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Supplementary information

Approximate Bayesian Computation for model choice

Within the ABC-SMC approach [1], particles are first generated from the prior
distribution. Particles are then resampled from the obtained sample, and slightly
perturbed. From these resampled particles, a new sample is formed, from which again
particles are resampled, etc.

The threshold value € for the summary statistic — below which new particles are
accepted — is lowered with every newly obtained sample. As a result, the acceptance
rate decreases and the acceptance threshold approaches zero with an increase in the
number of iterations (resamplings).

Initial e-values were estimated as follows. We generated 100 trees and we calculated
the summary statistics (indices) and used the standard deviation of this distribution as
the initial € values. The e-values were decreased in an exponential fashion as the
sequential ABC scheme progresses.

e Initilize €

e Set the population indicator ¢t =1

e Set the particle indicator i = 1

e If t =1, sample (m”,0") from the prior w(m,8) = w(m)mw(6|m)

e If t > 1 sample m’ with probability m;_1(m’) and perturb m” ~ Km(m|m')
Sample ¢’ from the previous population {#(m”):_1} with weights w;_,. Perturb
the particle, 8 ~ KP, ,,,(0|0") where K P, ,,,» is the particle perturbation kernel.
If w(m”,0"”) = 0, repeat this step. Simulate a candidate dataset 2’ ~ f(xz|m”,8")
If p(2’,y) > € repeat this step.
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o Set (mt 9 9( )) (m”,0") and dgi) = p(2',y), calculate the weight as

; NG 1 ift=1
wt(l)(miz)a 9:51)) = x(ml?, 9< ) where

Z P (J) me(m (Z)|m(J))

JEM

and

; wi KP, o (0"16,"))
2= Z P (i ) _
(i) t—1{m; = = mt—l)

klm;”=ms_1
e if i < N set ¢ =i+ 1 and repeat the previous steps

e Normalize the weights. Obtain the marginal model probabilities given by

P,(my =m) = Z w,g (mt ,9(z )

z\m(z)—mt,l

Implementation details

The algorithm was implemented in R [2] using the parallel package. The code is
available by the authors under request. In the main manuscript (“ABC inference on
transmission network type” in the Results section) we report the performance of the
ABC-SMC algorithm on 100 simulated viral genealogies for each network type of size
1000. Here, in order to illustrate the scalability of the ABC-SMC algorithm and its
computational cost, we repeated the same simulation study on 100 simulated viral
genealogies for each network type of size 2000 and 3000.

The same parameters, prior distributions and tolerance levels were chosen for
comparability. We record the number of times that the true model has the highest
posterior model probability P(M|D) among the three models for the 100 simulated
datasets. The obtained posterior model probabilities were consistent with the case of
networks of size 1000. Results are shown in Table [[] and Table [2] for networks of sizes
2000 and 3000, respectively.

We also report the computational time required on a parallel implementation on an
IntelCore i7-4770S 3.10 GHZ 8-core processors (Table .

Table 1. Network type posterior probabilities. Networks of size 2000.
| WS ER  BA
WS | 0.99 0.01 0.00
ER | 0.02 0.77 0.21
BA | 0.01 0.22 0.77

Table 2. Network type posterior probabilities. Networks of size 3000.
| WS ER  BA
WS | 0.98 0.02 0.00
ER | 0.03 0.76 0.21
BA | 0.01 0.21 0.78
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Table 3. Computational time.

Network size
1000 2000 3000

Time 1.12h 1.50h 1.73h
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