## Table S1. NMR acquisition parameters

| DHPC titration                                   |                                                         |                                                     |        |            |                 |  |  |  |
|--------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|--------|------------|-----------------|--|--|--|
| Experiment                                       | Spectral widths and chemical                            |                                                     | No. of | Inter-scan | Duration of the |  |  |  |
|                                                  | shift evol                                              | ution times                                         | scans  | delay (s)  | experiment      |  |  |  |
| 2D <sup>1</sup> H- <sup>15</sup> N<br>TROSY-HSOC | 2200 Hz ( $^{15}$ N) 10800 Hz ( $^{1}$ H <sup>N</sup> ) |                                                     | 56     | 1.5        | 5 hours 40 min  |  |  |  |
| 11(051-115QC                                     | 50.2 115                                                | 35.0 113                                            |        |            |                 |  |  |  |
| $\tau_c$ measurements                            |                                                         |                                                     |        |            |                 |  |  |  |
| Exporimont                                       | Spectral                                                | width and                                           | No. of | Inter-scan | Duration of the |  |  |  |
| Experiment                                       | acquisi                                                 | tion time                                           | scans  | delay (s)  | experiment      |  |  |  |
| 1D <sup>1</sup> H- <sup>15</sup> N TRACT         | 10800 Hz ( <sup>1</sup> H <sup>N</sup> ) 95.0 ms        |                                                     | 800    | 1.5        | 25 min          |  |  |  |
| Gd-DOTA titrations                               |                                                         |                                                     |        |            |                 |  |  |  |
| E                                                | Spectral width                                          | s and chemical                                      | No. of | Inter-scan | Duration of the |  |  |  |
| Experiment                                       | shift evol                                              | ution times                                         | scans  | delay (s)  | experiment      |  |  |  |
| 2D <sup>1</sup> H- <sup>15</sup> N<br>TROSY-HSQC | 2200 Hz ( <sup>15</sup> N)<br>58.2 ms                   | 9600 Hz ( <sup>1</sup> H <sup>N</sup> )<br>106.5 ms | 8      | 3.5        | 2 hours 10 min  |  |  |  |

|         | q = 0.7            |             | q = 0.5            |             | q = 0.3            |             |
|---------|--------------------|-------------|--------------------|-------------|--------------------|-------------|
| Residue | PRE <sub>amp</sub> | $R^2_{adj}$ | PRE <sub>amp</sub> | $R^2_{adj}$ | PRE <sub>amp</sub> | $R^2_{adj}$ |
| ASN 173 | 0.957±0.023        | 0.995       | 0.952±0.026        | 0.993       | 0.923±0.031        | 0.989       |
| LEU 174 | 0.915±0.030        | 0.993       | 0.930±0.012        | 0.998       | 0.956±0.013        | 0.998       |
| GLY 175 | 0.923±0.059        | 0.983       | 0.920±0.012        | 0.999       | 0.956±0.012        | 0.999       |
| TRP 176 | -                  | -           | 0.866±0.035        | 0.992       | 0.917±0.043        | 0.987       |
| LEU 177 | $0.820 \pm 0.032$  | 0.994       | $0.852 \pm 0.025$  | 0.993       | 0.915±0.022        | 0.994       |
| SER 178 | $0.795 \pm 0.050$  | 0.980       | 0.836±0.019        | 0.996       | 0.876±0.031        | 0.995       |
| LEU 179 | $0.796 \pm 0.028$  | 0.994       | 0.812±0.033        | 0.985       | $0.880 \pm 0.032$  | 0.991       |
| LEU 180 | $0.750 \pm 0.035$  | 0.986       | 0.815±0.020        | 0.995       | 0.889±0.036        | 0.987       |
| LEU 181 | 0.751±0.028        | 0.991       | $0.809 \pm 0.023$  | 0.992       | $0.884 \pm 0.043$  | 0.987       |
| LEU 182 | 0.783±0.035        | 0.987       | 0.800±0.022        | 0.992       | $0.876 \pm 0.038$  | 0.985       |
| ILE 184 | 0.727±0.037        | 0.979       | 0.785±0.031        | 0.986       | $0.844 \pm 0.030$  | 0.991       |
| LEU 186 | 0.728±0.042        | 0.980       | 0.781±0.025        | 0.992       | $0.859 \pm 0.038$  | 0.990       |
| ILE 187 | $0.769 \pm 0.038$  | 0.987       | 0.813±0.023        | 0.993       | $0.877 \pm 0.035$  | 0.987       |
| VAL 188 | $0.767 \pm 0.024$  | 0.994       | 0.815±0.023        | 0.993       | $0.877 \pm 0.030$  | 0.990       |
| TRP 189 | 0.761±0.052        | 0.977       | 0.826±0.021        | 0.994       | $0.909 \pm 0.028$  | 0.994       |
| VAL 190 | 0.771±0.042        | 0.981       | 0.819±0.023        | 0.993       | 0.925±0.029        | 0.991       |
| LYS 191 | $0.800 \pm 0.037$  | 0.984       | 0.865±0.019        | 0.996       | 0.943±0.025        | 0.994       |
| ARG 192 | 0.829±0.033        | 0.988       | 0.873±0.016        | 0.997       | 0.950±0.017        | 0.996       |
| LYS 193 | $0.867 \pm 0.024$  | 0.995       | $0.907 \pm 0.020$  | 0.995       | $0.960 \pm 0.018$  | 0.998       |
| GLU 194 | $0.878 \pm 0.022$  | 0.995       | 0.919±0.011        | 0.999       | 0.962±0.017        | 0.998       |
| VAL 195 | $0.949 \pm 0.024$  | 0.996       | 0.923±0.012        | 0.998       | 0.966±0.014        | 0.998       |
| GLN 196 | 0.916±0.043        | 0.989       | 0.934±0.016        | 0.997       | 0.969±0.014        | 0.999       |
| LYS 197 | $0.900 \pm 0.048$  | 0.989       | 0.921±0.021        | 0.995       | 0.943±0.015        | 0.998       |
| THR 198 | 0.961±0.013        | 0.998       | 0.910±0.021        | 0.995       | 0.957±0.012        | 0.999       |

Table S2. Residue-specific PRE<sub>amp</sub> of the human Fas TMD

Residue-specific PRE<sub>amp</sub> were determined by fitting I/I<sub>0</sub> vs. [Gd-DOTA] to Eq. 1. The adjusted coefficient of determination ( $R^2_{adj}$ ) provided an evaluation of the fitting quality. The  $R^2_{adj}$  parameter is a measure of how well the model describes the experimental data.





| $r_{z}(\mathrm{\AA})$ | Residue $(H^N)$ |
|-----------------------|-----------------|
| 15.9±0.5              | SER 172         |
| 14.7±0.5              | ASN 173         |
| 16.4±0.5              | LEU 174         |
| 15.1±0.5              | GLY 175         |
| 12.6±0.5              | TRP 176         |
| 11.0±0.5              | LEU 177         |
| 10.3±0.5              | SER 178         |
| 8.6±0.5               | LEU 179         |
| 6.3±0.5               | LEU 180         |
| 5.0±0.5               | LEU 181         |
| 3.9±0.5               | LEU 182         |
| 0                     | Membrane Center |
| $-0.8\pm0.5$          | ILE 184         |
| $-3.5\pm0.5$          | LEU 186         |
| -6.1±0.5              | ILE 187         |
| -7.0±0.5              | VAL 188         |
| $-7.5\pm0.5$          | TRP 189         |
| -9.8±0.5              | VAL 190         |
| -11.8±0.5             | LYS 191         |
| -12.0±0.5             | ARG 192         |
| -13.2±0.5             | LYS 193         |
| -15.7±0.5             | GLU 194         |
| -19.1±0.5             | VAL 195         |
| -21.6±0.5             | GLN 196         |
| -23.0±0.5             | LYS 197         |
| $-23.2\pm0.5$         | THR 198         |

| Data not available for Arg171   |
|---------------------------------|
| (N-terminus), Pro183 and Pro185 |



**Figure S1**. Chemical shift changes upon reducing the q from 0.7 to 0.6, 0.5, 0.4 and 0.3 versus residue number. The data are shown as a stack column plot. Essentially no chemical shift changes were detected when changing the q from 0.7 to 0.6. Much larger chemical shift changes were observed when further reducing the q to 0.5 and below.



**Figure S2**. Determination of  $\tau_c$  at different *q*. **a**) TROSY (filled circle) and anti-TROSY (empty circle) signal intensity decays for Asn173 of the human Fas TMD reconstituted in *q* = 0.7, 0.5 and 0.3 bicelles. Exponential fittings (blue for TROSY and red for anti-TROSY) provide the transversal relaxation rates used to estimate  $\tau_c$ . **b**) Peak intensities in the 2D <sup>1</sup>H-<sup>15</sup>N TROSY-HSQC spectrum of the Fas TMD reconstituted in *q* = 0.7, 0.5 and 0.3 bicelles. The position of Asn173 is highlighted in red. The plots show that Asn173, despite being at the N-terminus, is not as flexible as the residues near the C-terminus and exhibits similar relaxation properties to those residues buried in the lipid bilayer core. For this reason, in consideration of the fact that this signal is well resolved in the 1D spectrum, it was chosen for the TRACT analysis.



**Figure S3**. The NMR structure of the human Fas TMD trimer showing the three-fold axis of rotational symmetry. The symmetry axis is parallel to the bilayer normal (not shown). The structure was taken from the *Protein Data Bank* (PDB) (entry 2NA7).



**Figure S4**. Systematic adjustment of the TMD position for achieving best fit of the PRE data to Eq. 2. At the top of each graph, the offset from the true membrane center (obtained from the best fit) is reported. The fittings to Eq. 2 (left column) include  $PRE_{amp}$  vs.  $r_Z$  data points from both halves of the lipid bilayer. The residuals from the fitted model are reported on the right. The fitting in the last row shows the best fit, which yields the position of the Fas TMD relative to the lipid bilayer center.



**Figure S5**. Comparison between experimentally derived and back-calculated  $PRE_{amp}$  of the human Fas TMD reconstituted in q = 0.5 bicelles. The high fidelity of the back-calculation indicates that Eq. 2 is a good model to describe the experimental data.



**Figure S6**. Comparison of experimentally derived  $PRE_{amp}$  of the human Fas TMD reconstituted in q = 0.7 (black), 0.5 (red) and 0.3 (blue) bicelles. While q = 0.7 and 0.5 data sets are similar and almost overlapping (within the error), the q = 0.3 data set shows much stronger  $PRE_{amp}$ . These results indicate that only q = 0.7 and 0.5 bicelles are large enough to minimize the lateral contributions of the solvent PRE.