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Supplementary methods 
 
Mendelian randomization framework 
 

Let ̂ j  equal the gene-outcome association estimate for variant j = 1, . . ., J, with associated standard 

errorYj . Let ̂ j  equal the gene-exposure association estimate for variant j, with associated standard 

error Xj . Let the causal effect of the exposure on the outcome be denoted by  . An estimate for   

based on variant j alone can be obtained via the ratio method as 
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Two forms for the variance of ̂ j are often used: 
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Using either a first order (i) or second order (ii) Taylor series expansion. We use the variance from (i). 
This is equivalent to assuming that the gene-exposure association estimates are measured without 
error and is referred to as the No Measurement Error (NOME) assumption.  NOME is equivalent to the 

assumption 2 0X j   for all j, so that ˆ j j   for all j. 

 
The inverse variance weighted (IVW) method for the overall causal effect estimate 

Let wj 1/ var(̂ j )  where var(̂ j ) is defined as in (i) under NOME. The  inverse variance weighted 

(IVW) estimate for the causal effect is given by the standard meta-analytic formula 
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The jw  terms derived under NOME are also referred to as ‘Toby Johnson’ weights. The IVW estimate 

assumes that all genetic variants satisfy the instrumental variable assumptions. If this is not true then it 
could give a biased estimate for .The IVW estimate for    is consistent even if all genetic variants are 
invalid, provided that: 
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 Across all variants, the magnitude of the gene exposure associations are independent of their 
pleiotropic effects (the InSIDE assumption) 

 NOME is satisfied 
 The pleiotropic effects have zero mean 

 
The weighted median method for the overall causal effect estimate 

Let ̂
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 equal the J causal effect estimates ordered from smallest ( ̂
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) to largest ( ̂
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with a quantile, p
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p
( j )
w  represents the quantile from the weighted empirical distribution function of the ordered 

estimates ̂
(1)

,, ̂
(J )

. The weighted median estimate, ̂WM  is defined as the 50th percentile of this 

weighted distribution. Typically the 50th percentile will lie between two estimates ( ̂
( l )

and ̂
(m)

, say), in 

which case ̂WM is found by linear interpolation. 

̂WM  is a consistent estimate for provided that at least 50% of the `weight’ making up SJ  comes from 

genetic variants that are valid instruments.  
 
The MR-Egger method for the overall causal effect estimate 
The MR-Egger method performs a weighted linear regression of the gene-outcome coefficients on the 
gene-exposure coefficients: 
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The weights used are also derived under the NOME assumption. If all genetic variants are valid 

instruments, then 
0E = 0. The value of ̂

0E
 can be interpreted as an estimate of the average 

pleiotropic effect across the genetic variants. An intercept term that differs from zero is indicative of 
overall directional pleiotropy. The MR-Egger estimate for  , ̂

1E
, is consistent even if all genetic variants 

are invalid, provided that: 
 

 Across all variants, the magnitude of the gene exposure associations are independent of their 
pleiotropic effects (the InSIDE assumption) 

 NOME is satisfied. 
 

If NOME is violated then the MR-Egger estimate of causal effect will be attenuated towards the null. We 

can assess the strength of NOME violation for MR-Egger through the 2
GXI  statistic: 2
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 and where   equals the arithmetic mean of the 2ˆ j Y j   terms . 

Specifically, the 2
GXI statistic quantifies the proportion of the total variation between the 2ˆ j Y j   terms 

that is due to `true’ variation between the  2ˆ j Y j    terms.  Consequently, when NOME is satisfied 

1 1ˆ ˆ, ,J J      , 2
GXI  equals 1, and no attenuation occurs. When 2

GXI  = 0.9 we can expect the MR-

Egger estimate to be only 90% of its value had NOME been satisfied. A crude correction for NOME 

violation would be  1
2

ˆ
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 , however this can be unstable as  2
GXI  can sometimes be estimated as zero, 

even when it is truly large. We used the established method of Simulation Extrapolation (SIMEX) (1) 
instead, as implemented using the R package simex() (2). Under SIMEX, new data sets are created by 
simulating gene-exposure association estimates under increasing violations of NOME and recording 
the amount of attenuation in the estimate that occurs. The set of attenuated estimates are then used to 
extrapolate back to the estimate that would have been obtained if NOME had been satisfied. 
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Supplementary Results 
 

Outlier analysis – Studentized residuals 
 

 

Figure S1A – Studentised residuals applied to the IVW method. 

 

Figure S1B – Studentised residuals applied to the MR-Egger method.s 



SUPPLEMENTARY DATA 
 

©2016 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0418/-/DC1 

Outlier analysis – Cook’s distance 

 

Figure S2A – Cook’s distance applied to the IVW method. 

 

Figure S2B – Cook’s distance applied to the MR-Egger method. 
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Reciprocal analysis of type 2 diabetes and BMI 

 

Figure S3 – MR-Egger analysis of the causal impact of type 2 diabetes on BMI.  

A - scatter plot of genetic associations with BMI against associations with type 2 diabetes, with causal 
estimates ( coefficients) of type 2 diabetes on BMI estimated by inverse-variance weighted (red line), 
MR-Egger (blue line) and median-based (green line) methods. For this analysis, all 115 confirmed type 
2 diabetes associated loci with OR not equal to 1 from Morris et al (2012)(3) downloaded from 
DIAGRAM http://diagram-consortium.org/downloads.html) were used. 
A - scatter plot of genetic associations with BMI against associations with type 2 diabetes, with causal 
estimates ( coefficients) of type 2 diabetes on BMI estimated by inverse-variance weighted (red line), 
MR-Egger (blue line) and median-based (green line) methods. For this analysis, 110 confirmed type 2 
diabetes associated loci with OR not equal to 1 and no overlapping known BMI loci (excluding FTO, 
MC4R and TCF7L2) from Morris et al (2012)(3)were again used. 
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