Inference of transmission network structure from HIV phylogenetic trees

Federica Giardina^{1,2*}, Ethan Obie Romero-Severson², Jan Albert^{3,4}, Tom Britton¹, Thomas Leitner²

1 Department of Mathematics, Stockholm University, Stockholm, Sweden 2 Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 3 Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden 4 Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden

* E-mail: federica@math.su.se

Supplementary information

Probability to escape infection

We calculated the probability to escape infection from a neighbour, π , as the exponential of the total infectious pressure. Let X denote the time to diagnosis (or death from AIDS if never diagnosed) and assume that X follows an exponential distribution with rate parameter γ , i.e. $X \sim Exp(\gamma)$. In the first model specification (constant infectivity) π can be written as $\pi = \mathbb{E}[Exp(-\lambda X)]$ where λ is the constant transmission rate. Therefore, $\pi = \mathbb{E}[Exp(-\lambda X)] = \int_0^{+\infty} \gamma e^{-\gamma x} (e^{-\lambda x}) dx = \frac{\gamma}{\gamma + \lambda}$.

In the second model specification, which included stage-varying infectivity, let t_1 denote the deterministic time spent in the first stage (acute phase), T_2 the random time spent in the second stage (chronic phase), represented by an exponential random variable with rate parameter β , i.e. $T_2 \sim Exp(\beta)$, and t_3 the time spent in the pre-AIDS stage. Here, the transmission rates in each of the three infection stages are λ_1, λ_2 and λ_3 , respectively. Thus, the infectious pressure has a different expression depending on when the diagnosis occurs (in the acute, chronic or pre-AIDS stage). The probability π is the mean of the infectious pressure calculated over X and T_2 . We have: $\pi = \mathbb{E}[Exp(-\lambda_1 \mathbb{1}_{X < t_1} - (\lambda_1 t_1 + \lambda_2 (X - t_1)) \mathbb{1}_{t_1 < X < t_1 + T_2} - (\lambda_1 t_1 + \lambda_2 T_2 + \lambda_3 (X - t_1 T_2[1] \mathbb{1}_{X>t_1+T_2} =$ $=\int_0^{t_1} \gamma e^{-\gamma x} (e^{-\lambda_1 x}) dx + \int_0^{\infty} \int_{t_1}^{t_1+t_2} \beta e^{-\beta t_2} \gamma e^{-\gamma x} e^{-(\lambda_1 t_1 + \lambda_2 (x-t_1))} dt_2 dx +$ $\int_0^\infty \int_{t_1+t_2}^\infty \beta e^{-\beta t_2} \gamma e^{-\gamma x} e^{-\left(\lambda_1 t_1 + \lambda_2 t_2 + \lambda_3 (x - t_1 - t_2)\right)} dt_2 dx$ $=-\frac{\gamma}{\gamma+\lambda_1}(e^{-t_1(\gamma+\lambda_1)}-1)+\frac{\gamma}{\beta+\gamma+\lambda_2}e^{-t_1(\gamma+\lambda_1)}+\frac{\beta}{\beta+\gamma+\lambda_2}\frac{\gamma}{\gamma+\lambda_3}e^{-t_1(\gamma+\lambda_1)}$ $=-\gamma e^{-t_1(\gamma+\lambda_1)}\left(\frac{1-e^{t_1(\gamma+\lambda_1)}}{\gamma+\lambda_1}\right)$ $\frac{\beta_2^{t_1(\gamma+\lambda_1)}}{\gamma+\lambda_1}-\frac{1}{\beta+\gamma+\lambda_2}-\frac{\beta}{(\beta+\gamma+\lambda_2)(\gamma+\lambda_3)}$

Equating the two expressions of π under the two different model specifications, we can calculate the three stage dependent transmission rates λ_1, λ_2 and λ_3 corresponding to a given λ . For example, let us assume:

 $t_1 = 30, \beta = 1/(365 * 8), \gamma = 1/(2.8 * 365), \lambda_1 = 100\lambda_2, \lambda_3 = 100\lambda_2, \lambda = 0.001$. We obtain: $\lambda_2 = 0.000121$