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Appendix A: Comparison of Principal Stratification

and Controlled Effects Frameworks for Transport For-

mulas

Our transport formula fits within the principal stratification framework, and at the

end of this appendix we show how the formula can be modified to fit within the

controlled direct effects framework. These frameworks lend themselves to transport

formulas because they use causal parameters describing how vaccine efficacy varies

over subgroups defined by the biomarker candidate surrogate endpoint response, for

the former framework with the “happenstance” value of the biomarker and for the

latter with the biomarker set to a given constant value. In contrast, the natural direct

effects framework does not consider biomarker-specific vaccine efficacy, and therefore

does not provide a means for mathematically translating how a change of the biomarker

distribution in the new setting leads to an overall treatment efficacy that differs from

that in the original setting. The Prentice framework could be used, with appeal that

the bridging is based on observable subgroups, whereas in contrast the subgroups for

the principal stratification and controlled effects approaches are challenging to identify

and membership in the subgroups may not be directly measurable. Nevertheless, the

principal stratification and controlled effects frameworks are useful because it may be

difficult to express interpretable bridging functions in terms of statistical parameters,

and the absence of interpretable bridging assumptions hinders the ability to conduct

sensitivity analysis.

The context informs the pros and cons of using the principal versus controlled

effects framework. The latter framework may be preferred if plausible identifiability

assumptions exist, as the bridging assumptions needed for believing that intervened

effects in one setting would carry over to another may be clearer and more plausible

than those needed for believing that un-intervened principal effects would carry over,
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given that the happenstance principal strata subgroups will be different in the original

and new settings. However, in many applications including our motivating example the

controlled effects framework cannot be used whereas the principal effects framework

can, and we therefore focus most of the manuscript on the principal effects framework.

In general the controlled effects framework may apply if there are no or few clinical

events before the intermediate biomarker response endpoints S are measured. Other-

wise it may be difficult to use, because the definition of the controlled effects parameters

requires setting all subjects to not experience the clinical endpoint before S is measured.

This may be inconceivable. In addition, the controlled effects framework appears in-

applicable in the scenario of our motivating application wherein S does not vary in the

placebo/control group, a scenario we named Case Constant Biomarker (CB) (Gilbert

and Hudgens, 2008). We have argued that controlled effects parameters cannot be

meaningfully defined in Case CB (Gilbert, Hudgens, Wolfson, 2011), i.e., it is difficult

to justify the existence of a structural causal model (Pearl, 2009) defining interventions

on the biomaker. In addition, in Case CB the two central difficulties with the princi-

pal stratification approach are ameliorated, with identifiability achieved under weaker

assumptions and the set of subjects within the principal strata of interest becoming

known. Moreover, Case CB is prevalent and important– for example present in all

vaccine efficacy trials that enroll subjects never previously infected with the pathogen

under study, and such vaccine efficacy trials have been of great significance for public

health.

We conclude this Supplement by describing how the principal stratification trans-

port formula of the main article may be changed from being based on the vaccine effi-

cacy curve to being based on controlled effects vaccine efficacy. Unlike principal strat-

ification that statistically controls intermediate variables by conditioning on them, the

controlled direct and indirect effects framework experimentally controls intermediate

variables by physical control/manipulation/intervention. See Robins and Greenland
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(1992) and Pearl (2001) for a rigorous exposition. To use this framework for the trans-

port problem, we define T (z, s1) to be the potential outcome T under joint assignment

of Z to z, S(1) to s1, and T to exceed τ , and similarly define V (z, s1). Then the

“intervened” or controlled effects mark-specific vaccine efficacy curve is defined as

V Econt(t, v|s1, x) ≡ 1−
P (T (1, s1) ≤ t, V (1, s1) = v|X = x)

P (T (0, s1) ≤ t, V (0, s1) = v|X = x)
.

Substituting V E(t, v|s1, x) with V Econt(t, v|s1, x) into the transport formula of the

main article yields the controlled effects version of the transport formula, where now

φ(t, v|s1, x) is modified to φcont(t, v|s1, x) ≡ V E∗cont(t, v|s1, x)/V Econt(t, v|s1, x). An

advantage of this approach is that φcont(t, v|s1, x) may be easier to specify because it

is in terms of experimentally defined subgroups.

Appendix B: Selection of the Re-Calibration Vari-

ables X, S(1), and V from the RV144 HIV-1 Vaccine

Efficacy Trial and Details of Estimation of the Terms

in the Immuno-Bridging Transport Formula

This appendix describes how each of the terms in the transport formula [equation (3)

in the main article] are estimated for the application in the main article.

To apply the immuno-bridging transport formula, we need to estimate the input

parameter V E(t, v|s1, x) based on the analysis of the RV144 HIV-1 vaccine efficacy

trial data. The first task is determining the HIV-1 genetic mark variable V to use.

Our approach considers the set of binary marks V i defined as the indicators at each

amino acid (AA) position i in the HIV-1 Envelope protein that were pre-specified

as potentially relevant for protective antibodies. Specifically, V i is the indicator of

whether the AA at position i in an HIV-1 infected subject’s virus sampled at diagnosis

of infection mismatches the AA of a specified HIV-1 sequence contained in the vaccine

at the same AA position (Rolland and Edlefsen et al., 2012). Three sets of indicators
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are defined corresponding to the three HIV-1 vaccine sequences, totaling eight AA

positions. For each indicator V i, we tested the null hypothesis H0 : V E(t = 39, V i =

1) = V E(t = 39, V i = 0) using a cause-specific Cox model (Lunn and McNeil, 1995)

and selected all indicators such that the 1-sided p-value for testing H0 versus the

alternative H1 : V E(t = 39, V i = 1) < V E(t = 39, V i = 0) was below 0.025.

This analysis yielded one AA position, number 169 in the V2 portion of HIV-1

Envelope, with 1-sided p = 0.02 and V̂ E(t = 39, V i = 1) = −0.55 (95% CI = -2.58 to

0.33) and V̂ E(t = 39, V i = 0) = 0.48 (95% CI = 0.18 to 0.66). This result was reported

in Rolland and Edlefsen et al. (2012), with identical results for the two subtype AE

HIV-1 sequences contained in the vaccine. The AA in the vaccine was Lysine (K); thus

we take the mark V to be the indicator of non-K at position 169. Because the confidence

interval for V E(t = 39, V i = 1) is wide and the data are consistent with no vaccine

efficacy against V i = 1 HIV, for the formula we use V̂ E(t = 39, V i = 1|s1, x) = 0 for all

s1, x and use the available estimates of V̂ E(t = 39, V i = 0|s1, x), determined using the

approach described below. Follow-up functional experiments supported that antibodies

to 169K HIV-1 could be a mechanism of protection Liao et al. (2013), which is an

important piece of evidence for specifying and evaluating the bridging assumptions.

Functional experimentation of Liao et al. (2013) supported that a constellation of

amino acid residues surrounding position 169 is a vulnerable epitope target of HIV-1

vaccines, with a K at site 169 required for immunological recognition (introducing a

mutation K to V abrogated immunological recognition).

With V = I(Not K at position 169), next we need an approach for picking the im-

mune response variable S(1) to use in the curve V E(t, v|s1, x). Our approach considers

the six primary immune response variables that were measured in vaccine recipients

at the Month 6.5 visit after randomization (time point τ in the main article) and were

assessed for their association with the subsequent HIV-1 infection through 39 months

after randomization (Haynes et al., 2012). We select any variable among these six
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such that V E(t = 39, v = 0|s1) significantly increases in s1, based on a 1-sided p-value

< 0.05. To estimate V E(t = 39, v = 0|s1), we use a multinomial logistic regression

model for mriskz(t = 39, v = 0|s1) for z = 0, 1 under the assumption of average

causal necessity (i.e., V E(t = 39, v = 0|s1 = 0) = 0), which yields identifiability of

V E(t = 39, v = 0|s1) under the multinomial logistic model and the typical assumptions

in randomized clinical trials stated in Section 2.1, plus the No-early-VE assumption

with τ = Month 6.5. Web Appendix D provides details of this modeling approach.

Of the six variables S(1) that were assessed, one qualified (1-sided p = 0.035 for

variation of V E(t = 39, v = 0|s1) in s1)– the magnitude of binding antibodies to the

V1V2 portion of a gp70-scaffolded HIV-1 envelope protein. The binding antibodies

were measured both with ELISA (Haynes et al., 2012) and binding antibody multiplex

array (BAMA) (Zolla-Pazner et al., 2014), yielding very similar vaccine efficacy curve

estimates, and we base the bridging on the BAMA assay because it is planned for use

in the HVTN 100 Phase IIa trial in South Africa.

Next, we need a strategy for determining the baseline covariates X to use in the

curve V E(t = 39, v = 0|s1, x). Our approach systematically assesses several baseline

covariates for whether V E(t = 39, v = 0|s1, x) varies in x, selecting covariates with

1-sided p-value < 0.05 for such effect modification. We assessed age, gender, HLA

type, Fc-γ receptor genotype, Fc-α receptor genotype, and behavioral risk score, again

under the average causal necessity assumption that is now expressed as V E(t = 39, v =

0|s1 = 0, x) = 0% for all x. We found that the V E curve varied with a single nucleotide

polymorphism (SNP) (rs114945036) located at position 126 in intron 2 of the Fc-γ

receptor 2C gene locus. Figure 1 in the main article shows the estimated V E(t =

39, v = 0|s1, x) curves with 95% pointwise confidence intervals for the two subgroups

carrying CC or carrying CT or TT (CT/TT) at the SNP position, where x = 0 denotes

CC and x = 1 denotes CT/TT. Related to this result, recently this SNP was reported to

significantly modify 169-matched vaccine efficacy in RV144 (estimated V E(t = 39|x =
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CC) = 0.15 in the CC subgroup versus estimated V E(t = 39|x = CT/TT ) = 0.91 in

the CT/TT subgroup, p = 0.05 for different V E after family-wise error rate multiplicity

correction) (Li et al., 2014).

We next consider how to estimate mrisk∗

0
(t = 39, v|s1, x) for each v, x ∈ {0, 1},

which is accomplished by obtaining separate estimates of wInc(t|x), wV (t, v|x), and

mrisk0(t, v|s1, x) according to the strategy laid out in the main article. Estimating the

numerator of wInc(t|x) is accomplished using data from placebo recipients at-risk at 6

months after enrollment into the recent HVTN 503 preventive HIV-1 vaccine efficacy

trial in South Africa (Gray et al., 2014), which studied a similar population as will

be studied in HVTN 702. From the HVTN 503 data we estimate risk∗

0
(t = 39) =

P (T (0∗) ≤ 39), the numerator of wInc(t = 39|x), by the Kaplan-Meier estimator,

yielding an estimate of 0.121. Because data on the host genotype X were not collected

in HVTN 503, we set r̂isk
∗

0
(t = 39|x = 0) = r̂isk

∗

0
(t = 39|x = 1) = 0.121, which provide

an estimate of the numerator. The denominator of wInc(t = 39|x) is estimated based

on RV144 placebo recipients at-risk at 6 months after enrollment using the inverse

probability weighted Kaplan-Meier estimator, yielding r̂isk0(t = 39|x = 0) = 0.00696

and r̂isk0(t = 39|x = 1) = 0.0119.

Next, we estimate wV (t = 39, v|x), and we first consider estimation of the denomi-

nator risk0(t, v|x)/risk0(t|x). This term can be estimated based on the RV144 data. In

particular, we estimate each risk0(t, v|x) for v, x ∈ {0, 1} by analyzing RV144 placebo

recipients at-risk at 6 months, applying the Aalen and Johansen (1978) nonparametric

maximum likelihood estimator extended to use inverse probability weighting to account

for the fact that X was measured in a random sample that depended on subject charac-

teristics (Haynes et al., 2012). This yields estimates r̂isk0(t = 39, v|x) of 0.0047, 0.0078,

0.0011, and 0.0010 for v, x = (0, 0), (0, 1), (1, 0), (1, 1), such that r̂isk0(t = 39, v = 0) =

0.0047 + 0.0078 = 0.0125 and r̂isk0(t = 39, v = 0) = 0.0011 + 0.0010 = 0.0021. This

provides estimates for each denominator risk0(t = 39, v|x)/risk0(t = 39|x) equal to
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0.810, 0.886, 0.190, and 0.114 for v, x = (0, 0), (0, 1), (1, 0), (1, 1).

However, for estimating the numerator, we use genomic epidemiological data on

HIV-1 sequences in South Africa (as elaborated below), and for consistency in approach

for estimation of the denominator, we adjust the above estimates to account for genomic

epidemiological data on HIV-1 sequences in Thailand. This is advantageous not only

for consistency but also because the database of HIV-1 sequences is much larger than

the number of HIV-1 infection endpoint cases available in RV144 for estimation.

For both Thailand and South Africa the Los Alamos HIV-1 Sequence database

(www.hiv.lanl.gov) is used. However, the database does not include information on the

host genotype X , such that it yields estimates of risk0(t, v)/risk0(t) and risk∗

0
(t, v)/

risk∗

0
(t) but not of the x-specific relative prevalences. To solve this issue for the de-

nominator (RV144), we first consider the equality

risk0(t, v)

risk(t)
= D−1

[
P (X = 0)risk0(t|x = 0)

risk0(t, v|x = 0)

risk0(t|x = 0)

+ P (X = 1)risk0(t|x = 1)
risk0(t, v|x = 1)

risk0(t|x = 1)

]
(1)

with

D ≡ P (X = 0)risk0(t|x = 0) + P (X = 1)risk0(t|x = 1).

Next, we assume that the relative prevalences to solve for in (1) have the same ratio

as observed with the initial estimates from RV144 as described above:

risk0(t, v|x = 1)

risk0(t|x = 1)
/
risk0(t, v|x = 0)

risk0(t|x = 0)
=

=
riskRV 144

0
(t, v|x = 1)

riskRV 144
0 (t|x = 1)

/
riskRV 144

0
(t, v|x = 0)

riskRV 144
0 (t|x = 0)

≡ ratioRV144(v). (2)

Plugging (2) into (1), we solve

risk0(t, v|x = 0)

risk0(t|x = 0)

=
risk0(t, v)

risk(t)

P (X = 0)risk0(t|x = 0) + P (X = 1)risk0(t|x = 1)

P (X = 0)risk0(t|x = 0) + P (X = 1)risk0(t|x = 1)ratioRV144(v)
(3)
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and then also

risk0(t, v|x = 1)

risk0(t|x = 1)
= ratioRV144(v)

risk0(t, v|x = 0)

risk0(t|x = 0)
. (4)

Based on the relative fraction of all available HIV-1 sequences (n = 207) of infected

individuals in Thailand from 2003 to 2009 (during the period of RV144 follow-up), 72%

of sequences have a v = 0 (vaccine-matched), from which we set r̂isk0(t = 39, v = 0)/

r̂isk0(t = 39) = 0.72 and r̂isk0(t = 39, v = 1)/r̂isk0(t = 39) = 0.28. Based on

the above estimates we have 0.886/0.810=1.094 and 0.114/0.190=0.60 as estimates of

ratioRV144(0) and ratioRV144(1), respectively, and the other terms in (3) and (4) also

have estimates. The formulas yield answers

r̂isk0(t = 39, v = 0|x = 0)

r̂isk0(t = 39|x = 0)

= 0.72
[0.72 ∗ (0.0047 + 0.0011) + 0.28 ∗ (0.0078 + 0.0010)]

[0.72 ∗ (0.0047 + 0.0011) + 0.28 ∗ (0.0078 + 0.0010) ∗ 1.094]
= 0.696

r̂isk0(t = 39, v = 0|x = 1)

r̂isk0(t = 39|x = 1)
= 1.094 ∗ 0.696 = 0.761

r̂isk0(t = 39, v = 1|x = 0)

r̂isk0(t = 39|x = 0)

= 0.28
[0.72 ∗ (0.0047 + 0.0011) + 0.28 ∗ (0.0078 + 0.0010)]

[0.72 ∗ (0.0047 + 0.0011) + 0.28 ∗ (0.0078 + 0.0010) ∗ 0.60]
= 0.329

r̂isk0(t = 39, v = 1|x = 1)

r̂isk0(t = 39|x = 1)
= 0.60 ∗ 0.329 = 0.197.

Next, we estimate the numerator of wV (t = 39, v|x), risk∗

0
(t = 39, v|x)/risk∗

0
(t =

39|x), based on the relative fraction of all available HIV-1 sequences (n = 254) of

infected individuals in South Africa from 2008 to 2013 in the same Los Alamos HIV-1

Sequence database. This yields an overall fraction 0.60 with v = 0 (vaccine-matched),

which estimates risk∗

0
(t = 39, v = 0)/risk∗

0
(t = 39). Because no data are available

about how this prevalence depends on X∗ in South Africans, we assume homogeneity

across the two X∗ subgroups, such that r̂isk
∗

0
(t = 39, v|x)/r̂isk

∗

0
(t = 39|x) = 0.60, 0.60,

0.40, and 0.40 for v, x = (0, 0), (0, 1), (1, 0), and (1,1), respectively.
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Supplemental Table 1. Estimation of Terms wV (t = 39, v|x) in the Transport Formula
for Bridging RV144 to Estimation of V E∗(t = 39) in HVTN 702

(v, x) Level
Term (0,0) (0,1) (1,0) (1,1)
ŵV (t = 39, v|x) numer.

r̂isk
∗

0
(t = 39, v|x)/risk∗

0
(t = 39|x) 0.60 0.60 0.40 0.40

ŵV (t = 39, v|x) denom.

r̂isk0(t = 39, v|x)/r̂isk0(t = 39|x) 0.696 0.761 0.329 0.197

ŵV (t = 39, v|x) 0.862 0.788 1.216 2.030

Supplemental Table 1 shows the final results for estimation of wV (t = 39, v|x).

Estimates of the term mrisk0(t, v|s1, x) for v = 0 were already obtained via the

method used to estimate the V E curve that was obtained via separate estimates of

mrisk1(t = 39, v = 0|s1, x) and mrisk0(t = 39, v = 0|s1, x) (Figure 1 of the main

article). Lastly, because of the choice to set V̂ E(t = 39, v = 1|s1, x) = 0 for all

s1 and x, we set ̂mrisk0(t = 39, v = 1|s1, x) = ̂mrisk1(t = 39, v = 1|s1, x), where

̂mrisk1(t = 39, v = 1|s1, x) for each x = 0, 1 separately was obtained via structural

multinomial logistic regression as described in Web Appendix D.

Appendix C: Proof of the Transport Formula in the

Main Article (Under No-Early-VE)

The proof of the transport formula in expression (3) of the main article is simple; it is

based on averaging and invoking the No-early-VE assumption.

For fixed t ∈ (τ, τ1], write

V E∗d(t) = P (T (1∗) ≤ t)− P (T (0∗) ≤ t)

= P (T (1∗) ≤ t|T (1∗) > τ)P (T (1∗) > τ) + P (T (1∗) ≤ t|T (1∗) ≤ τ)P (T (1∗) ≤ τ)

− [P (T (0∗) ≤ t|T (0∗) > τ)P (T (0∗) > τ) + P (T (0∗) ≤ t|T (0∗) ≤ τ)P (T (0∗) ≤ τ)]

= P (T (1∗) ≤ t|T (1∗) > τ)P (T (1∗) > τ)− P (T (0∗) ≤ t|T (0∗) > τ)P (T (0∗) > τ)
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= [P (T (1∗) ≤ t|T (1∗) > τ, T (0∗) > τ)− P (T (0∗) ≤ t|T (1∗) > τ, T (0∗) > τ)]

×P (T (0∗) > τ)

=
∫ ∫ ∫

[P (T (1∗) ≤ t, V (1∗) = v|s1, x)− P (T (0∗) ≤ t, V (0∗) = v|s1, x)] dvdF
∗(s1|x)dH

∗(x)

×P (T (0∗) > τ)

= P (T (0∗) > τ)
∫ ∫ ∫ [

−1 +
P (T (1∗) ≤ t, V (1∗) = v|s1, x)

P (T (0∗) ≤ t, V (0∗) = v|s1, x)

]

×P (T (0∗) ≤ t, V (0∗) = v|s1, x)dvdF
∗(s1|x)dH

∗(x)

= −P (T (0∗) > τ)
∫ ∫ ∫

V E(t, v|s1, x)φ(t, v|s1, x)mrisk∗

0
(t, v|s1, x)dvdF

∗(s1|x)dH
∗(x)

where the third and fourth equalities both follow from the No-early-VE assumption

(which states that T (1∗) > τ if and only if T (0∗) > τ).

Appendix D: Constructing Bootstrap Confidence In-

tervals for V E∗(t = 39)

To construct a bootstrap confidence interval for the estimate of V E∗(t = 39), we re-

sample RV144 data stratified on treatment assignment for estimation of mrisk0(t =

39, v|s1, x), V E(t, v|s1, x), and F ∗(s1|x); resample HVTN 503 data stratified on treat-

ment assignment for estimation of P (T (0∗) ≤ 39), P (T (0∗) > τ), and risk∗

0
(t = 39|x);

resample from a Bernoulli distribution with success probability P (X∗ = 1) = 0.49

and variance 0.49(1 − 0.49)/131 for estimation of H∗(x) (131 subjects were used for

estimating the prevalence of the CT/TT genotype in South Africans; Lassauniere and

Tiemessen, 2014); and resample from the 254 South African individuals with an HIV-1

sequence in the Los Alamos National Laboratory HIV-1 sequence database for estima-

tion of risk∗

0
(t = 39, v|x)/risk∗

0
(t = 39|x), the numerator of wV (t = 39, v|x).
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Appendix E: Estimation of V E(t, v|s1, x) from the Pre-

vious Efficacy Trial RV144

We describe how

V E(t, v|s1, x) = 1−
P (T (1) ≤ t, V (1) = v|T (1) > τ, T (0) > τ, S(1) = s1, X = x)

P (T (0) ≤ t, V (0) = v|T (1) > τ, T (0) > τ, S(1) = s1, X = x)

and

V E(t, v|s1) = 1−
P (T (1) ≤ t, V (1) = v|T (1) > τ, T (0) > τ, S(1) = s1)

P (T (0) ≤ t, V (0) = v|T (1) > τ, T (0) > τ, S(1) = s1)

are estimated from RV144 data for a fixed failure time t, fixed binary mark v = 0 or

1, and fixed value of a univariable baseline covariate X = x.

Consider three different possible infection outcomes at time t among placebo or

vaccine recipients:

(i) Not infected: T (z) > t

(ii) Infected by t with type V = 0

(iii) Infected by t with type V = 1.

We assume a multinomial logistic regression model:

log
P (T (z) ≤ t, V (z) = v|T (1) > τ, T (0) > τ, S(1) = s1, X = x)

P (T (z) > t|T (1) > τ, T (0) > τ, S(1) = s1, X = x)
= αzv + βzvs1 + γzvx,

for z = 0, 1, v = 0, 1.

To estimate αzv, βzv, and γzv, we fit two logistic models separately: one using data

from categories (i) and (ii) to model

log
P (T (z) ≤ t, V (z) = 0|T (1) > τ, T (0) > τ, S(1) = s1, X = x)

P (T (z) > t|T (1) > τ, T (0) > τ, S(1) = s1, X = x)
= αz0 + βz0s1 + γz0x,

assuming α00 = α01 (Average Causal Necessity, ACN) (Part I), and the other using

data from categories (i) and (iii) to model

log
P (T (z) ≤ t, V (z) = 1|T (1) > τ, T (0) > τ, S(1) = s1, X = x)

P (T (z) > t|T (1) > τ, T (0) > τ, S(1) = s1, X = x)
= αz1 + βz1s1 + γz1x
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assuming α01 = α11 (ACN) (Part II).

We then estimate

P (T (z) > t|T (1) > τ, T (0) > τ, S(1) = s1, X = x)

=
1

1 + exp(αz0 + βz0s+ γz0x) + exp(αz1 + βz1s+ γz1x)
,

and

P (T (z) ≤ t, V (z) = 0|T (1) > τ, T (0) > τ, S(1) = s1, X = x)

= P (T (z) > t|T (1) > τ, T (0) > τ, S(1) = s1, X = x)× exp(αz0 + βz0s+ γz0x),

P (T (z) ≤ t, V (z) = 1|T (1) > τ, T (0) > τ, S(1) = s1, X = x)

= P (T (z) > t|T (1) > τ, T (0) > τ, S(1) = s1, X = x)× exp(αz1 + βz1s+ γz1x).

In the RV144 example, we also make the additional assumption that V E(t = 39, v =

1|s1, x) = 0 for all s1 and x, as discussed above. For a rare disease such as the HIV-1

infection endpoint in RV144, this corresponds approximately to α01 = α11 and β01 = β11

and γ01 = γ11. To incorporate this extra assumption, we modify Part II by fitting a

logistic regression model to Z = 1 (vaccine recipients) from categories (i) and (iii) to

estimate α11, β11, γ11, and then set α̂01 = α̂11, β̂01 = β̂11 and γ̂01 = γ̂11.

Appendix F: Application of the Transport Formula

to Go/No-Go Decisions for Which Candidate Treat-

ments to Advance to Efficacy Trials

A common issue in many biomedical research fields is that several candidate treatments

for efficacy testing are available, but due to resource constraints only a small number

of the candidates that are studied in Phase I/II trials can be advanced to Phase III

efficacy trials that directly assess treatment efficacy/vaccine efficacy. For example, in

the HIV vaccine field, over a dozen candidate HIV-1 vaccine regimens are being tested
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in Phase I/IIa clinical trials in Southern Africa, and based on a set of immune response

biomarker endpoints in these trials, the most promising regimens will be advanced to

the HVTN 701 efficacy trial in Southern Africa. The putative surrogate endpoints

used for ranking the regimens for advancement are the immune response endpoints

that were effect modifiers of vaccined efficacy [modifying V E(t|s1) and V E(t, v|s1) or

V E(t|s1, x) and V E(t, v|s1, x)] in the RV144 trial, where subgroups with higher marker

levels had higher vaccine efficacy.

The transport formula can be applied based on the aggregated Phase I/IIa trial data

combined with the other types of data sources described in the illustrative application of

Section 5, to obtain an estimate of V E∗(t) for each candidate HIV-1 vaccine regimen.

Then, the regimen with the highest estimated V E∗(t) is assigned the highest rank

of 1, the regimen with the second highest estimated V E∗(t) is assigned rank 2, and

so on. The top-ranked vaccine regimen would be priortized for advancement to the

efficacy trial, and according to their ranks other vaccine regimens may also be advanced,

where these decisions would account for additional factors such as the precision of

the estimation, safety data, and the distinctiveness of the immune response endpoint

distributions among the different vaccine regimens.

Appendix G: The Transport Formula Relaxing No-

Early-VE to No-Early-Harm Monotonicity

We now develop a new version of the transport formula (3) provided in the main article,

replacing the No-early-VE assumption (that P (I(T (1) > τ) = I(T (0) > τ)) = 1) with

the weaker No-early-harm assumption (that P (T (1) ≤ τ, T (0) > τ) = 0). This relaxed

assumption is also used for the new setting. The No-early-harm assumption is quite

plausible for studies where the vaccine or treatment has beneficial overall efficacy.

As noted in the main article, under No-early-harm the early-protected (EP) prin-

cipal stratum may not be empty. Therefore, we need to consider conditional vac-
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cine efficacy parameters in the EP principal stratum as well as in the early-always-

survivors (EAS) principal stratum that was the focus of the main article. We define

V EEP (t, v|s1, x) ≡ 1 − P (T (1) ≤ t, V (1) = v|T (1) > τ, T (0) ≤ τ, S(1) = s1, X = x)/

P (T (0) ≤ t, V (0) = v|T (1) > τ, T (0) ≤ τ, S(1) = s1, X = x) and mriskEP
0

(v|s1, x) ≡

P (V (0) = v|T (1) > τ, T (0) ≤ τ, S(1) = s1, X = x). The latter term does not depend

on t because it conditions on T (0) ≤ τ .

We develop a transport formula for V Ed∗(t) ≡ P (T (1∗) ≤ t) − P (T (0∗) ≤ t), as

well as for V E∗(t) = 1 − P (T (1∗) ≤ t)/P (T (0∗) ≤ t). For t ∈ (τ, τ1], define “bridging

assumption functions”

φ(t, v|s1, x) ≡ V E∗(t, v|s1, x)/V E(t, v|s1, x), (5)

φEP (t, v|s1, x) ≡ V E∗EP (t, v|s1, x)/V EEP (t, v|s1, x), (6)

φ(τ, v|x) ≡ V E∗(τ, v|x)/V E(τ, v|x). (7)

For the new transport formula we make the same assumptions as used for the

original formula except No-early-VE and No-early-VE* for the old and new settings

are replaced with No-early harm and No-early-harm* for the old and new settings,

respectively. (Here No-early-harm* is P (T (1∗) ≤ τ, T (0∗) > τ) = 0.) We also make

the following additional assumptions:

1. The two additional bridging assumption functions φEP (t, v|s1, x) and φ(τ, v|x)

are known and correctly specified

2. V EEP (t, v|s1, x) and V E(τ, v|x) are estimated consistently based on the original

trial

3. F ∗EP (s1|x), H
∗EP (x), and H∗(x) are estimated consistently from the Phase I/II

trial

4. mrisk∗EP
0

(v|s1, x) is estimated consistently
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5. risk∗

0
(τ, v|x) is estimated consistently

With the principal strata proportions p∗EAS ≡ P (T (1∗) > τ, T (0∗) > τ) and p∗EP ≡

P (T (1∗) > τ, T (0∗) ≤ τ), No-early-harm* has the following implications:

p∗EAS = P (T (0∗) > τ), V Ed∗(τ) = −p∗EP ,

P (T (0∗) > τ |T (1∗) > τ) =
[
1− V Ed∗(τ)/P (T (0∗) > τ)

]
−1

.

Using these identities, straightforward calculation yields

V Ed∗(t) = V Ed∗EAS(t)p∗EAS + V Ed∗EP (t)p∗EP

= V Ed∗EAS(t)P (T (0∗) > τ)− V Ed∗(τ)V Ed∗EP (t) for t ∈ (τ, τ1] (8)

where

V Ed∗EAS(t) ≡ P (T (1∗) ≤ t|T (1∗) > τ, T (0∗) > τ)− P (T (0∗) ≤ t|T (1∗) > τ, T (0∗) > τ)

V Ed∗EP (t) ≡ P (T (1∗) ≤ t|T (1∗) > τ, T (0∗) ≤ τ)− P (T (0∗) ≤ t|T (1∗) > τ, T (0∗) ≤ τ).

Algebra then yields, for t ∈ (τ, τ1],

V Ed∗EAS(t) = −
∫ ∫ ∫

φ(t, v|s1, x)V E(t, v|s1, x)

×mrisk∗

0
(t, v|s1, x)dvdF

∗(s1|x)dH
∗(x), (9)

V Ed∗EP (t) = −
∫ ∫ ∫

φEP (t, v|s1, x)V EEP (t, v|s1, x)

×mrisk∗EP
0

(v|s1, x)dvdF
∗EP (s1|x)dH

∗EP (x), (10)

V Ed∗(τ) ≡ −
∫ ∫

φ(τ, v|x)V E(τ, v|x)risk∗

0
(τ, v|x)dvdH∗(x). (11)

The principal effects “general immuno-bridging transport formula” for additive-difference

V Ed∗(t) is defined by (8) with terms (9)–(11) substituted into (8).

In the main article, the No-early-VE assumption implied the second term of (8),

V Ed∗(τ)V Ed∗EP (t), was zero, but now under No-early-harm it may be non-zero. It is

generally useful to evaluate the plausible magnitude of this term compared to the first
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term V Ed∗EAS(t)P (T (0∗) > τ), as it may be negligible if p∗EAS = P (T (0∗) > τ) is

much larger than p∗EP = −V Ed∗(τ), which can easily be checked given that p∗EAS and

p∗EP can be estimated by empirical fractions under the No-early-harm assumption.

If the second term is deemed potentially non-negligible, then retaining it and using

the full formula (8) requires specifying the two extra φ(·) bridging functions in (10)

and (11), where now the perfect bridging assumption is expressed as φ(·) = φEP (·) =

φ(·) = 1. The following additional terms also need to be estimated: V EEP (t, v|s1, x),

mrisk∗EP
0

(v|s1, x), F
∗EP (s1|x), H

∗EP (x), V E(τ, v|x), risk∗

0
(τ, v|x), and H∗(x).

We now consider how to estimate the extra terms in the formula that exist when

relaxing No-early-VE. Under No-early-VE, F ∗(s1|x) and H∗(x) could be directly esti-

mated from the Phase I/II trial via the identities F ∗(s1|x) = F ∗1(s1|x) ≡ P (S(1∗) ≤

s1|T (1
∗) > τ, x) and H∗(x) = H∗1(x) ≡ P (X∗ ≤ x|T (1∗) > τ). Under the weaker

assumption No-early-harm*, however,

F ∗(s1|x) = [1− θ(τ, x)]F ∗1(s1|x) + θ(τ, x)F ∗EP (s1|x), (12)

where θ(τ, x) ≡ V Ed∗(τ, x)/P (T (0∗) > τ |x) may differ from zero. Thus estimation of

F ∗(s1|x) requires a sensitivity analysis to deal with the partial non-identifiability of

F ∗EP (s1|x). One approach to a sensitivity analysis specifies a pattern mixture model

linking the conditional distributions of S(1∗) in the EAS and EP subgroups that is

indexed by a fixed sensitivity parameter, and repeats the analysis for a range of values

of the sensitivity parameter [e.g., as done in Jemiai et al. (2007)]. Such a sensitivity

analysis would require estimating V Ed∗(τ, x)/P (T (0∗) > τ |x). If the placebo group in

the Phase I/II trial is small then there may be few data points for direct estimation

of either V Ed∗(τ, x) or P (T (0∗) > τ |x), again highlighting the major advantage in

settings where No-early-VE can be reasonably assumed.

Under No-early-harm*,H∗(x) = P (X∗ ≤ x|T (0∗) > τ) and dH∗EP (x) = [V Ed∗(τ, x)/
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V Ed∗(τ)]dH∗(x), such thatH∗(x) andH∗EP (x) can be estimated by estimating P (X∗ ≤

x|T (0∗) > τ) and V Ed∗(τ, x)/V Ed∗(τ) directly from the Phase I/II trial. If the placebo

group in the Phase I/II trial is small, then the approximation P (X∗ ≤ x|T (0∗) >

τ) ≈ P (X∗ ≤ x|T (1∗) > τ) may be considered to improve precision for estimating

P (X∗ ≤ x|T (0∗) > τ), which should be reasonable in rare event trials.

If No-early-VE is relaxed to No-early-harm, then it is also necessary to estimate

V EEP (t, v|s1, x). Given non-identifiability of the early-protected subgroup and the

fact that this subgroup will typically be small, in general it is challenging to es-

timate V EEP (t, v|s1, x) with adequate precision. One practical approach assumes

V EEP (t, v|s1, x) =

V E(t, v|s1, x) in order to estimate V EEP (t, v|s1, x) with V̂ E(t, v|s1, x). This approach

could be augmented with a sensitivity analysis, for example by defining a sensitivity

parameter ν ≡ V E(t, v|s1, x)/V EEP (t, v|s1, x) and repeating the analysis with ν vary-

ing around the default setting v = 1. The sensitivity analysis approach should account

for any modeling assumptions employed for estimating V E(t, v|s1, x).
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