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The equivalent conductance A of strong electrolytes in solvents of high dielectric
constant approaches linearity in the square root of concentration in the limit of
infinite dilution. At finite dilutions, the conductance curve is concave upwards.
The slope of the limiting tangent has been computed theoretically by Onsagerl 2 in
terms of ionic charge, dielectric constant D and viscosity v of the solvent, absolute
temperature T, universal constants, and one arbitrary constant, the limiting con-
ductance A0 of the solute. It has been surmised that the course of the actual con-
ductance curve is a consequence of the finite size of real ions and of terms higher
than linear in the charge of the reference ion; these were neglected in the derivation
of the limiting law. It is the purpose of this communication to derive a conduc-
tance equation which is valid for nonzero concentrations. One additional arbitrary
constant, the ion size a, suffices to reproduce experimental data up to about 0.1
normal for strong 1-1 electrolytes in water.

Briefly summarized, the derivation proceeds as follows: We start with the gen-
eral equation of continuity3 which specifies the concentration of ions of one species
in the vicinity of ions of other species in a solution of electrolyte which has reached
a steady state under the influence of an external force (here, an electric field). The
equation is first solved, neglecting terms of higher order, but using ions of finite
size rather than point charges as the model. This first-order solution is then re-
turned to the higher-order terms in the equation of continuity. Solution of the
resulting perturbation problem gives the desired expression for the relaxation
effect in the mobility to terms of order c and c log c. On combining this result
with the previous value3 of the electrophoresis calculated to the same order, the
final conductance function is obtained.

Consider a solution containing Ni ions of charge ej in a total volume V, where
i = 1, 2,. . ., s. Locate two elements of volume dVj and dV2 by vectors ri and r2,
drawn from an arbitrary origin, as shown in Figure 1. If we know that a j-ion is
in dV1, the concentration of i-ions in dV2 will not equal ni = Ni/V, the gross aver-
age, but will be nji(r,, r2l), due to electrostatic and hydrodynamic interaction of the
several ions. Let vji represent the (mean) velocity of an i-ion in dV2 when a j-ion
is in dV1. Then, in terms of the symmetrical density functions

fji(r1, r2l) = njnji(ri, r2l) = nin1j(r2, r12) = fij(r2, r12),
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the general equation of continuity

div, (fijvij) + div2 (fjivji) = 0

must be satisfied. In the conductance problem, (1) becomes simply

fji(r21) = nfnjji(r2T) = nfnlj(r12) = fj(r12),

(2)

(3)
because the distribution depends only on relative and not on absolute location. We
retain the idealized picture of the solvent as a viscous dielectric continuum in which
the motion of the ions obeys Brownian motion kinetics; inertial effects are assumed
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FIG. 1.-Definition of vectors

negligible. Accordingly, the pertinent properties of an ion of species j are its
coefficient of friction 1/cw and its electric charge ej. In an electrical field X acting
in the direction of the positive x-axis, the velocity of an isolated ion is therefore

voj = Xejwji. (4)
At finite concentrations, electrostatic interaction causes each ion to surround it-

self by an "atmosphere" carrying a compensating average charge density. Debye
and Hftckel4 computed the distribution of this shielding charge for the static case
and obtained the familiar limiting result

y6°j(r) = D- (5)
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for the average potential of the electrostatic field surrounding a point ion. Motion
of the ions in an external electric field distorts the charge distribution, so that the
above potential must be replaced by

y6(r) = #0 (r) + 6'(r)*

The density functions (3) likewise consist of radial and unsymmetrical parts.
In previous work, it was assumed that atmospheric charge densities of neigh-

boring ions could be superimposed; careful investigations have shown that this is
a good approximation in the computation of s6°. We have satisfied ourselves that
this use of the superposition principle introduces only quite small errors (of the
order of K2) in our final results. Accordingly, we assume for the force on an i-ion in
dV2

Kji = Xei - eiV2Ot(a) -eiV2#,(r21). (6)

This force contributes to the mean velocity of an ion according to (4). The
Brownian motion produces an average velocity equal to -cikT V2 ln fi(r2l).
Finally, the local motion of the solvent is modified by the presence of another ion
(with its atmosphere) in the vicinity. The resultant flow field vi(r2l) was computed
by Debye and Hfickel;5 we have used an alternative derivation which permits
the boundary conditions to be stated in terms of the potential in all but a small
part of the function. Hence, except for this small term (of order c in the final
conductance equation) involving the Stokes radius, the hydrodynamic terms in the
relaxation field contain the same parameter a as the electrostatic ones.6 Combining
the various contributions to the velocity vj of an i-ion in the vicinity of a j-ion, we
obtain

vji(r21) = vi(r21) + coi[Ki - kT V2 lnfji(r21)], (7)

with a similar expression for vij(rl2). We then substitute (6) in (7) and the result
in (2). The divergence terms (div oA = A. grad so + o div A) are expanded, noting
that V - vi = 0. Functions are reduced to those of one variable r =r2 = - rl2 ac-
cording to the operational rules V2 = -V1 = V; V1.V1 = V2.V2 = A. Potentials
are assumed to be of the form

Oj(r2l) = #0j(r) + #',(r), (8')

jp#12) = V'i(r) - #'1(r), (8")

and the distribution functions are decomposed similarly:

f (r2l) = f0ji(r) + f'ji(r) = f1j(rl2) = f01j(r) - fjj(r). (9)
The field strength is assumed to be below that at which any Wien effect is
observable, so that ' X, f '--x. In the above expansion, all terms in X2 are

therefore dropped; furthermore, the functions of spherical symmetry cancel each
other because vji = vi; = 0 when X = 0. The result of the above manipulation is

(eici - elj)Xi .Vf0jj(r) - kT(wi + wj)Af'j1(r) - f0jj(ejwjAO'j - ejwAj'1i) -

(eiw1VO', - ejwjV#'1) *Vf0,1 - f',j(eoixtA#,O + ejwAO0j) -

(eixwV#j0 + ewjV01V)*Vf'ji + [ejwjV#'j(a) - ejcjVO',(a)I.Vf0j, -
(V1 -v) * Vf01i = 0. (10)
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One boundary condition (impenetrability) arises from the requirement that the
radial component of the relative velocity of any two ions in contact must vanish.
Thus the sum

fij(vij*r12) + fji(VjiT21)
has to vanish at r = a. With the convention r2l = r = -r12, this condition be-
comes

[(fijVO - fjiv) * r]r = a 0 (11)

I;et Y represent the flow vector in the above bracket; then, by a calculation parallel
to that which led to (10), we obtain

Y = (ewi- ejwj)f°jjXi - kT(w + coj)Vf'jj - f0ji(eiV#6'1- ejcojVsP"j) -
f'ji(ejwiV4('0j + ejj1V ,6°0) + f0ji[efw1V#',(a) - ejwjV4t"j(a)]-

(vi - vj)f0jj, (12)
where (Y r) = 0 at r = a.

It will be more convenient to use the boundary condition in the form

Z(a) = 0, (13)
where

Z(r) = ( ). (14)
x

The following operations are used in expanding (14): i. r = x, x/r = cos 0;
i. Vf° (r) = -fol/x; Vf0 (r) * V0'(r) = (df°/dr) (64,'/br) = (df°/dr) [6(0'/ cos 0)/
ax]; r.Vf'(r) = r bf'lbr = x d(f'/cos 0)/dr; r.V#0(r) = r di,&/dr; (v r)/x = v,/cos
0; v Vf° (r) = vr df°/dr. The result, after specializing to s = 2, is

Z(r) = (eicoi- e2w2)Xf°21- U(oi + W2) d f2fe- drdr kcos/ I dr \cos0)
d / I'1 f'21 / d_0__/ _

e2(i2w- c -_ e.wl dr + e2W2 d + f021 jei(l c )
dr ~cos 0} 'cos 0

cw

dr dr dr COS 0 a

d ('2_\ fO02
___2_O- (V~ V'dr (cos0)} (, cos 0

Sibailar substitutions are made in (10), and from the Poisson equations
, = - (±z) Ef'iie (16)

we obtain, on specializing to s 2,

4-4wf'I2e2 44Tf'21e2Dn1 Dni 1'

and

^"2= _ 4D2(16=)Dn2
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These equations serve to eliminate the potentials from a number of terms. In one
of the inhomogeneous terms, the Debye-Hickel approximation

LW'01 = K2#,° (17)

is used; here

K2 - (DkT) (nie12 + n2e22). (18)

The final result is the equation of continuity translated into a form ready for
integration:

(ewi- e2c2)X (~1) - kT(wi + c2)Af'21 + (4f') (- + ) -

{exi co 0, - e2w2 a c dr K2fY21 (eicoi062 + e2W2#01)-
)X COS @ BX Cos 0 dr
( d402 dr°l a fcos cs a
drlr- + e2W2 d )J / + {elwi (#'i)

e2w2
a ( :2) } df - ( - ) (dfi) - 0. (19)

Investigation6 of (19) shows that the last five terms are of higher order in
K (-Cc1/2 ) than the first three. We therefore define F%1(r) = h2l(r) cos 0 as the
solution of

(elwi - e2W2)X
X

- kT(wi + W2)AF21 +

(4DfnF2i) (ei2wi + et) = 0, (20)

subject to the boundary condition that the corresponding terms of (15) vanish at
r = a:

(dh2l
[(eiwi -e2 2)Xf 21-kT(wi +W2) -)

dr-

f e21well ( - e2W2 (di] = 1)

Here 4'1(r) cos 0 = *j(r), where A'j = -(47r/Dnj)Z Fjiei; in other words, TV

and Fji are our previous Vl'j and f'jt, but subject to boundary conditions for non-
zero radius instead of for the vanishing radius which was previously used.

Since the potentials are determined by fourth-order differential equations, we
need three more boundary conditions: they are (c) = 0, (/br)r, = 0 and

-(a-0) = '(a + 0). The latter leads to

(r -t_ ')__ =0. (22)

Falkenhagen and coworkers7 solved (20) using the same boundary conditions for
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potential as those listed above, and using the Eigen-Wicke8 distribution, but they
chose a rather arbitrary fourth condition. Their result differs from ours by terms
of order K2. In expanding (20) and (21), we use the Debye-Htickel approximation4
for the unperturbed potentials around ions of finite size

-K(ere-T) [ eKa 1 (23)\ Dr _(LI + Ka)j
and the corresponding value for the distribution function

021 nmn2 -_ k
) (24)

wvhere

= (1 + Ka)e. (25)

The following abbreviations

2 47r \ niel2w, + n2e22w2ly2= 22 j(26)y =qK = DkTI W1 + CL2

and the Bjerrum parameter

b - eie2 > 0 (27)
aDkT

also aid in a compact formulation of the result.
The relaxation field AX is given by

-AX = grady Tt(a). (28)

Solution of (20), followed by solution of the corresponding Poisson equation and
adjustment to the boundary conditions, gives finally,6 on substitution in (28),

AX ele2q2K 1 + (1 + q) ( - [1+ Ka]/b) (Ka/2) (29)
X 3DkT(1 + q) (1 + Ka) (1 + qKa + q2K2a2/3)

For convenience in later formulations, we write (29) in the form

AX __ele2q2K(1 - Al) _
X - 3DkcT(1 + q) - -a(1 - A1). (30)

It is immediately obvious that (29) differs from our earlier result by terms of order
K2, which means that (29) will give c-terms in the conductance function. Now the
five terms of (19) which we neglected above also give terms of order K2; still more
important, they lead, in addition, to transcendental terms whose limiting behavior
is like that of (Ka In Ka). It is clear, then, that a conductance function, self-con-
sistent to terms of order c, must also include the contributions of these orders from
the neglected five terms. Furthermore, the latter terms in turn give rise to still
higher terms, but consistency requires that only terms O(Ka) and O(Ka lnKU) be re-
tained in the numerators of these quantities. Accordingly, we set

(31)fJz =pJli + gz
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and

a 'J' + Pj (32)

in the second and third terms of (19) and in the corresponding terms of the Poisson
equation. In the leading (initial) inhomogeneous term, we carry one more term
of the power series (24). Elsewhere, the approximation f'jl- Fji,O'IjOj is used.
A similar procedure is followed in the velocity boundary condition. The result,
after dropping higher terms and cancellation of terms of order K which vanish by
virtue of (20) and (21), is

n~eie2' ly X 6 e_-___ - Ag2, + 'Y2q2i r) - ele29fe-Kr F21,
87rD(MkT)2 aX \ 2 )1DkTr

n2e2'y2 d (e Kr\ a - eie2K2e- F21 eie d (eKr\ ah,
47r kT dr rk x 1iDkTr pDkT dr r ax

n2e2Y2 d e-TKr 6A + nin2eie2(vlr- V2),) d e
- r

4w1.kdT dr r /\x la iDk2T2(w + (42) dr \ r (

and

f(r) = r&-n2e2 y2Xe-Kr d ( g21 \ n2e22e-eKr d4.
47r4iukTr dr cos / 47rqtkTr dr

eie2h2, d (e-rA\ n2Y2D (db _ Vlr - V2r nfl2
,ADkT dr \ r + 47re, kdr/a cW + W2kTcosO. (34)

No subscript is written on c1 in the above equations because (Di = 4'2. Solution of
(33) subject to (34) vanishing at r = a and to the appropriate boundary condi-
tions for potential, followed by manipulation parallel to that which led to (29),
gives a rather complicated expression6 which simplifies considerably for symmet-
rical electrolytes (where ni = n2, el= - e2, q2 = 1/2).
The final result is

AX fA
- = a(l -A + )+A2

X Ao

where a is the coefficient derived by Onsager2 for the point charge model, Al is the
change in AX/X produced by introducing finite ion size, A2 is the change due to
the electrostatic perturbation terms summarized in (33), f3 is the electrophoresis
coefficient2 and A3' derives from the relaxation field due to the flow produced at the
location of the reference ion by its neighbors. In order to be consistent with the
order of terms retained in the original differential equation, terms of order K2a2 and
higher in the numerators of the various A's are dropped: the final values are:

(1±+ q)Ka 1+1(5
2p3(1 + Ka) ( b) (35)

2 = (l +q)2 {V 24 3
- T(1 + Ka + 2qKa) +

p2p3(1 + Ka) 1+24 2

-(1+ Ka + qKa) + (1±+ a - 2P(l+ qKa) (36)
8 8 2q2(a+ a)
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-bKa {35 - 6Va2To
P2 (i + Ka)~ i92 - 2(±Ka±qa

32 (1 + Ka) + 32 + 1+Ka (3)32 32y 96P2(l + Ka)2 37

where pi = (1 + Ka + K2a'/2), P2 = (1 + qKa + K2a2/4), p3 = (1 + qKa + K2a'/6),
To = Tr(Ka), T1 = Tr[(1 + q)Ka] and T2 = Tr[(2 + q)Ka]. We are compiling
tables of numerical values of the above functions.6
The transcendental function which appears in (37) is

Tr (x) = e' f edt (38)

In the limit of very small values of x, Tr (x) - 0.5772 - in x, but this expansion
is useless in the range of concentrations where A2AoAVc is experimentally observ-
able.9
For symmetrical electrolytes, the Ei(2Ka) term in our previous3 equation (4.2.10)

vanishes in the electrophoretic correction to conductance, and the original' elec-
trophoresis term fi need only be divided by (1 + Ka) to give a result consistent in
order of K with our new relaxation term (35). The final conductance equation can
therefore be summarized by the following formula:

A = Ao- a(1 - Al + A2)Ao/-C 3(1 + A3)VC (39)

where A3 = A3 - Ka/(l + Ka); all the terms which involve hydrodynamic effects
are thus grouped together.
A comparison of (39) with experimental data is shown in Figure 2, where Shed-

lovsky's valuesl' for the conductances of the alkali halides are shown as the open
circles. By plotting values of A, calculated by (39) and Shedlovsky's values of
limiting conductances, at c = 0.05 for a series of selected values of a, a value for a
can be interpolated which reproduces the experimental value of A at this concen-
tration. Then values of conductance at other concentrations were computed,
using the interpolated value of a; these are plotted as solid circles in Figure 2. The
agreement appears to be well within the experimental error of about 0.03 A-units.
The a-values found are as follows: LiCl, 4.31 X 10-8; NaCl, 4.20 X 10-8 and KCl,
4.23 X 10-8. These seem quite reasonable, considering that all errors and ap-
proximations are absorbed in this single arbitrary constant. Our equation can be
fitted to data at higher concentrations, but we do not believe that it has physical
reality for Ka > 0.3, because not only do still higher terms from (2) begin to become
significant, but also other physical complications which we have completely ignored
begin to play a part. For example, as Eigen and Wicke8 first pointed out, the
fact that an ion and a solvent molecule cannot simultaneously occupy the same
place becomes important.
Our present derivation shows that the upward curvature of the conductance

curves of strong electrolytes can be accounted for theoretically merely by a re-
finement of the earlier calculation; the only change required in the physical model
is the replacement of point charges by charged spheres. This, in turn, means that
more realistic values of association constants can now be calculated from conduct-
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FIG. 2.-Comparison of experimental (open circles) and calculated (solid circles)
values of conductance of the alkali halides
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ance data than was previously possible in those cases where the fraction of ions
associated is small. Work on this problem and on the case of unsymmetrical
electrolytes is in progress.
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AN INTERACTION BETWEEN ALLELES AT THE Rh LOCUS IN MAN
WHICH WEAKENS THE REACTIVITY OF THE Rho FACTOR (Du)
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Communicated March 25, 1955

Occasionally bloods are found which, when tested with different anti-Rho (anti-
D) sera, give some but not all the serological reactions expected from the presence
of the Rho (D) factor, or the intensity of such reactions is consistently weaker than
the average. Owing to the clinical importance of the Rho factor, on which the
condition of Rh-positivity or Rh-negativity depends, such "intermediate vari-
ants" (Wiener1), usually symbolized as DU (Stratton2) or Who (Wiener3), represent
a difficult problem for blood-grouping laboratories. For a review of the subject
we refer to Race and Sanger.4
From a genetical point of view, a number of family investigations, actually not

very large (Stratton and Renton;5 Dunsford;6 7 Race, Sanger, and Lawler8),
have led to the conclusion that the DU variants are to be regarded as products of
mutation of the D allele and are thus inherited like the other Rh blood factors. Ow-
ing to the fact that often the Du variants in members of the same family show identi-
cal serological peculiarities, while they may differ broadly between different families,
a series of Du alleles has been supposed. This view received additional indirect
support from the knowledge that generally blood groups behave as a direct, not
mediate, product of the determining gene and are little influenced by other environ-
mental or genetical agents.
While the interpretation given by the British authors is certainly true in some

and may be true in the majority of Du cases, other genetical interpretations cannot
be disregarded.
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