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SOLUTION OF A PROCESS OF RANDOM GENETIC DRIFT WITH A
CONTINUOUS MODEL*

BY MOTOO KIMURA
DEPARTMENT OF GENETICS, t UNIVERSITY OF WISCONSIN

Communicated by Sewall Wright, November 15, 1954

The problem of random genetic drift in finite populations due to random sampling
of gametes in reproduction was first treated mathematically by R. A. Fisher,1
using a differential equation. Fisher's general method was appropriate, but owing
to the omission of a term in the equation, his result for the rate of decay of variance
was only half large enough. The correct solution for the state of steady decay was
first supplied by S. Wright,2 using the method of path coefficients and an integral
equation.

Later Fisher3 corrected his results and also elaborated the terminal part of the
distribution in the statistical equilibrium by his method of functional equations.

In all these works, however, it was assumed that a state of steady decay had been
attained, but nothing was known about the complete solution which might show how
the process finally leads to the state of steady decay. The present writer,4 by cal-
culating the moments of the distribution and with the help of the Fokker-Planck
equation, obtained a solution which assumed an infinite series under the continuous
model, showing that the process approaches asymptotically the state of steady
decay. At that time, however, only the first few coefficients in the terms of the
series could be determined. Pursuing the pioblem further, he arrived at the com-
plete solution, which will be reported here. After obtaining these results, the writel
recently discovered the work of S. Goldberg.5 In his unpublished thesis Goldberg
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solved the diffusion equation for the gene-frequency distribution in a finite popu-
lation when recurrent mutations occur. His solutions have a direct connection
with the frequency distribution of unfixed classes in the case of pure random
genetic drift, as will be seen below.

Consider a random mating population of N diploid parents. Let A and A' be a
pair of alleles with frequencies x and 1 - x, respectively. In order to single out the
effect of random drift, we shall assume an idealized situation in which selection,
migration, and mutation are absent and generations do not overlap. The process
of the change in gene frequencies is most adequately described by giving the fre-
quency distribution f(x, t) at the tth generation, where x takes on a series of dis-
crete values: 0, 1/2N, 2/2N, .. . , 1 - 1/2N, 1. For fairly large N, however, x can
be treated as a continuous variable without serious error.

First, we shall derive the moment formula which is useful heuristically. Let
xi be the gene frequency in the tth generation, and let 8t, be the amount of change
due to random sampling of gametes per generation, such that

XI+1 = Xi + ax,. (1)

Let us('+1) = E(xt+) be the nth moment of the distribution about 0 in the
(t + 1)th generation. We write the expectation of Xn4i in terms of (x: + 5z1)n in
two steps: (1) taking expectation for the random change a5x, which will be de-
noted by Ea, and (2) taking the expectation for the existing distribution, which will
be denoted by E+.
Noting that EB(6x,) = 0, E(6x,))2 = XI(1 - x,)/2N, etc.,

nl,+1) = E(Xg + 8X,)'
E,{xOn + ()Xn-'1Es (ax) + ()x -2Es(bxt)2 + * * (2)
E { s+ n(n- 1) z-2 XI(2N X) 0

The intrinsic assumption in the continuous model is that the effective size N is
sufficiently large so that terms of -order 1/N2 and higher can- be omitted without
serious error.
Thus

5)={1 -)}+n(n 1)n--*)
For large N, the moments change very slowly per generation, and we -can replace
the above equation by the system of differential equations:

__-1=_ n(8 , I)
A I I (n 1, 2,3,.. ). (3)

If the population starts from the.gene frequency p (0 < p < 1), , ni$°)= pfl and we
can obtain the nth moment as the solution of (3),

co

,A = p + (2i + 1)pq(-1)F(1 -i, i +22, p) X

(n +1)... (n + )(n-1)*- (n-i)4¢[i(i+114f 4
(n + 1)...(n + i)v
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where F(1- i, i + 2, 2, p) is the hypergeometric function and q = 1- p. For
finite n the series is finite. Putting n = 1, 2, 3, and 4, it will be seen that, for large
N, the resulting formulas give a very good approximation to the exact moment
formulas obtained by A. Robertson6 (p. 205).
The probability f(1, t) of the gene A being fixed in the population by the tth

generation can be obtained by using the relation
.~~~~~~~~~~~

f(1, t) = lim E xnf(x, t) = lim t,
n - co x = n co

The resulting series,

f(1, t) = p + E (2i + 1)pq(-1)F(1 - i, i + 2, 2, p)e-[t(i+l)/4N]t, (5)

is now an infinite series whose convergence must be examined. It is convenient
here to introduce the Gegenbauer polynomial Tj!1(z) which is related to the hyper-
geometric function by

i(i+) F i21-, 1 Z)TiIW 2 ( Y1 2 2)

The properties of this function have been thoroughly studied (see Morse and
Feshbach7 [pp. 782-783]). Using this relation and putting p = (1 - r)/2, (-1 <
r < 1), we obtain

"O (2i+1)114if(1, t) = P + E 1 2i(i + 1) (1 - r2) TI-1 (r)e&[i(i+)/NlI (6)

where Tol(r) = 1, T11(r) = 3r, T21(r) = 3/2(5r2 - 1), T3I(r) = 5/2(7r3- 3r), etc.
Here, if we use the recurrence relation: (2i + 1)(1 - r2)T.li(r) = i(i + 1)P1_(r) -
i(i + 1)Pi+i(r), the above formula becomes

f1 ) = p EI_+{p i(r) - Pj+,(r) I + ) (7)
i= 2

where Pn(r) represents a Legendre polynomial: Po = 1, P1 = r, P2 = 1/2(3r2 - 1),
P3 = 1/2(5r2- 3r), etc. For t = 0, the partial sum of the first n terms of equation
(7) is (- 1)n-i(Pn1 - Pn)/2 (n > 3). By using a proper integral expression (see
later part), it can easily be shown that, if -1 < r < 1, the partial sum tends to zero
as n goes to infinity. For t > 0, the series (7) is uniformly convergent and tends to
p as t -- c. The probability of the gene A' being fixed in the population by the
tth generation f(0, t) can be obtained by replacing p with q and r with -r. If we
note that Pn((-r) = (-1)nPP(r), the frequency of the fixed classes is seen to be

f(1 t) + f(0, t) = 1I-{P2J(r) - P2J+2(r) } e-[(2j+l)(2j+2)/4NJt (8)

which is 0when t = 0 and tends to 1 as t *.
Let us now consider the probability distribution of unfixed classes. Let 4(x, t)

be the probability density that the gene frequency in the tth generation is between
x and x + dx (0 < x < 1). It has been shown that, under the assumption of the
continuous model, qb(x, t) satisfies the following partial differential equation:
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1 a2 x)0, (9)

which is a Fokker-Planck equation for the case of the random drift.4' 8 This
equation has singularities at the boundaries, and no arbitrary conditions can be
imposed there.9 But the moment formula which can be obtained from equations
(4) and (5) by calculating,

-M_ n'f(1, t) = folxno(x, t) dX, (10)

suggests that equation (9) must have the solution of the form
co

E CjXj(x)e [i(i + 1)/4N]t

wheie C1 are constants and X1(x) are functions of x only. In order to solve equa-
tion (9), if we put 4 a: Xi(x) exp {-i(i + 1)t/4N} (i = 1, 2, 3, ...), we obtain the
hypergeometric equation

d2X1 dX1
x(1-x) dX + 2(1-2x)--(1-i)(i + 2)Xi0=OdX2 dx

or, putting x = (1 - z)/2 such that z = 1 - 2x (-1 < z < 1), we obtain the Gegen-
bauer equation:

d2X dXj(z2 - 1) d-2 + 4zd-- (i - 1)(i + 2)X1 = 0. (11)

From the comparison of the results obtained from equation (10), it can be found
that a Gegenbauer polynomial X1 = T>_(z) is a pertinent solution.
Thus

cD

+(x, t) = E CiTi._i(z)e-i(i + 1)/4Nf]t (12)
i= 1

The coefficients C( can be determined from the initial condition that the popula-
tion starts from the gene frequency p. Mathematically,

(x -p) = E C1T1!(z), (13)
i = 1

where S(x) represents the delta function. Multiplying (1 - z2)T'l-(z) on both
sides of equation (13) and using the orthogonal property,

2(i + 1)i
-1(z2)T (Z)T 1(z) dI = 2m, t-1 (2i + 1) (14)

where m in Kronecker's notation.represents zero or a positive integer, we obtain

2{1 - (1 - 2p)2}Tl_(I - 2p) C 2(i + 1)i
(2i +1)

or
(2i + 1) 1

Ci =4pq Tj i(1- 2p).
i~+)
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Thus the formal solution is
co (2i + 1) (1-r) 1__- [ (15)

i= 1 i(i+ 1) (5
or, in terms of the hypergeometric function,

co

O(x, t) = Z pqi(i + 1) (2i + 1)F(1- ii + 2, 2, p) X

F(1- i, i + 2, 2, x)e-i(i+l)/4Nlt (15)'
For t > 0, the series is uniformly convergent for x and p, since the exponential term
approachs zero rapidly. It is interesting that this solution agrees with the "absorb-
ing barrier solution" of Goldberg5 by putting a = P = 0 in his formula.
The probability that both A and A' coexist in the population in the tth generation

(%) is easily obtained from equation (15), by noting that dP,(z)/dz = Tl-(z) and
PnM() = 1:

:= f 4(x, t) dx= (x t) dz
o -1 ~~~~2

= (4m - 1) (1-2) T1() e((2m-1)2m/4N]t- (16)

m= (2m -1)2m
For t > 0, the series is easily seen to be convergent, and, as t -a c, %:goes to zero.
For t = 0, we must show that this series converges to 1. Let o0, n be a partial sum
of the first n terms; then, by the recurrence relation (4m - 1) (1 - r2)T2'm_2(r)/
(2m - 1)2m = P2m_2(r) - P2m(r), we have Ro, n = 1 - P2n(r).- By using an in-
tegral expression of Pn, i.e., Pn(z) = (1/r) fo I{Z + 2 - 1 COS t} n dt, we can
show that, for IrI < 1 P2,(r) -O 0 as n co. For

IP2n(r) I < - jr + Vr2 - 1 COS t 1 2? dt =

-1fT {r2 + (1 -r2) Cos2 t dt 0 (n co).

Furthermore, from (16),
co

== _ {P2J(r) - P2j+2 (r)}eI[(2+l)(2i+2)/4 t. (17)

Consequently, it can be seen that, from equations (8) and (17), f(l, t) + Qt +
f(O, t) = 1, as it should be.
The processes of the change in the distribution of the unfixed classes when the

population starts from p = 0.5 and p = 0.1 are illustrated in Figures 1 and 2, respec-
tively. In Figure 1 it will be seen that after 2N generations the distribution curve
becomes almost flat, and the genes are still unfixed in about 50 per cent of the
cases. In Figure 2, the initial gene frequency is assumed to be 10 per cent, and it
takes 4N or 5N generations before the distribution curve becomes practically flat.
By that time, however, the genes are fixed in more than 90 per cent of the cases, and
the simplest asymptotic formula Ce- (1/2N)t may not be useful as in the case of p =
0.5.
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FIGS. 1-2.-The processes of the change in the probability distribution of heterallelic classes,
due to random sampling of gametes in reproduction. It is assumed that the population starts
from the gene frequency 0.5 in Fig. 1 (left) and 0.1 in Fig. 2 (right). t = time in genera-
tion; N = effective size of the population; abscissa is gene frequency; ordinate is probability
density.

The probability of heterozygosis is calculated by equation (15):

fo12x(1-x~~x~t~dx =(2i+ l)TH. = O 2X(1- X)+O(X, t)di= E (i+1) i i (1-2p) X

(1 -Z2)T,._.(z) e-'i(i + 1)/4N]t dZ.

By virtue of equation (14) (put m = 0), the last integral is 0 except for i = 1.
Hence

Hg= pq 1 4 (2)t 2pqe-(l/2lt = Hoe-(l/2N)t, (18)
2 3

showing that the heterozygosis decreases exactly at the rate of 1/(2N) per generation.
This is readily confirmed by a simple calculation: Let p be the frequency of A in
the population, where the frequency of the heterozygotes is 2p(l - p). The
amount of heterozygosis to be expected after one generation of random sampling of
the gametes is

E{2 ( + 5p) (1 -P- 6P)} 2p(1 -p) -2E(ap)2=

2p(l - p) - 2 =(-22p(1-p),
as was to be shown.
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AN X-RAY ANALYSIS OF CHROMOSOME DUPLICATION*

BY KARL SAX AND EDWARD D. KING

ARNOLD ARBORETUM AND BUSSEY INSTITUTION, HARVARD UNIVERSITY, JAMAICA PLAIN,
MASSACHUSETTS

Communicated January 5, 1955

The induction of half-chromatid aberrations by X-rays provides evidence re-
garding the multiple nature of the chromosome and may be of considerable signifi-
cance in the analysis of chromosome duplication. The occurrence of half-chro-
matid exchanges was first described by Swanson' in 1943. These aberrations,
found in pollen-tube mitoses of Tradescantia, were of sporadic occurrence. Re-
cently Crouse2 has found that practically all the X-ray-induced aberrations induced
at the first meiotic metaphase stage in Lilium involve half-chromatid breaks and
exchanges. Breaks in one of the half-chromatids of each of two chromatids are
followed by reciprocal translocation to produce a chromatid bridge at anaphase.
The close association of the coiled half-chromatids prevents the terminal separation
of the two anaphase chromosomes (cf. Fig. 1).

Occasional half-chromatid aberrations have been found at anaphase in the divi-
sion of the microspore nucleus of Tradescantia following X-irradiation. The
dosages commonly used (50-150 r) produced considerable stickiness of the chromo-
somes, so that accurate analysis of chromosomal aberrations could not be made
until about 6 hours after raying. By reducing the dosage to 25 r and keeping
the inflorescences at 30 C. during irradiation, it was possible to obtain clear figures
of mitoses and induced aberrations as early as 3 hours after raying. Irradiation at
30 C. was done to compensate for the low dosage, since it has been shown that the
chromosome aberration frequency can be infeased by raying at low temperatures.3
Chromosomal aberrations induced at 4-6 hours before anaphasA consisted almost

entirely of half-chromatid bridges at anaphase. Presumably, these chromosomes
were irradiated at prometaphase or metaphase. At these stages the two sister
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