Enhanced vapor transport in membrane distillation via functionalized carbon nanotube anchored into electrospun nanofibers

Alicia Kyoungjin AN^{1*}, Eui-Jong Lee¹, Jiaxin Guo¹, Sanghyun Jeong², Jung-Gil Lee², and Noreddine Ghaffour²

¹School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China,

² King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia *Corresponding author's e-mail: <u>alicia.kjan@cityu.edu.hk</u>

Supplementary Figure S1. Optical profiler images (88.8 μ m × 66.4 μ m) of (a) E-PH (R_a: 1.35 μ m), (b) E-CNT1 (R_a: 2.04 μ m), (c) E-CNT2 (R_a: 2.43 μ m), and (d) E-CNT3 (R_a: 2.53 μ m).

Supplementary Figure S2. A schematic diagram of CNT functionalization steps.

Supplementary Figure S3. A schematic drawing of the electrospinner.

Supplementary Figure S4. (a) A schematic diagram of the DCMD test unit (1: Permeate tank, 2: Digital balance connected to a computer, 3: Thermometers, 4: Cooling unit, 5: Pumps, 6: Flat sheet membrane module, 7: Flow meters, 8: Feed reservoir, and 9: Hotplate). (b) A picture of experimental set-up of the DCMD test unit.

Material	Mean pore Size (μm)	Porosity (%)	Thicknes s (µm)	Contact angle (°)	Initial flux (kg/m²/h)	Rejection (%)
^a 67% clay-PVDF ²⁸	0.64	81.0	300	154.2	5.5	99.95
222% SiO ₂ -PVDF ³³	0.61	79.7	100	152.3	43.0	99.99
50% TiO ₂ -PVDF-HFP 32	0.75	91.6	100	149.0	40.0	99.99
^b Fluorinated polytriazole	2.70	-	-	162.0	42.0	99.95
^c Polystyrene ³¹	1.15	77.5	120	150.2	63.2	99.99
E-CNT3 of this study	1.20	89.4	88	150.4	48.5	99.98

Table S1. Properties and DCMD performance using various types of electrospun membranes. Feed/permeate temperature: 60/20°C. 3.5 wt% NaCl feed solutions.

^a Feed/permeate temperature: 80/17°C.

^b Feed/permeate temperature: 60/22°C. Feed: real sea water.

^c Feed/permeate temperature difference (Δ T): 55°C.

* Concentration of particles was based on weight of polymer.

Supplementary Table S2. Compositions of dope solutions for the electrospun membranes fabricated in this study.

Electrospun membranes	PH (wt%)	DMF (wt%)	Acetone (wt%)	CNTs (wt% to PH) ⁽¹⁾
E-PH	20	64	16	0
E-CNT0.5	20	64	16	0.5
E-CNT1	20	64	16	1
E-CNT2	20	64	16	2
E-CNT3	20	64	16	3

⁽¹⁾ Weight percentage (wt%) of CNTs to polymer (PH).