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Supplementary Figure Legends

Supplementary Figure 1: Synthesis of monodisperse SPIONs using The thermal decomposition
method of SPION synthesis followed by its surface functionalization results in the formation
of mono-dispersed particles with superparamagnetic property.(A) Scheme representing major
steps in SPION synthesis. Surface functionalization has no influence on the superparamagnetic
behavior (B-G) and size distribution (H-N) of SPIONs. Normalized magnetic hysteresis curves of
SPIONs coated with oleic acid - DMSA (B), oleic acid - lipids (C), aminolipids (D), DMSA (E),
carboxylipids (F), methoxylipids (G) as measured by vibrating sample magnetometer (VSM). The
red curve line represents the Langevin fitting. Histograms of the size distribution of SPIONs
coated with oleic acid - DMSA (H), oleic acid - lipids (1), aminolipids (J), DMSA (K), carboxylipids
(L), methoxylipids (M) as determined by TEM were fitted with a log normal distribution curve
(red). (N) FTIR spectral analysis of functionalized surface coatings. All FTIR-spectra, although less
abundant for the DMSA-SPIONs, showed several similar peaks just below 3000 cm™. These
peaks are characteristic for the asymmetric (vas) and symmetric (vs) stretch of saturated alkane
chains (vas CHz ~2960 cm™, vas CH> ~2925 cm™, vs CH3 ~2890 cm, vs CH; ~2855 cm?), which are
all present in the molecules functionalizing the SPIONs. A joint peak visible around ~600 cm
represents the Fe-O stretch of the ferrite core in the SPIONs while the presence of PEG in
phospholipids is clearly visible due to the strong peak at ~1110 cm™ which is derived from the
ethylene oxide stretch (C-O-C). Due to the abundance of different FTIR vibrations in the
phospholipids it is not possible to distinguish the specific end-groups (O-CHs, -COOH, -NH;) of

different lipids used to functionalize the SPIONs.

Supplementary Figure 2: Effect of functionalized SPIONs on Hela cell viability, internalization,
endocytic transport and lysosomal function. (A) Percentage of viable and dead cells after 1 h of
incubation with functionalized SPIONs as measured with trypane blue. (B-C) SPIONs
functionalized with either carboxylipids/methoxylipids do not interact with Hela cells at 37°C.

TEM images of Hela cells incubated with carboxylipid- (B) or methoxylipid- (C) coated SPIONs



for 15 min and chased for 4 h. (D) XBP1 splicing assay and quantitative western blot analysis (E-
F) of indicated marker proteins on total extracts of cells incubated with DMSA- and aminolipid-
SPIONs for a chase period of 4 and 15 h. As a control, cells were incubated with thapsigargin. (G)
Percentage of viable and dead (apoptotic) cells after a chase period of 4 h with aminolipid- and
DMSA-SPIONs as measured with propidium iodide staining. (H) Western blot analysis for
indicated marker proteins on total cell extracts of cells incubated with aminolipid- and DMSA-
SPIONs for a chase period of 4 and 15 h. As a control, total cell extracts from cells incubated
without SPIONs or with Bortezomib were used. (I) Cell surface biotinylation on Hela cells
incubated (pulse 15 min, chase 4 h at 37°C) with and without DMSA-SPIONs using EZ-Link Sulfo-
NHS-SS-Biotin (Pierce) (10 min at 4 °C). Representative Western blot of biotinylated transferrin
receptor (TfR) at indicated internalization time points at 37°C. (L) Confocal analysis of Alexa568-
labeled transferrin internalized for 20min at 37 °C. Insets show zoomed areas depicting
colocalizaiton with endogenous EEA1. (M) Quantification of co-localization represented by the
Pearson’s coefficient. (J) DQ-BSA assay measuring lysosomal proteolytic activity in Hela cells
incubated with DMSA-coated SPIONs for 15 min and chased for 4 and 15 h. As a control, total
cell extracts from cells were incubated without SPIONs or with bafilomycin Al. Confocal image
of LE/LYS isolates stained with LysoTracker-red (K). Ctrl - Control, TG - Thapsigargin, BR -
Bortezomib, BAF - bafilomycin A1, Amino - Aminolipid-SPIONs, DMSA - DMSA-SPIONs, Carb -
Carboxylipid-SPIONs and Meth - Methoxylipid-SPIONs, NR - Nonreduced, TfR - Transferrin

receptor. Scale bar = 20 um.

Supplementary Figure 3: Aminolipid-coated SPIONs accumulate at the cell surface while
DMSA-coated SPIONs accumulate in Lampl positive organelles across various cell types.
Confocal analysis of MEF, HelLa, MF4, RAW and rat primary hippocampal neurons incubated
with fluorescently modified DMSA-coated SPIONs (pulse 15 min, chase 4 h, 37°C) (A) or with (B)
aminolipid-coated SPIONs (pulse 15 min, 4°C). Scale bar in (A) is 10 um, (B) is 20 pum.



Supplementary Figure 4: Fractions isolated using DMSA- and aminolipid-SPIONs are devoid of
contaminating organelles. Quantitative western blot analysis of the indicated marker proteins
in isolated fractions of DMSA-SPIONs with increasing chase periods of (A) 0 min (B) 1 h (C) 2 h
(D) 3 h (E) 4 h and in isolated fractions of aminolipid-SPIONs (F) as a fold increase relative to the
total cell lysate (TCL) (mean + SEM, n=3). Rab5 and CatD are early and LE/LYS marker proteins,
respectively; p58 is used as a marker for intermediate to cis-Golgi compartments, lamin as a

nuclear marker, actin as a cytoskeletal marker and PEX14p is a peroxisomal marker protein.

Supplementary Figure 5: Proteomics on isolated subcellular compartments demonstrate
enrichments for endosomal and cell surface associated GO-terms. Venn diagram indicating the
distribution of unique proteins identified in two replicates using gel-based shotgun proteome
analysis of the total cell lysate (TCL) (A1) and magnetically isolated fractions using aminolipid-
coated (A2), DMSA-coated (chase period of 4 h) SPIONs (A3). Gene Ontology (GO) enrichment
analysis of proteins identified in the bound/magnetic fractions isolated using DMSA- (B1, B2), or

aminolipid-SPIONs (C1, C2). GO enrichment was performed using DAVID.

Supplementary Figure 6: KO of NPC1 causes increases in lysosomal volume and pH along with
an increased storage of cholesterol and glycospingolipids. (A) Western blot analysis of the
indicated organelle marker proteins in total cell lysates shows complete loss of NPC1 protein
expression in the two KO cell lines. Rab5 is used as a marker for early endosomes, Rab7 for late
endosomes, Lampl for lysosomes, ribophorin, actin and GAPDH represent endoplasmic
reticulum, cytoskeleton and cytosol respectively. Relative LE/LYS volume and pH increases in
NPC1-KO cells (B-C). Fluorescence of cells stained with LysoTracker-green (B) or LysoSensor
Yellow/Blue DND-160 (C) was measured by flow cytometry and corresponding values are
expressed as mean equivalent of fluorescence (MEFL). (D) Filipin staining reveals cholesterol
accumulation in LAMP1-positive organelles solely in NPC1 KO cells. NPC1-KO cells show relative

increase in the storage of sphingosine (E) and glycospingolipid (F) as measured by HPLC.



Supplementary Figure 7: Lipids accumulating in LE/LYS of NPC1 KO cells do not show
significant changes in their molecular features. Enrichment plot for Glycerophospholipid (GPL)
and Sphingolipid (SP) chain lengths expressed as number of carbon atoms (A, D and H, K),
saturation expressed as number of double bonds (B, E and |, L) related to the sum of long chain
fatty acid moieties, and the number of hydroxylations (C, F and J, M) and this for PM and LE/LYS
fractions isolated from NPC1 KO cells relative to WT Hela cells. Features were calculated from

individual quantities of lipid molecular species (mean * SEM, n=3).

Supplementary Table Legends:

Supplementary Table S1: Absolute quantities of lipids identified in PM and LE/LYS fractions
isolated from WT and NPC1 KO Hela cells. Values are expressed in pmol for each lipid species

identified in each individual sample, experiment.

Supplementary Table S2: Individual features of the lipid species identified in PM and LE/LYS
fractions isolated from WT and NPC1 KO Hela cells. Features are normalized to individual lipid

class.

Supplementary Table S3: List of proteins identified in LE/LYS fraction isolated from WT and
NPC1 KO Hela cells.

Supplementary Table S4: List of proteins identified in PM fraction isolated from WT and NPC1
KO Hela cells.
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