Supplementary Material

Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet

Sophie Comtet-Marre¹, Nicolas Parisot^{2,\$}, Pascale Lepercq^{1,#}, Frédérique Chaucheyras-Durand^{1,3}, Pascale Mosoni¹, Eric Peyretaillade², Ali R. Bayat⁴, Kevin J. Shingfield^{4,5,†}, Pierre Peyret² and Evelyne Forano^{1,*}

¹UR454 Unité de Microbiologie, INRA, Saint-Genès-Champanelle, France

²EA4678 CIDAM, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France

³Lallemand Animal Nutrition, Blagnac, France

⁴Nutritional Physiology, Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, Finland

⁵Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom

^{\$}present address: UMR203 BF2I, Univ Lyon, INSA-Lyon, INRA, Villeurbanne, France

#present address: LISBP-INSA Toulouse, Toulouse, France

[†]Deceased 11 September 2016.

* Correspondence: Evelyne Forano: evelyne.forano@inra.fr

Supplementary Methods

Messenger RNA enrichment by rRNA capture. Our in house-procedure is based on the widely used rRNA subtractive hybridization principle. In total, 18 capture probes targeting the large (LSU) and the small (ssu) subunit rRNA of all rumen microorganisms (bacteria, archaea, protozoa, fungi) identified at the genus level were designed (Table S5). Ribosomal RNA sequences of good quality were extracted from the SILVA database (RRID:SCR 006423) (Pruesse et al., 2007). The generated rRNA database comprised about 23,000 sequences belonging to 204 rumen genera (Table S6). For each set of sequences (16S, 18S, 23S, 28S), iterative multiple alignments of rRNA sequences were performed in order to highlight conserved regions. Sequences from the same genus were aligned through MEGA 6 (RRID:SCR_000667) (Tamura et al., 2013) using ClustalW (RRID:SCR_008620) (Larkin et al., 2007) and each alignment was manually curated. Alignments of genera were then aligned successively step by step, considering the phylogenetic position of each genus. In this way, 9 master alignments were obtained (one for each target except for bacterial 16S rDNA resulting in two master alignments). Probes were determined in conserved regions using the HiSpOD

software (RRID:SCR 014403) (Dugat-Bony et al., 2011). Default parameters were used, except for probe length, max similarity of the probe and the non-target sequences (% identity) which were fixed to 24 or 25 nt and 75%, respectively. Probes presenting least potential crosshybridizations with any coding sequences (CDS) and none with CDS from rumen microorganisms were selected. Capture probes were designed in different regions of the rDNA in order to enhance enrichment effectiveness. Enrichment was performed with a starting material of 10 µg of total RNA. Only DEPC-treated solutions and RNase-free material were used. Solutions were those recommended for the Dynabeads Oligo(dT)25 kit (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA). In the first step, polyadenylated RNA (eukaryotic and some prokaryotic mRNA) were isolated by capture using Dynabeads Oligo(dT)25 following the manufacturer instructions and kept on ice until the end of the procedure. Capture probes polyadenylated at 5' position were added at different concentrations (Table S5) to polyA(-) RNA to allow probes to hybridize to their targets during 20 min at 37°C. Probe-rRNA complexes were captured with Dynabeads Oligo(dT)25 as for polyA(+) RNA. This step was repeated three times. Finally, polyA(+) RNA and prokaryotic mRNA-enriched RNA were pooled and ethanol precipitated. One aliquot of the total RNA sample was also used as a control for RNA degradation by following all the steps without rRNA capture (control RNA). Another aliquot of the same sample was treated using a commercial kit (MicrobExpress, Ambion, Thermo Fisher Scientific, Waltham, MA, USA) according to the recommendations of the manufacturer. Quality of the control RNA and effective removal of rRNA were controlled using the Agilent 2100 Bioanalyzer using RNA Nano Chip (Agilent Technologies, Santa Clara, CA, USA).

The efficiency of the enrichment method was assessed both qualitatively and quantitatively, and compared qualitatively to a commercial kit (MicrobExpress, Ambion, Life Technologies SAS, Saint Aubin, France) specifically designed for the removal of bacterial rRNAs (Figure S3). Our in-house capture method enabled the removal of more than 80% of bacterial and protozoal ssu rRNA and about 33 and 54 % of archaeal and fungal rRNA, respectively to be removed (Table S7). The method was less effective for archaeal and fungal rRNA, possibly due to the designed probes not covering all the diversity of these organisms in the rumen. Nonetheless, mRNA enrichment allowed a doubling of the number of available mRNA reads in the present RNA-seq data (Table S8), without introducing any bias (Pearson's correlation=0.96) (Figure S4). Therefore, the mRNA-enriched RNA sample was retained for functional analysis.

Supplementary Figures

Figure S1. Evaluation of using three databases (NCBI non-redundant protein (NR), Metahit V1, Metahit V3) to annotate the present rumen metatranscriptome dataset.

- A. Amount of reads giving a BLAST hit with each of the three databases. Overlaps between circles indicate the amount of reads that have led to a match with a sequence from 2 or 3 databases. Non-overlapping zones indicate the amount of reads matching with only one database.
- B. Amount of reads giving the best bitscore within each database. Overlaps between circles indicate the amount of reads which have led to a match with a sequence from 2 or 3 databases.

Prevotella

Figure S2. Distribution of glycoside hydrolase (GH), carbohydrate esterases (CE), and polysaccharide lyases (PL) transcripts assigned to the main bacterial genera identified (*Prevotella, Ruminococcus, Fibrobacter*) using the lowest common ancestor method (bitscore>90). The number of families gathered in "other" is indicated in parentheses.

Fibrobacter

Figure S2 (continued). Distribution of glycoside hydrolase (GH), carbohydrate esterases (CE), and polysaccharide lyases (PL) transcripts assigned to the main bacterial genera identified (*Prevotella*, *Ruminococcus*, *Fibrobacter*) using the lowest common ancestor method (bitscore>90). The number of families gathered in "other" is indicated in parentheses.

Figure S3. Efficiency of mRNA enrichment methods. Electrophoregrams of total RNA treated with the MicrobExpress kit (Ambion, Life Technologies SAS, Saint Aubin, France) (red) or using the in-house method (blue) that indicate improved performance of the later for removing rRNA peaks (ssu rRNA, lsu rRNA). M: internal marker.

Enrichment was performed with the starting material of 10 μ g of total RNA for the 2 methods. Resulting mRNA-enriched fractions were resuspended in the same volume and one tenth was used for quality control.

Figure S4. Correlation between relative abundances of KEGG Orthology groups observed with the total RNA and the in house mRNA-enriched method. Pearson's correlation r = 0.96.

Supplementary Tables

Table S1. Relative abundances of rumen microorganisms at the family level based on ssu rRNA analysis.

Excel file Data sheet 2

Table S2. Glycoside hydrolase (GH), carbohydrate esterase (CE), polysaccharide lyase (PL), auxiliary activities (AA), and carbohydrate binding module (CBM) families identified in non-rRNA reads using the dbCAN software (e-value<1e-05). Substrate, known activities, number of reads corresponding to each family, and their relative abundance are indicated.

Excel file Data sheet 3

Table S3. Summary of BLASTX results obtained with the non-rRNA reads annotated as CAZyme by the dbCAN software and their taxonomic binning using the MEGAN software. BLASTX comparisons were performed against the CAZy database (no e-value threshold) and the non-redundant protein database (e-value<1e-05). Only best BLAST hits are reported.

Excel file Data sheet 4

Genome bin	Phylogenetic order	Number of better hits	Average gain in	Minimum gain in	Maximum gain in
		compared	identity	identity	identity
		with NCBI-	percentage	percentage	percentage
		NR	(%)	(%)	(%)
AC2a	Bacteroidales	145	13.38	0.31	43.89
AH	Bacteroidales	101	12.41	0.6	46.57
AGa	Bacteroidales	87	18.00	1.00	54.47
AJ	Bacteroidales	65	6.23	0.03	32
BOa	Clostridiales	51	17.52	0.89	36.17
AIa	Clostridiales	35	10.23	0.67	39.69
AQ	Bacteroidales	35	16.04	0.85	42.73
AFa	Spirochaetales	31	7.55	0.04	37.74
AMa	Spirochaetales	13	7.21	1.66	25.58
APb	Clostridiales	13	13.90	1.85	47.06
AN	Clostridiales	12	5.97	0.95	17.34
AWa	Clostridiales	5	10.84	1.67	30
AS1a	Clostridiales	4	11.46	1.85	27.94
АТа	Clostridiales	2	11.14	2.22	20.05

Table S4. Improvement of BLAST results of reads detected as CAZymes by dbCAN, using draft genomes of switchgrass adherent bacteria from Hess *et al.* (2011)

		Number of rDNA sequences		Number of
		ssu	lsu	genera
Prokaryotes	Bacteria	18000	4800	179
	Archaea	142	34	10
Eukaryotes	Protozoa	36	3	10
	Fungi	22	27	5

Table S5. Statistics of the curated database dedicated to the ruminal ecosystem and the number of targeted genera. ssu : small subunit; lsu : large subunit.

Table S6.	Capture	probes	designed	specifically	for	ribosomal	RNA	(rRNA)	removal	from
rumen tota	l RNA ar	nd the an	mount add	led for captu	re.					

Microorganisms	Target	Capture probe	5'-3' sequence	Amount per reaction
	16S rRNA	16Sbact514	HCGTATTACCGCGGCTGCTGGCACG	
		16Sbact900	GCTTGTGCGGGGYCCCCGTCAATTCC	20 pmol
Bacteria		16Sbact780	GCGTGGACTACCAGGGTATCTAATC	
Dacterra		23Sbact1050	TGGCTGCTTCYAAGCCAACATCCT	
	23S rRNA	23Sbact1920	GACAAGGAATTTCGCTACCTTAGGA	24 pmol
		23Sbact2240	AGTTTGACTGGGGRGGTCGCCTCCT	
	16S rRNA	16Sarch830	CCCCCGCCAATTCCTTTAAGTTTCA	1 nmol
Archaog		16Sarch1004	TCGCTCGTTGCCTGACTTAACAGGA	1 pinoi
Alchaea	23S rRNA	23Sarch1907	TACCTTAAGAGGGTYATAGTTACCC	1.2 nmol
		23Sarch2572	CACGACGGTCTAAACCCAGCTCACG	1.2 pillor
	18S rRNA	18Sprot522	CTATTAGAGCTGGAATTACCGCGGC	0.25 nmol
Protozoa		18Sprot1146	CCACCAACTAAGAACGGCCATGCAC	0.25 pilloi
1101020a	200 - DNIA	28Sprot481	CCAATCACACCCTAACCGGCTAAGC	0.3 pmol
	205 IKINA	28Sprot178	CACACGCTATACGAGGCTTGCACTC	0.5 pillor
	18S rRNA	18Sfung789	CATTACTTCGGTCCTAGAAACCAAC	0.25 nmol
Funci		18Sfung1060	AGCCTTGCGACCATACTCCCCCGG	0.25 pilloi
rungi	28S rRNA	28Sfung638	CTGCAGACCTCAATCTCTCCGATTG	0.2 nmol
		28sfung1941	GGACCGTTAGGAACGCACCGGACAT	0.5 pilloi

		RNA-Seq data			
	rRNA copy n	rRNA reads (% total initial reads) ⁽¹⁾			
	Before enrichment	After enrichment	rRNA removal (%)	Before enrichment	After enrichment
16S bacteria	$2.83 \times 10^{10} \pm 6.60 \times 10^{9}$	$3.23 \times 10^9 \pm 1.51 \times 10^9$	88.78		
16S archaea	$2.29 \times 10^8 \pm 1.69 \times 10^{-7}$	$1.51 \times 10^8 \pm 2.63 \times 10^7$	33.77	02.0	05.4
18S protozoa	$1.13{\times}10^{10}{\pm}5.64{\times}10^{9}$	$2.15 \times 10^9 \pm 1.15 \ 10^9$	80.94	92.9	85.4
ITS fungi	$1.13{ imes}10^6{ imes}1.56{ imes}10^5$	$4.97{\times}10^5{\pm}1.72{\ }10^5{}$	54.79		

Table S7. Efficiency of the mRNA enrichment method as determined using qPCR and RNA-Seq data.

qPCR was carried out in triplicate on two different RNA extracted from the rumen sample analysed in the present study. Each value is the mean \pm standard deviation for n=6 determinations.⁽¹⁾ based on the identification of rRNA with SortMeRNA (Kopylova et al., 2012)

	Total RNA	mRNA enriched RNA
Paired-end raw reads (n)	24,282,144	20,922,080
Total size (nt)	4,551,466,369	3,855,176,363
No. of paired-end reads with Q>30	20,746,664	18,145,720
Merged reads (n)	9,863,588	8,719,248
Average length (nt)	169	168
No. of rRNA reads	9,163,861	7,450,287
No. of non-rRNA reads	699,727 (7.09%)	1,268,961 (14.55%)
Contigs (n)	12,240	23,150
Average length (nt)	354	357
Range length	201-4,442	201-4,616

Table S8. Statistics of RNA sequencing and reads trimming, merging, and assembling.

Microbial groups	Primer sets	Sequence (5'-3')	Fragment length (bp)	Reference	
Total bacteria	520F	AGCAGCCGCGGTAAT	220	Edwards et al. (2007,	
	799R2cor	CAGGGTATCTAATCCTGTT		2008)	
Methanogenic archaea	MB1174f	GAGGAAGGAGTGGACGACGGTA	233	Ohene-Adjei et al.	
	Arch1406-1389r	ACGGGCGGTGTGTGCAAG	(2007)		
Protozoa	P-SSU-316f	GCTTTCGWTGGTAGTGTATT	223	Sylvester et al.	
	P-SSU-539r	CTTGCCCTCYAATCGTWCT		(2004)	
Neocallimastigomycota	Anaerobic_fungi-F	GAGGAAGTAAAAGTCGTAACAAGGTTTC 120		Denman and	
	Anaerobic_fungi-R	CAAATTCACAAAGGGTAGGATGATT		McSweeney (2006)	

Table S9. Oligonucleotide primers used for real-time quantitative PCR

1 References

- Denman, S. E., and McSweeney, C. S. (2006). Development of a real-time PCR assay for monitoring
 anaerobic fungal and cellulolytic bacterial populations within the rumen. *FEMS Microbiol. Ecol.* 58,
 572–82. doi:10.1111/j.1574-6941.2006.00190.x.
- Dugat-Bony, E., Missaoui, M., Peyretaillade, E., Biderre-Petit, C., Bouzid, O., Gouinaud, C., et al. (2011).
 HiSpOD: probe design for functional DNA microarrays. *Bioinformatics* 27, 641–8.
 doi:10.1093/bioinformatics/btq712.

8 Edwards, J. E., Huws, S. A., Kim, E. J., and Kingston-Smith, A. H. (2007). Characterization of the dynamics
9 of initial bacterial colonization of nonconserved forage in the bovine rumen. *FEMS Microbiol. Ecol.* 62, 141–142. doi:10.1111/j.1574-6941.2007.00392.x.

- Edwards, J. E., Kingston-Smith, A. H., Jimenez, H. R., Huws, S. a, Skøt, K. P., Griffith, G. W., et al. (2008).
 Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine
 rumen. *FEMS Microbiol. Ecol.* 66, 537–45. doi:10.1111/j.1574-6941.2008.00563.x.
- Hess, M., Sczyrba, A., Egan, R., Kim, T.-W., Chokhawala, H., Schroth, G., et al. (2011). Metagenomic
 Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen. *Science* (80-.). 331, 463–467.
 doi:10.1126/science.1200387.
- Kopylova, E., Noé, L., and Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in
 metatranscriptomic data. *Bioinformatics* 28, 3211–7. doi:10.1093/bioinformatics/bts611.
- Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007).
 Clustal W and Clustal X version 2.0. *Bioinformatics* 23, 2947–8. doi:10.1093/bioinformatics/btm404.
- Ohene-Adjei, S., Teather, R. M., Ivan, M., and Forster, R. J. (2007). Postinoculation protozoan establishment
 and association patterns of methanogenic archaea in the ovine rumen. *Appl. Environ. Microbiol.* 73,
 4609–18. doi:10.1128/AEM.02687-06.
- Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., et al. (2007). SILVA: a
 comprehensive online resource for quality checked and aligned ribosomal RNA sequence data
 compatible with ARB. *Nucleic Acids Res.* 35, 7188–96. doi:10.1093/nar/gkm864.
- Sylvester, J. T., Karnati, S. K. R., Yu, Z., Morrison, M., and Firkins, J. L. (2004). Development of an assay to
 quantify rumen ciliate protozoal biomass in cows using real-time PCR. *J. Nutr.* 134, 3378–84. Available
 at: http://www.ncbi.nlm.nih.gov/pubmed/15570040.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary
 Genetics Analysis version 6.0. *Mol. Biol. Evol.* 30, 2725–9. doi:10.1093/molbev/mst197.
- 32
- 33
- 34