

Cellulose	Organism	A	A'	В	B'
Iα dominant	Cladophora	32%	32%	17%	18%
Iβ dominant	tunicate	11%	11%	38%	41%

Table S3. ¹³C chemical shift RMSDs (ppm) between measured primary wall cellulose and DFT calculated chemical shifts for different crystalline allomorphs, hydroxymethyl conformations, and glucose residue location. C and O denote center and origin sheets in the I β allomorph while U and D denote the two non-equivalent glucose units in an I α chain. The five types of crystalline cellulose signals observed in this study are denoted as *a*, *b*, *c*, *d*, *e*.

		a	b	С	С	е
	gg_C	5.5	5.3	5.2	4.7	5.8
	gg_O	4.5	4.5	4.4	3.8	4.9
Ιβ	gt_C	4.3	4.0	3.9	3.6	4.3
allomorph	gt_O	2.3	2.5	2.5	1.9	2.7
	tg_C	2.4	2.6	2.0	2.1	2.4
	tg_O	1.9	2.3	2.0	1.8	2.1
	gg_U	5.3	5.2	5.0	4.5	5.6
	gg_D	5.6	5.5	5.5	4.9	6.0
Ια	gt_U	4.3	4.3	4.4	3.6	4.7
allomorph	gt_D	4.1	3.8	3.7	3.5	4.2
	tg_U	2.0	2.2	1.9	1.7	2.2
	tg_D	2.1	2.5	2.0	2.2	1.9

Figure S1. Different 2D ¹³C-¹³C correlation pulse sequences used to measure cellulose chemical shifts, structure, and dynamics. (a) Radio-frequency-driven recoupling (RFDR) experiment. (b) Proton-driven ¹³C spin diffusion (PDSD) experiment. (c) ¹H T₂ filtered PDSD experiment for determining the water contact of wall polysaccharides. (d) ¹³C T₁ filtered PDSD experiment for measuring the ¹³C T₁ relaxation rates of wall polysaccharides.

Figure S2. Assignment of (a) cellulose *a* and (b) cellulose d^{13} C chemical shifts of the *Brachypodium* cell wall using 2D RFDR and PDSD spectra. The C1-C4 cross peaks serve as the starting points for assignment.

Figure S3. 2D ¹³C-¹³C PDSD spectrum of the *Arabidopsis* cell wall. The spectrum was measured with 30 ms mixing at 296 K on an 800 MHz spectrometer. The characteristic C1-C4, C1-C6 and C4-C6 cross peaks are highlighted.

Figure S4. 2D PDSD spectrum of the *Brachypodium* cell wall with 1 s mixing. The spectrum was measured at 296 K on an 800 MHz spectrometer. Regions of long-range cross peaks are highlighted.

Figure S5. 0.2 s PDSD spectrum of the *Brachypodium* cell wall measured on an 800 MHz spectrometer. The surface-surface and surface-interior cellulose cross peaks show similar intensities.

Figure S6. ¹³C T₁ filtered 2D PDSD spectra of the *Brachypodium* primary cell wall. (a) Full 2D spectrum. (b) 2D spectrum with a 4 s T₁ relaxation filter. The relative intensity of each cellulose cross peak is indicated. Interior cellulose signals decay to ~62% while surface cellulose signals decay to ~55%, indicating that surface cellulose is slightly more dynamic on the nanosecond timescale.

Supplementary References

1. Kono, H.; Numata, Y., Structural investigation of cellulose I_{α} and I_{β} by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent D-glucose units along cellulose chain. *Cellulose* **2006**, *13*, 317-326.