Gene	Melt temperature $(T_m, °C)$	Standard curve slope	Amplification efficiency (%)	R^2	Standard curve Y intercept
Atrogin1	86	-3.415	96.2	0.998	18.607
HIF1α	83	-3.006	115.1	0.996	23.274
MuRF1	87.5	-3.294	101.2	0.999	20.670
PGC1a	79	-3.435	95.5	0.987	21.282
Rps18	88	-3.435	95.5	0.999	16.311

SUPPLEMENTARY TABLE S3. QUANTITATIVE POLYMERASE CHAIN REACTION VALIDATION

Melt-curve analysis revealed a single specific product at the temperature for all primers listed. Standard curves generated by plotting Cq values against different template concentrations (undiluted, 10-, 100-, 1000-, and 100, 000-fold dilutions) were used to calculate amplification efficiencies. The slope, y-intercept, and R^2 value of the regression line for the standard curves are shown. Percentage amplification efficiency was calculated using (E-1)×100%, where $E = 10^{-1/slope}$.