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A. Data 
The information ecosystem under consideration stems from two disjoint sets, which correspond to 
hashtags and users from the online platform www.twitter.com. Following the analogy with interactions 
in ecological systems, two types of species are considered: users and hashtags (memes). This implies 
that we do not consider follower/following links between users, nor connections between hashtags due, 
for example, to co-occurrence in the same tweet. We do not consider either message (tweet) contents, 
except to extract the hashtags in it: our final aim is to keep record of who-said-what in terms of agents 
using hashtags.  

Spanish collection. The collection from Spain comprises 521,707 tweets containing at least one 
hashtag, 22,375 unique hashtags and 78,080 unique users. The observation period ranges from the 25th 
of April at 00:03:26 to the 26th of May at 23:59:55, 2011, and data was collected by selecting all the 
tweets containing at least one of a preselected set of 70 hashtags related to the 15M movement with the 
aim of filtering out only the activity related with this topic (see Table S3). Data collection was carried 
out by the start-up Spanish company Cierzo Development Ltd.  

UK collection. The UK collection comprises 28,928,528 tweets emitted by a set of 842,745 unique 
users between the 18th of January at 18:41:56, to the 31st of May at 22:41:56, 2013. The set of unique 
hashtags in this case is 2,196,934. Unlike the case of the Spanish dataset, tweets have been filtered by 
selecting only those that are geolocalized in the United Kingdom and Ireland. In this way, this set 
provides a raw dataset (only limited by geolocalization) of twitter traffic in which the activity is not 
filtered by topic, hashtags or users. See Table S4 for a glimpse on the most common hashtags. 

A.1. Data as an evolving bipartite graph  

As it is clear in the main text, we attempt to account how the user-hashtag ecosystem changes over time. 
To this end, we build a sequence of snapshots out of the data. These snapshots have an arbitrary window 
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width w, and adjacent snapshots have an overlap of φw. Such overlapping scheme is a rather standard 
procedure when considering chunked temporally-resolved information, to provide a smooth account of 
change in time.  

The question remains how these datasets can be suitably represented. The most natural way to map user-
hashtag interactions is through a bipartite graph of relations, which in turn corresponds to a rectangular 
presence-absence matrix Mt = {muh}, where muh = 1 if user u has posted a message containing h, and 0 
otherwise (note that matrix Mt corresponds to block  of the block off-diagonal binary matrix A in 
eq. (1) of the main text). Noteworthy, this implies that only binary values are considered, i.e. the number 
of interactions between nodes u, h is not recorded. Besides, we acknowledge that results in the main text 
are not affected by the chosen window width (results there correspond to w = 12 hours and 3 days, with 
overlaps of 6 and 36 hours, respectively). See below for more details.  

It is also important to highlight that the Mt matrices may not contain the same nodes across t: as time 
advances, users join (disappear) as they start (cease) to show activity; the same applies for hashtags, 
which might or might not be in the focus of attention of users. This volatile situation is quite normal in 
time-resolved ecology field studies [33, 35, 53], where the accent is placed on the system’s dynamics –
rather than individual species. Moreover, the level of turnover in the sequence of data is very 
informative, as it characterizes how the system renews its structure over time (see the main text).  

A.2 Pruning the data  

The large size of our two datasets –78,081 unique users and 22,376 unique hashtags in the 15M dataset, 
and 842,745 users plus 4,217,530 hashtags in the UK dataset– handicaps the data processing and makes 
the calculations time-consuming. We must therefore apply some restrictions to the number of users and 
hashtags considered in the network.  

Therefore we apply a rather straightforward criterion, by which we prune the least active users in the 
data. This means that only top-contributors (and their associated hashtags) show up in the matrices that 
we study. In doing so, we guarantee that the whole approach makes sense: only by including the most 
active users we make sure that generalists and specialists will show up –if any nested patterns are to be 
found. Also the probability of obtaining a connected matrix is higher. Again, we acknowledge that ours 
is an arbitrary decision. To provide solid evidence, we have tried several matrix sizes. 

Spanish dataset. Whereas results reported in the main text are based on the 1,024 most active users, we 
have also tested smaller sets with qualitatively the same results (see Figure S1). In this Figure, we 
represent the standardized results for both nestedness (left) and modularity (right). Both magnitudes will 
be described in details later (section B and C). Three dates are also considered at different moments of 
the 15M movement: three days before the main camps took place –May 12th–, at the onset of the 
protests; May 15th itself; and May 19th, when the maximum nestedness is achieved and protests are 
considered to have reached high levels of visibility. Nestedness curves show a tendency to saturate for 



 

3 of 25 
  

large values of the number of users selected. This flattening is achieved at lower values for earlier dates, 
being far from saturation on May 19th. In view of these results, we can safely conclude that our pruning 
procedure, i.e., the restriction to the most active users, does not give rise to a misleading claim about the 
nested structure organized around the movement formation. So far, and to avoid extrapolation, we can 
safely state from Fig. S1 that, if we build a nestedness time series and a modularity time series 
(admittedly both quite poor: only 3 points each) we see that 19M shows, nestedness-wise, a maximum, 
regardless of the size one wishes to pick; and modularity-wise a minimum, regardless of the size on 
wishes to pick (except for very small sizes, n < 150). In summary, for any size reported in Fig. S1,  

 
𝑧"#$% < 𝑧"#'% < 𝑧"#(% 

and 
𝑄#$% > 𝑄#'% > 𝑄#(% 

 
which would render perfect anti-correlation (that is, a stronger result than the one reported in the main 
text). 

UK dataset. For this dataset, the filter is applied in a slightly different way: the cutoff is applied to both 
users and hashtags, by choosing the 512 more active users and the 512 most-used hashtags. The reason 
underlying the additional constraint on hashtags and the smaller number of nodes considered, is the large 
amount of hashtags used in this dataset: 1,024 users can generate from 2,245 to 13,113 hashtags, 
depending on the observation time window. Some technical details about the observation period, 
number of users and hashtags, and time-windows width can be found in Table S1.  

As for how we build bipartite networks for the UK dataset, different possibilities arise: on the one hand, 
we could randomly select a subset of users and hashtags involved in the network, but in this way we 
might be missing the relevant agents thought to play a major role in the contribution to the nestedness of 
the whole system. Besides, a random selection could lead to empty matrices (none of the selected users 
tweeted any of the selected hashtags). We must, nevertheless, remark that this situation is highly 
unlikely for the 15M event, as a result of the very nature of the dataset: only people and hashtags related 
to this particular topic were extracted from Twitter. We will be making use of this method as a way to 
compare the nestedness levels in the 15M with a topic null model, built from data from the UK dataset.   
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Figure S1: Robustness against matrix size. For the w = 12h set some days have been selected. We perform the null 
model analysis for different cutoffs in the number of users (x axis), and show how the standardised leading 
eigenvalue (left) and the standardised modularity (right) evolve. The end at ∼700 users for the curve 
corresponding to D = 12M indicates that the largest possible matrix has been reached, i.e there are no more active 
users at that particular day. These results not only guarantee that our conclusions about the nested structure 
around the 15M are robust, but also show that the observed peak would be more prominent if we considered the 
real matrix including all the users and hashtags. 
 
 

 15M, 2011 UK, 2013 UK (inset), 2013 
Date range 25/04 to 26/05 18/01 to 31/05 31/01 to 06/02 
# total users 78,081 842,745 122,553 
# total hashtags 22,376 4,217,530 264,291 
Filter to users 1,024 1,024 512 
Filter to hashtags -- 1,024 512 
Final # users 17,202 50,091 37,174 
Final # hashtags 12,384 19,905 22,933 
Time windows 12h; 72h 24h 60min; 120min 
Overlap 6h; 36h 12h 30min; 60min 

Table S1: Datasets summary details. The date range, number of total users and hashtags are displayed. We also 
indicate the cutoff in the number of users and hashtags (if any) that has been applied. An unspecified hashtag 
filter indicates that the hashtag set is determined by the set of selected users. Users are filtered by activity and 
hashtags by usage. We also show the final number of users and hashtags after the selection process. Finally, the 
window width and overlap between consecutive windows are also displayed. 

 

B. Nestedness in online social networks 
Robustness across metrics. Several studies have been focused on quantifying nestedness, the first 
proposals being made by Hultén [49], Darlington [46] and Daubenmire [47] to describe patterns in 
which species-poor sites are proper subsets of those ones present at species-rich sites. Nestedness 
analysis has become very popular among ecologists, and, although the concept is widely accepted, it has 
not been formally defined, yielding to several distinct metrics [29,30,45]. In this work (main text), we 
adopt a definition numerically confirmed by Staniczenko et al. [29], where nestedness is given by the 
maximum eigenvalue of the network’s adjacency matrix. This metric is based on a theorem regarding 
chain graphs first provided by Bell et al. [27,28], where it is shown that among all the connected 
bipartite graphs with N nodes and E edges, a perfectly nested graph gives the larger spectral radius. The 
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method is advantageous over other possibilities due to the invariance of eigenvalues under matrix 
permutations, and the remarkably low computation time required to perform eigenvalue calculations, 
even for large matrices. This is an important detail provided that z-scores for nestedness are obtained 
against 104 random realizations. 
Nevertheless, we have checked the validity of our results against the improved metric NODF, defined by 
Almeida-Neto et al. [30]. This measure is based on two simple properties: decreasing fill (DF) and 
paired overlap (PO). Assuming that row (column) i is located at an upper position in the sorted presence-
absence matrix from row (column) j, the decreasing fill condition imposes that a pair of rows (columns) 
can only contribute to the nestedness if the marginal total –the number of interactions a row (column) 
has– of row (column) i, is greater or equal to the marginal total of row (column) j. In this case, the paired 
nestedness, Nij, is equal to the paired overlap POij, i.e., the number of shared interactions between rows 
(columns) i, j. The metric can be summarized as: 

        (1) 

where 

       (2) 

Both metrics are compared in Figure S2. In the x-axis the standardized value of the leading eigenvector 
is displayed against the standardized NODF measure. Matrices involved in the plot correspond to graphs 
at the distinct snapshots with time-window w = 1d. These results are displayed along with the Pearson 
and Spearman coefficients and their p-values, showing a good linear correlation with p-values p < 10−3. 
 

 
Figure S2: Comparison against nestedness metrics. For every matrix from the set of time windows with w = 12h, 
the standardised leading eigenvalue, zλ, and the standardised NODF metric, zNODF, are computed. There is a good 
agreement between both metrics, as the Pearson coefficient, r, and the Spearman coefficient, rs, show along with 
their p-values. 

Robustness across significance tests. The fact that real matrices are usually far from being perfectly 
nested, imposes the use of a test for the significance of nestedness values. Such a test implies the 
implementation of a null model and the computation of standardized results, and additionally, allows 
one to compare matrices with distinct sizes, this comparison being impossible otherwise. Regarding 
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modularity, the metric already includes in its very definition a null model, in such a way that the 
modularity obtained is already a comparison with a randomized counterpart of the network.  

Different null models may be proposed. For example, one could think of a null model rewiring the set of 
links present in the network. A strict application of such scheme would not maintain the bipartite 
structure of the network, and for that reason it should be avoided.  

Within this restriction we can still think of some variations. Here we explore two different possibilities, 
as discussed in [41]. In null model I, the number of links in the network is preserved, but placed at 
random within the matrix –although respecting the class of the origin and end of it. The degree sequence 
is therefore not preserved. Null model II is a probabilistic null model where an interaction between 
hashtag h and user u is established with probability proportional to their connectivity,  

       (3) 

In the above expression, n stands for the total number of users, i.e., the first dimension of Muh, and m for 
the number of hashtag, equal to the second dimension of Muh. ku and kh correspond to the degree of user 
u and hashtag h, respectively. This model maintains the number of interactions per class only 
approximately, i.e. it probabilistically maintains the observed total number of interactions.  

We can go further and consider an X-swap scheme null model III, in which a rewiring of the edges is 
applied but keeping constant the degree sequence of the nodes in the system. This null model, however, 
is too restrictive, and gives a small number of possible configurations, specially for those matrices 
having few non-empty cells. We must consider null models having a balance between the number of 
possible configurations and strictness. For this reason we choose to discard null model III, and apply the 
probabilistic null model II, which is the strictest between models I and II. Figure S3 reports the 
consistency of the results for the nestedness using either of the chosen null models. Z-scores have been 
calculated over 10,000 randomizations.  
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Figure S3: Robustness against statistical null models for nestedness. Unsurprisingly, results for the null model I 
(much less restrictive) yield extremely high z-scores, as opposed to the comparatively moderate results from null 
model II (note the y=x line as a visual aid). Despite these differences, both models are highly consistent at 
quantifying the level of significance for the nestedness. 

 

C. Modularity 

Modularity was originally proposed as a metric for community detection in networks by Newman and 
Girvan [51] aiming at identifying the mesoscale organization of networks, which reveals many hidden 
features invisible from a global perspective of the network; informally, modularity (typically labeled Q) 
relies on the detection of densely connected subgraphs: it quantifies the extent to which nodes in a 
network tend to cluster together, in comparison to the expected distribution of a random counterpart 
(null model).  

One of the interesting aspects of Q is its reliance on the concept of null model, which can be taken as the 
baseline against which optimization makes sense. This has allowed the original formulation by Newman 
to be extended to other scenarios, namely directed, weighted or signed (if we pay attention to the 
features of the links); and bipartite and multiplex networks, beyond the (more common) unipartite 
networks. The general layout of Q is  

 ,      (4) 

where gi represents the module node i belongs to, Aij is the real adjacency matrix of the network, and Pij 
are the probabilities that an edge linking nodes i and j exists in the null model.  
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The key point is to define, in this equation, a suitable, adapted null model to confront the real 
connectivity patterns (as in the mentioned cases). The issue is controversial because even within a type 
of network different possible null models can be defined. In the bipartite scheme we find two main 
proposals. We have chosen to work with Barber’s definition of modularity for bipartite networks [26] 
(see also the main text), ruling out the proposal by Guimerà   et al. [48]. In Guimerà’s proposal, 
modules are forced to be defined strictly in class “purity”, that is, a module can only contain nodes of a 
single class. His method is thus almost equivalent to optimize modularity on the projected unipartite 
network, which collapses the information in the bipartite original network onto one of its classes (see 
[48] for the details). On the contrary, Barber’s definition naturally incorporates combined (or mixed) 
modules, formed by nodes from both classes.  

The choice of one or another definition is a matter of the problem one intends to solve. Indeed, it may 
not make a lot of sense to define movie-actor mixed modules, because the semantics of such a module is 
not very clear. In other problems, however, it may be more convenient to allow for mixed modules. This 
is often the case in ecology (as for instance in [41]), because it is more interesting to identify modules 
that have a precise biological meaning as potential co-evolutionary groups [54] or as cores of mutualistic 
networks [9]. As we are also, in our user-meme systems, more interested in this co-evolutionary 
perspective, we have taken Barber’s approach.  

We have applied this metric making use of the software provided by Marquitti et al. [50], where the 
simulated annealing method [27] is used to maximize Barber’s modularity. Statistical significance of the 
results is checked obtaining the z-score of the original network modularity, against the average and 
standard deviation of 100 random realizations (null model II as for nestedness, see above). 

D. Nestedness and Modularity: further considerations 

Robustness across window widths. Beyond assessing the robustness of the results for the nestedness 
values (regarding the used metrics and null models), we also need to test for robustness against the 
(admittedly arbitrary) choice of a window-width. This applies both to the soundness of the results in 
nestedness and modularity.  

In Figure S4 we report results for modularity and nestedness (both in their standardised version) for 
every width w we have tested. Upon inspection, it is clear that results are noisier the narrower the 
window is –the regularity of the peaks suggests that the measures are sensitive to circadian rhythms 
(periodic temporal patterns). For values aggregating the activity for one day and beyond, such periodic 
variations disappear. Remarkably, nestedness (lower panel) shows the same trend for every window 
width. In contrast, the trajectory of the modularity z-scores is coherent up to w = 1 day, but it is blurred 
out for w = 3 days. These results (together with those obtained for the UK dataset) suggest that events 
have their very own characteristic timescale [55], and observed trends are valid only within a relatively 
precise range. 
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Figure S4: Robustness against window width. Standardised nestedness, zλ , and modularity, zQ, values are 
displayed for window sizes 6h, 12h, 24h and 72h.  

We observe the same robustness in the UK datasets for a window width of w = 2 hours (as opposed to w 
= 1 hour reported in the main text). Given the fast time scale of the event (it fully develops in less than 
two days), wider window schemes blur the results.  

 

Ruling out epiphenomenal conclusions. Both in the main text and throughout this document we have 
provided solid evidence that, in an information ecosystem such as Twitter, topics arise in a nested 
scheme out of an initially modular structure. One may argue, however, that this striking outcome may be 
artificial in different senses. First, it is possible that the modular-to-nested transition occurs out of a 
“topological artifact”, namely, that the network starts as a broken set of small components (thus being 
trivially modular) and undergoes a percolation process such that nestedness is possible from then on. In 
Figure S5 the size of the giant component of the system is plotted as it evolves in time. Such component 
is always above 0.78N, and as such a percolation transition is never observed. 
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Figure S5: Evolution of the size of the giant connected component (as a proportion of the total size of the system). 
Notably, the y-axis is labeled from 0.75 and above, which implies that, for the whole time range (over a month), 
the system does not undergo any abrupt percolation process. The figure corresponds to a window width w = 6 
hours (the noisiest and sparsest one).  

 

A second consideration implies our disregarding of weighted values. Indeed, we have focused on binary, 
presence/absence matrices –in an effort to follow the ecosystems literature. Additionally, NODF does 
not have, to our knowledge, a weighted equivalent, so comparison is properly done only with a binary 
representation of the system. 

Admittedly, this represents a loss of information, which could potentially affect the results. We are 
aware that the spectral radius approach to nestedness does allow for weights to be present in the 
interaction matrix. For the sake of completeness, we have measured nestedness also considering 
weights, which stand for the frequency with which an individual used a certain hashtag, given a certain 
time window. The result can be seen in Figure S6, where the growing pattern follows precisely the 
trends reported in the main text (Figure 2) and here (Figure S4).  
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Figure S6: Nestedness evolution as measured from weighted matrices, i.e. matrices which encode the absolute 
usage counts of hashtags by the corresponding Twitter users. The figure corresponds to a window width w = 3, 
and delivers the same growing patterns as its own binary counterpart. (time in the x-axis is expressed here in 
minutes since the origin of our data; here, t = 30000 is roughly equivalent to May15th). 

 

E. Mutualistic Dynamical Model 

According to the dynamical framework from Bastolla et al. [36], the evolution of a mutualistic 
ecosystem can be modeled through a set of N differential equations in which each equation represents 
the variation of the frequency of a plant or a pollinator. Competitive interactions are estimated through 
linear function responses, −βij

(P)Nj
(P) for plants and −βkl

(A) Nl
(A) for animals, where competition matrices 

βij
(P,A) are symmetric and non-negative. In the same way, mutualistic interactions between plants and 

pollinators are modeled through non-linear functional responses of Holling Type, f(N) = γN/(1+hγN), 
where mutualistic relationships are described through two symmetric and non-negative matrices γij(P,A) 
and the Holling term h imposes a limit to the mutualistic growth rate, avoiding divergences in the case 
of large populations. The equations for the system’s dynamics are described in Materials and Methods 
section of the main text.  

E.1. Synthetic topologies 
Regarding topologies, we built ad hoc two ensembles of synthetic networks for different network sizes. 
For each pair of ensembles (equal size, equal link density), the networks of the first ensemble present an 
almost perfectly nested architecture, while the networks of the second one exhibit an almost perfectly 
modular structure. All the networks of a given size N were built with the same number of users and 
hashtags n = m. Nested networks were constructed starting from a perfect nested structure, involving a 
connectivity distribution ku = u, u = 1, 2, . . . ; kh = h, h = 1,2,..., and subsequently randomizing each link 
with probability p = 0.02. This method provides networks with an almost perfect nested topology and 
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mean connectivity <k> = N/4.  
According to the procedure by Newman [51], modular networks were constructed starting from a perfect 
modular structure consisting of 5 disconnected blocks (cliques) of equal size Ni = N/5, and subsequently 
randomly connecting pairs to reach the connectivity <k>= N/4. The number of blocks (5) and the 
rewiring probability p = 0.02 were arbitrarily chosen. Nevertheless, the results are robust against 
variations of these values, as shown in figure S7. 
 
E.2. Realizations 

In each realization, we used a different network of the corresponding ensemble, and assigned different 
random initial frequencies to each user and hashtag in the interval su,h(t = 0)  (0, 1), and different 
growing rates in the interval αu,h  (0.85, 1.1). We ran the dynamics defined by equations (4) and (6) of 
the main text and, once the stationary state was reached, we computed the survival rate by adding the 
number of users and hashtags with frequency su,h > 0 and then divided by their initial number N. 
Accordingly, the survival area stands for the region of the parameters space with a survival rate greater 
than a given value. We performed 1000 different realizations per each point of the space of parameters β 
× γ and for each size and topology. According to the standard biology procedures (see, e.g., [36, 54]), 
the inter-specific term was fixed to ρ = 0.2 and the Holling term was set to λ = 0.1. The values for the 
competition and mutualistic terms covered the range β,γ  [0.1] with intervals of δβ , δγ = 0.05 (from 
weak to strong mutualism regimes).  

Results of these extensive simulations are shown in Figure 3 of the main text, where left panels represent 
the survival rate (i.e., the diversity in the stationary state) as a function of the competitive and 
mutualistic terms β and γ, for a system size of N = 1000. Right panels of Figure 3 of the main text 
represent the normalized area of the space of parameters β × γ that exhibits a survival rate equal o higher 
than the corresponding value of the x-axis, for different network sizes in different panels: N = 50, 100, 
300, 1000. As discussed in the main text, a large area of the space of parameters exhibits high 
persistence for the nested architecture where persistence is low for the modular one, but never the 
opposite. Otherwise, for the modular architecture, the area of the space β × γ with a given persistence 
decreases sharply with the network size, while for the nested architecture this dependence is smaller. 
This effect saturates for large values of the network size, that is, once the size N ~ 500 is reached, the 
size of the network does not have a noticeable effect on persistence anymore. Figures S8 and S9 
complement, respectively, panel left and right of Figure 3 of the main text. Figure S8 represents the 
persistence (i.e. diversity of memes and hashtags in the stationary state) for each value of β and γ, for 
nested and modular networks of 100, 500, and 1000 nodes. Additionally, Figure S9 represents the 
normalized area of the surface (β × γ) that exhibits a persistence equal o higher than a given value as a 
function of that value, for nested and modular networks. In the above results (Figure 3 of the main text 
and Figures S6-S9), the interval αu,h  (0.85, 1.1) has been taken according to the biological literature 
(see, e.g. [36]). Nevertheless, the main result (nested architectures out-survive modular ones) holds for 
wider interval of αu,h, as shown in figure S11 for αu,h  (0.5, 1.5). 



 

13 of 25 
 

 

Figure S7: Survival rate as a function of β and γ, for different values of the rewiring probability p in the nested 
networks (up panels) and different number of modules in the modular networks (down panels). Left panels 
correspond to a network size of N = 100, while right panels correspond to N = 500. Each point is averaged over 
1000 different initial conditions.  

 

 

Figure S8: Survival rate as a function of the competition β and mutualism γ terms. Upper (resp., lower) panels 
correspond to a nested (resp., modular) architecture. Each column corresponds to a different value of the network 
size: N = 100 (left), N = 500 (center), N = 1000 (right). Each point is averaged over 1000 different initial 
conditions.  
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Figure S9: Normalized area of the space β × γ with a survival rate equal o higher than the corresponding value of 
the x-axis. Different panels correspond to different values of the network size: N = 50, 100, 300, 500, 1000, 2000. 
Note that, for the sake of comparison, 4 of the panels are merely reproducing those reported in Figure 3 of the 
main text. 

The value ρ = 0.2 in the simulations from Figure 3 is taken from the ecological literature, where the 
intra-species competitive term (1 - ρ) is usually considered to be greater than the inter-species term (ρ), 
as members of the same species are competing for the same resources. For the sake of completeness, we 
have studied as well the case N = 1000, ρ = 0.6, which in our study corresponds to an inter-users stress 
greater than the intra-users stress. Figure S10 shows that, when the inter-users stress exceeds the intra-
users stress, the main feature observed in the dynamics remains intact, namely, modular networks 
exhibit poor survival, while nested networks show equal or higher levels than the modular structure in 
any given region. 

 

Figure S10: Survival rate (left) and normalized area survival (right) for a network with N=1000 and ρ = 0.6 
(corresponding to Figure 3 of the MT, and Figures S8 and S9 of the Supplementary Materials). 

0 0.2 0.4 0.6 0.8 1

persistence

0

0.2

0.4

0.6

0.8

1
a
re

a
 (

5
0
 n

o
d
e
s)

nested
modular

0 0.2 0.4 0.6 0.8 1

persistence

0

0.2

0.4

0.6

0.8

1

a
re

a
 (

1
0
0
 n

o
d
e
s)

0 0.2 0.4 0.6 0.8 1

persistence

0

0.2

0.4

0.6

0.8

1

a
re

a
 (

3
0
0
 n

o
d
e
s)

0 0.2 0.4 0.6 0.8 1

persistence

0

0.2

0.4

0.6

0.8

1

a
re

a
 (

5
0
0
 n

o
d
e
s)

0 0.2 0.4 0.6 0.8 1

persistence

0

0.2

0.4

0.6

0.8

1

a
re

a
 (

1
0
0
0
 n

o
d
e
s)

0 0.2 0.4 0.6 0.8 1

persistence

0

0.2

0.4

0.6

0.8

1

a
re

a
 (

2
0
0
0
 n

o
d
e
s)



 

15 of 25 
 

 

Figure S11: Left and center panels show the survival rate (color code) as a function of competition (x-axis) and 
mutualism (y-axis). Left (resp., center) panels correspond to a nested (resp., modular) architecture. Different raws 
correspond to different values of the network size: N = 200, 500. Right panels show the normalized area of the 
space β × γ with a survival rate equal o higher than the corresponding value of the x-axis.  αu,h  (0.5, 1.5). 

 

F. Core-periphery structure 

Meso-scale structures in networks have received considerable attention in recent years, as the detection 
of these intermediate-scale patterns can reveal important characteristics that are hidden at both local and 
global scales. Among the wide diversity of methods aiming at the detection of such structures, 
community detection methods have become very popular and successful. In this section we focus our 
attention on a different type of meso-scale structure, known as the core-periphery structure, that helps 
one to visualize which nodes of the graph belong to a densely connected component or core, and which 
of them are part of the network’s sparsely connected periphery. Nodes belonging to the core should be 
relatively well connected to other nodes in the network, either central or peripheral; whereas nodes in 
the periphery should be those elements poorly connected with the core, and disconnected from the 
periphery. According to this intuitive notion, many methods have been proposed. We follow here a 
method developed by Della Rossa et al. [38], based on the profile derived by a standard random walk 
model. It and can be obtained in a very general framework and is applied here for undirected unweighted 
networks.  

Let wij = wji be the link of weight 1 between nodes i ↔ j in our network of size N. At each time step, the 
probability that the random walker at node i jumps to node j is given by mij: 

          (5) 

where ki is the degree of i. The asymptotic probability of visiting node i has the closed form  
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          (6) 

The method starts by randomly selecting a node i among those with the weakest connectivities, and 
assigning αi = 0. Pk, the set of nodes that are already assigned at step k, is then filled with i, P1 = {i}. For 
the following steps, k = 2, 3, ..., n, the node j attaining the minimum in  

   (7) 

is selected. If it is not unique, a randomly chosen node among them, l, is selected, and Pk = Pk−1  l. 
Although the algorithm presents some randomness, it has been verified that the effect in the analysis of 
real-world networks is negligible. The core-periphery profile is then the set {αk}, with 0 ≤ αk ≤ 1,where 
αk = 0 for nodes belonging to the periphery and αk > 0 for nodes in the core.  

As the goal of this section is to identify the possible formation of a core during the days preceding the 
15M, a distance metric should be defined. As a first approach we consider the distance between two 
core-periphery structures as the product between the two {αk} sequences,  

        (8) 

Notice that the α “vectors” do not necessarily share the same coordinates, that is, it may happen that a 
given node (now by nodes we refer to users or hashtags indifferently) present in  does not appear in 

 because it was not part of the network. Whenever this is the case, we consider the contribution to the 
dot product to be zero (i.e., as if it were at the periphery). On the other hand, we normalize the above 
expression in order to get a bounded value:  , 

       (9) 

which is the expression used in the main text and labeled as DRC. 

In the main text we have discussed the conformation of a relatively stable core of hashtags around the 
15M day, in contrast to a high turnover of users coming to and leaving the core at different snapshots. 
Here, we scrutinize further such a finding by ruling out the possibility that it could be due, for example, 
to the fact that the set of users in the core could be similar over the distinct time-windows and change 
abruptly at the reference point under consideration. To this aim, we additionally measured the distance 
of a given core Ct from the previous core Ct-1 –the core present in the previous time-stamp. Results in 
Figure S12 reject this conjecture: the turnover of users is still high –the distance is small– when the core 
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is compared with that in the preceding graph, suggesting that users are actually entering and exiting the 
key positions in the network. In contrast, hashtags keep relatively constant at high distances, indicating 
that the core near the 15M is formed smoothly –the exception to this being a sharp decrease around the 
15M if observed at a 3-day window resolution. The reason for this behavior is the takeover of new 
hashtags (with respect to the ones that originated the protest), which pushes the original ones away from 
the core of the structure. The best example of this is the hashtag #democraciarealya (“real democracy 
now”), which is placed at the core of the bipartite network for a long period of time, but its leading role 
is substituted by the more generic (and “cheap” from a microblogging perspective) #15m from the 
immediately previous days of May 15 and onwards. 

 

 

 

 

 

 

 

 

Figure S12: The figure emulates the results in Figure 3 of the main text; however, distances are computed 
between each time stamped core and the former configuration, Ct vs. Ct-1. As in the main text, the figure illustrates 
that hashtags build a more stable core in comparison to users.  
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G. Anti-correlation between nestedness and modularity 

Further details on the reported Q-nestedness correlated/anti-correlated patterns can be seen in Table S2 
and Figure S13. 
 

Dataset r p-value 

15M 

w = 6h 
pre May 15 0.8182 10-5 

post May 15 -0.7569 10-5 

w = 12 h 
pre May 15 0.8179 10-5 

post May 15 -0.8023 10-5 

w = 24 h 
pre May 15 0.7997 10-4 

post May 15 -0.7819 10-5 

w = 72 h 
pre May 15 0.5438 not significant 

post May 15 -0.2732 not significant 

UK w = 1h −0.7126 10-5 

Table S2: Pearson correlation coefficient values for nestedness and modularity, along with their p-values, for both 
datasets and available window widths. In the case of 15M, we report Pearson correlations before and after the 
climax of the event (though the exact moment at which modularity abruptly collapses is slightly different in each 
case, see panels in Figure S13). Note that correlations fail to be significant (that is, p > 0.05) for w = 3 days, as the 
results for modularity are blurred compared to the observed pattern in 6h ≤ w ≤ 24h.  
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Figure S13. Evolution in time of nestedness and modularity z-scores for all the window widths (6h, 12h, 24h and 
72h) in the 15M dataset (c panel is the same on as reported in the main text, and repeated here for the sake of 
comparison). Around the onset of the 15M protests modularity collapses and displays an anti-correlated behavior 
with respect to nestedness. An exception to this is w = 3 days (panel d), in which the aggregated data in a single 
snapshot blurs the results of the community detection algorithm. A vertical green line has been placed on the time 
when nestedness and modularity bifurcate, and Pearson coefficients are reported for both sides of that line. A red 
horizontal line has been placed at z = 1.96, as a visual aid for statistical significance.  
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H. “Topic” null model 
We have discussed in the beginning of this supplementary information distinct possibilities regarding 
the construction of presence-absence matrices that describe the set of interactions in our systems. We 
have also mentioned that different cutoffs to hashtags and/or users can be applied, and discussed the 
more reasonable way to proceed to study nestedness and modularity, which consists of either 
considering the most active users and their related set of hashtags, or the set of most active users plus 
most tweeted hashtags at a time. Also, on the side of statistical soundness, we have delved into different 
null model possibilities.  

Now however, our concern focuses on the singularity of the results themselves. In particular, we want to 
test whether the modularity-nestedness crossover we have observed for particular topics is universal to 
any activity on Twitter (and in this sense uninteresting), or rather it is a specific mechanism underlying 
the formation of consensus around related information. Thus we explore here three additional 
possibilities for the w = 12h time-window on the UK dataset. In option (a) we select randomly and 
independently 512 users and 512 hashtags, and build the corresponding presence-absence matrix. 
Although the way in which nodes are selected can produce empty matrices corresponding to graphs with 
no links, this never happened in our dataset (all matrices have more than 20 non-empty cells). In model 
(b), 512 users are randomly selected and they determine the set of hashtags to consider. Model (c) is 
analogous but selecting randomly the 512 hashtags to be included, along with the set of users that 
tweeted them.  

These three sets, (a), (b) and (c), can be considered as an additional category of null models that allow us 
to discern if the nested patterns previously observed are significant: for example, if set (a) showed high 
levels of zλ we would not be able to conclude that the coordination phase observed in the 15M is 
relevant, as we would be finding nested patterns even for structures randomly filtered. A comparison 
between the three methods is displayed in Figure S14. Results include data from Figure 5 (bottom panel) 
in the main text. We observe that, when we consider independent users and hashtags at random –set (a)– 
nested patters do not show up and the bipartite network do not present any kind of organized structure. 
The exception is the region between the 3rd of February afternoon and the 4th of February, when the 
XLVII Super Bowl took place, probably due to the high relevance of this tournament (if it became 
global trending topic, even a randomly built network would show, to some extent, a nested structure). 
When users (hashtags) are randomly selected, but the set of hashtags (users) is closely related to them, 
the nestedness increase –sets (b) and (c)–, but this is a systematic shift rather than a differential change. 
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Figure S14: Some results for unfiltered Twitter traffic (2013). Set (a) corresponds to our UK dataset with 512 
hashtags and 512 users randomly and independently selected. Such a random selection implies that the presence-
absence matrix might be empty, although it never happened in this case. In set (b), 512 users have been randomly 
chosen determining the set of hashtags. Inversely, set (c) have been obtained by randomly filtering 512 hashtags 
their related users. Finally, set (4) comprises the 512 most active users and the 512 most used hashtags for 
comparison. 
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Appendix. Some selected hashtags  

In Tables S3 and S4 we display some of the hashtags used in our dataset, along with the number of 
counts registered.  

 

 
Table S3. Top 32 most-used hashtags in the 15M dataset.  

 

Table S4. Top 32 most-used hashtags in the UK dataset. 
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