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Macroscale equilibrium statistical mechanics model

The equilibrium model applies to the peculiar dynamics of a system of N high restitution grains

undergoing low amplitude vibration. Experimentally, the random/peculiar component of grain

motion is obtained by filtering the acoustic hydrodynamic modes shown in the velocity spectrum,

Fig. 5, and subsequently removing the (local) long-time-average bulk grain velocity, 〈v (r)〉 =

(Ns∆ts)
−1∑

j v (r, tj) , where Ns and ∆ts are, respectively, the number of velocity measurements

obtained and the sample interval, and where r corresponds to the centroid of the interrogation area

used in PIV-based velocity measurements; see Fig. 2f.

The equilibrium statistical mechanics model rests on five assumptions, the first, third, and

fourth of which are standard in microscale equilibrium models: i) Over sub-collision to supra-
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collision-time scales, e.g., 0 < t ∼ 3 τc − 5 τc, where τc = f−1
o and fo is the vibration forcing

frequency, grain dynamics are Hamiltonian. A scaling argument below shows that for low-amplitude

vibration of high-restitution grains, this is a reasonable simplification. ii) For any given family of

grains characterized by an equivalent grain diameter, dg,e =
(
6π−1volume

)−1/3
, and for any grain

shape and any grain mass density within this family, we assume that a macroscale, length-scale-

dependent Boltzmann constant, ke = ke (le) , exists. Since ke represents a conversion factor between

temperature and energy, the assumption of a constant macroscale ke is equivalent to defining a

temperature scale.1 iii) Upon any given observation, the N-grain system will be found, with equal

probability, in any of the athermal, purely mechanical Ω grain-scale energy states available to it.

iv) At equilibrium, the observed, thermodynamic state of the N-grain system corresponds to that

state having the maximum number of associated grain-scale energy states. v) The N-grain system

remains in a single, fluid-like state, i.e., local, fixed or transient solidification zones do not appear.

While solidification can be ubiquitous in many grain flow problems, in our experiments, for all

eight grain types tested, solidification, at least on the observable free surface, does not occur. A

scaling argument below estimates the critical grain depth, for any given set of vibrational conditions

and grain material properties, below which grain kinetic energy is insufficient to overcome grain

solidification. Based on this rough calculation, solidification does not occur in our system.

Given these assumptions, we first follow standard microscale arguments2,3 to obtain: i) the

macroscale canonical distribution and partition functions, P (Ej) and Q (V, T,N) , and ii) the

macroscale bridge relation, A = −keT lnQ, where A is the Helmholtz free energy. For clarity,

we label the effective macroscale temperature and pressure as T and P, respectively, noting their
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definitions below. Thus, assume a canonical ensemble of replica N-grain systems, each exchanging

energy with a large, encompassing reservoir. Given the third and fourth assumptions above, a

standard argument2,3 can be used to minimize the function, W = W ({n}) of distribution sets,

{n} = {n1, n2, ...M} , subject to the constraints of fixed total (ensemble) energy, Ẽ =
∑M

i=1 niEi,

and fixed total grain number, Ñ =
∑M

i=1 ni. Here, nj is the number of replica systems observed

(at any instant) in macroscale energy state Ej , and M = Ẽ/E1 corresponds to the observation

in which all Ñ replicas are found in the lowest accessible energy state, E1. The resulting equilib-

rium distribution, pi = p(ni) = exp (−βeEi) Q−1, Q =
∑M

j exp (βeEj) , incorporates a Lagrange

multiplier, βe, which can, in principle, be determined by satisfying the ensemble energy constraint.

Equilibrium thermodynamic model for vibrated grain systems

As in N-particle microscale problems, the N-grain-system equilibrium thermodynamic model re-

quires that the effective system entropy, S, be defined in terms of the number of (athermal, me-

chanical) grain energy states, Ω, that are accessible to the system, specifically, the number of states

within some (uncertainty-determined) interval, (E −∆E,E + ∆E) : S = kelnΩ, where again ke,

the effective Boltzmann constant, is determined by how the effective grain temperature scale is

defined. Importantly, as in microscale thermodynamics, this definition of S incorporates all of the

essential properties of the traditional entropy, at least in fixed mass, fixed- composition/non-reacting

systems, apropos confined, high-restitution grain systems undergoing low-amplitude vibration: i) S

is maximized at equilibrium, ii) the magnitude of S depends, due to Ω′s dependencies, only on N,

the system (time-average) volume, V, and E, iii) due to the statistical independence of subsystems,
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subsystem entropies are additive, and iv) S is zero in non-vibrated systems.

Given the microcanonical definition relating S and Ω, or more generally, the canonical relation,

S = −ke
∑

i pilnpi, where pi is given above, the traditional Gibbs thermodynamic framework can be

used to self-consistently calculate any effective equilibrium thermodynamic property. Specifically,

assuming that the long- time average peculiar dynamics at any given point are stationary, or more to

the point, that local, nominally-Maxwellian equilibrium exists, then given a realistic (Hamiltonian)

model of N-grain-subsystem dynamics, an associated partition function, Q =
∑M

j exp (βeEj) , can

be determined, and in turn, used to compute local equilibrium thermodynamic properties.

Hamiltonian dynamics in high-restitution grain piles

A central assumption, on which rests the model of equilibrium statistical mechanics, is that peculiar

grain dynamics are nominally Hamiltonian. This assumption, which is well-met in our experiments,

at least for steel, aluminum, ceramic, and similar grain materials, requires that the characteristic

grain velocity, vo = Aω, is less than the critical velocity, vc, separating nominally elastic and

elastic-viscoelastic grain collisions;4 here, A and ω are the characteristic vibration amplitude and

frequency, ω = 2πfo. Under these conditions, collisions are nominally elastic and dissipationless, so

that collision time-scale grain dynamics can be described in terms of a Hamiltonian.

In order to consider this crucial question in detail, we note that a Hamiltonian statistical me-

chanical model of high-restitution grains undergoing low amplitude vibration neglects two sources

of dissipation: sliding frictional contact between colliding grains, and thermal dissipation of elasto-

acoustic energy within grains. A straightforward scale analysis of the equation of motion of indi-
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vidual grains within the vibrating pile, stated in the container-fixed, non- inertial frame:

mg z̈ = −mg

(
g + Aω2 sinωt

)
+ Ffric,z + Felast,z (1)

shows that, for the conditions in our experiments:

i) the inertial force, Finertia = mgAω2, is roughly an order of magnitude larger than grain weight:

Aω2g−1 = O (10) ;

ii) the ratio of characteristic elastic to inertial forces, Felast,z

(
mgAω2

)−1 = O
(
10−4

)
, where, for

Hertzian contact, Felast,z ≈ E1/3 (Aω)4/3 m
2/3
g a2

cd
−2
g , with the elastic contact area, ac ≈

(
3F ′

inertiadg

8E

)1/3
,

and where F ′
inertiad

−2
g ≈ mg (Aω)2 d−2

g , is the inertial pressure exerted on the grain; and most im-

portantly,

iii) the ratio of characteristic friction to inertial force, Ffric,z

(
mgAω2

)−1 = O
(
10−2

)
, where

Ffric,z ≈ µkmg(Aω)2d−1
g , and where µk ≈ 10−1 is the coefficient of kinetic friction.

Thus, corresponding ratios involving the characteristic grain kinetic energy, elastic potential energy,

and frictional energy dissipation, mg (Aω)2 , Felast,z∆ze, and Ffric,zA, respectively, exhibit either

identical magnitudes, or in the case of Felast,z

(
mg (Aω)2

)−1
= O

(
10−7

)
.

The above estimates apply to grain dynamics that include, and are dominated by, the solid-

like vibration of the grain pile- container system. As shown in Fig. 5, grain velocity spectra

indicate a strong separation of energy scales, one associated with the solid-like vibrational motion

and the other with the fluid-like motion. Thus, repeating the above estimates, but replacing

the solid-phase velocity scale, Aω, with the smaller, experimentally observed hydrodynamic, i.e.,

long-time-averaged grain flow velocity scale, vs = O
(
10−2 m/s

)
, we obtain essentially the same
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results. Thus, Hamiltonian dynamical models are reasonable, at least in the limit of low amplitude

vibration of high restitution grain piles. Aside: For simplicity, grain rotational dynamics have not

been considered in either the statistical mechanics model, nor in the grain dynamics model.

Grain pile solidification

Vibrating grain beds solidify, i.e., long-time-scale granular flow ceases, at depths exceeding a critical

depth, zc. This depth can be estimated for a vertically vibrating grain column of constant cross-

sectional area by balancing the total characteristic kinetic energy of the unsolidified grain layers

above zc against the total elastic potential energy of the solidified and elastically strained grain

layers below zc :

1
2

(Ntot −N) mog̃ ≈
(

9
dgE2

)1/3

(mog̃)5/3 1

d
8/3
g

 N∑
j=0

(Lo − zj)
5/3 dz

 or,

1
2

zc

dg
mog̃ =

(
9

dgE2

)1/3

(mog̃)5/3 1

d
8/3
g

∫ Ndg

0
(Lo − z)5/3 dz

=

(
9

dgE2

)1/3

(mog̃)5/3 1

d
8/3
g

(
L8/3

o − z8/3
c

)
(2)

where Lo = Ntotdg is the total static height of the grain column, Ntot is the total number of grain

layers, each of thickness dg, within the column, N the number of solidified layers below zc, mo is

the total mass of the grains within any layer, and g̃ = g + Aω2 is the sum of the gravitational and

induced accelerations. For the conditions used in our experiments, it is found that solidification

does not occur for the grain bed depths, Lo = O (0.3 m) , used.
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Necessary experimental conditions

In order to use a vibrated grain system as a molecular liquid or dense gas analog, two experimental

conditions should be met. First, in order to take advantage of the existing theoretical machinery

developed for molecular hydrodynamic systems, couched as it is in terms of the pair correlation

function, g(r)5,6 one should ensure that peculiar grain dynamics, over regions that are several times

larger than the PIV interrogation area (2D problems) or volume (3D), satisfy nominal translational

and rotational invariance. Second, in order to reliably reproduce molecular-scale interactions, it

is necessary to design intergranular potentials, u(r), that capture those believed to exist in the

molecular liquid of interest. For example, the hard sphere potential has served as a realistic,

zeroth order model of intermolecular interactions in simple atomic liquids.5,6 For these liquids, the

elastic collisions that characterize the dynamics of high restitution grain piles under low amplitude

vibration are expected to produce realistic, predictive single atom dynamics and collective N-atom

hydrodynamics.
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Introduction

At minimum, three requirements must be met if vibrated grain piles are to serve as macroscale

analogs for studying atomic-scale processes in simple liquids and dense gasses: i) experimen-

tally based, self-consistent grain-scale statistical mechanical models must be developed, ii) con-

tinuum, long-time-scale versions of short-time-scale conservation laws must be derived, and iii)

self-consistent predictions of observed grain hydrodynamics must be derivable from i) and ii). The

first requirement is treated in the Article and Supplement 1. The second and third are tackled here

via consideration of four problems:

1) Time averaged PIV measurements and direct observation show that the grain piles in our vibrated

bowl move in fluid-like flow patterns. See Fig. 6. Previous studies on gravity-driven1 boundary-
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driven,2 and vibration-driven grain flows,3,4 as well as grain flows induced by rotating containers,5,6

have assumed that the long-time-scale collective dynamics can be modeled using either the fixed-

viscosity Navier-Stokes (NS) equations, or, e.g., pressure- and strain-rate-dependent viscosities in

the generalized NS equations.1 In the dense gas/liquid limit, an open problem centers on rigorously

connecting short-time, random dynamics of discrete N-grain systems to the emergent dynamics of

long-time-scale, liquid-like grain flow. Here, a coarse-graining procedure, borrowed from molecular

hydrodynamics,7,8, 9 is outlined for recasting exact conservation laws, applied on short time scales

to systems of N randomly interacting grains, into continuum form. Given these exact continuum

conservation laws, the generalized Navier-Stokes equations follow by assuming linear expansions

for local, ensemble averaged mass, momentum, and energy currents in terms of local, averaged

momentum, number, and energy densities, as well as local averaged velocity, and local (equilibrium)

pressure and temperature fields.7,8, 9

2) Contrary to theoretically predicted sub-collision time scale, single atom dynamics in simple

liquids and dense gasses,9 sub- collision time scale, individual grain dynamics are not ballistic, but

overwhelmingly determined by collective, long time scale hydrodynamics. We propose a simple

hydrodynamic model to explain the dynamics manifested in Fig. 4.

3) In order to further enforce physical consistency between atomic microscale systems and macroscale

analogs, any proposed macroscale statistical mechanical model must allow calculation, via the Kubo

relations,8,9, 10 of non-equilibrium transport coefficients. In vibration-driven grain flows, the effec-

tive kinematic viscosity, νe, comprising the key transport property, must be calculable. We present

a rough scaling estimate of νe and show that the estimate is comparable to experimentally measured
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effective viscosities.11

4) On hydrodynamic time and length scales, dynamical consistency between atomic liquid/dense

gas systems and analog grain systems requires that vibration-induced grain flows correspond to

those produced in identically vibrated liquids/dense gasses. As described in the Article and as

detailed below, hydrodynamic-scale consistency is tested in preliminary fashion by solving the NS

equations for vibration-driven flow of a constant viscosity Newtonian fluid in a vibrated hemisphere.

A non- trivial problem that we also treat concerns development of continuum boundary conditions

appropriate to smooth, vibrated grain container walls.

Hydrodynamic conservation equations

We adapt the molecular-scale arguments in7,8, 12 to derive the instantaneous, grain-scale equations

of mass, momentum, and energy conservation. Thus, consider a large volume of elastic grains

undergoing low-amplitude, single frequency vibration within a smooth-walled, rigid container. In

a reference frame attached to the container, and over time scales that are long relative to the

characteristic inter-granular collision rate, τ = f−1
o , where fo is the vibration frequency, assume

that an equilibrium state exists in which no bulk displacement of the grains occurs. At some instant,

a small perturbing force acts on one, or a small number of grains simultaneously, producing mass,

momentum, and energy currents in the surrounding grains. Under low-amplitude vibration, the

perturbing force is assumed large enough to produce a collective response, on length scales that

are large relative to characteristic grain size, dg, but small enough that long-time-scale advective

transport remains negligible. Both assumptions are crucial since they allow physically reasonable
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definitions of local, spatially varying densities and currents.

Introduce definitions of the local, instantaneous grain number density, n (r, t) , momentum den-

sity, g (r, t) , and energy density, e (r, t) :

n (r, t) =
∑
κ

δ (r− rκ(t)) (1)

g (r, t) =
∑
κ

Pκ(t)δ (r− rκ(t)) (2)

e (r, t) =
∑
κ

Pκ ·Pκ

2mg
+

1
2

∑
λ6=κ

V (|rκ − rλ|)

 δ (r− rκ(t)) (3)

where rκ (t) and Pκ (t) , are the instantaneous position and momentum of grain κ, and where the

delta function acts as a counter for grains that are within some spherical radius, ro(t), of r :

δ (r− rκ(t)) = 1 |r− rκ| ≤ |ro (t) |

= 0 otherwise (4)

Due to the large size of the grains, N ′ cannot be arbitrarily large. Rather, constraints must

be met when defining N ′, as well as the time interval, ∆t, over which we recast system dynamics

into continuum form: i) The characteristic size of the system, L′ ≈ N ′1/3dg, must be small relative

to characteristic size, Lc, of the container holding the grains. ii) ∆t must be long enough to en-

sure local equilibrium, i.e., ∆t >> τc = f−1
o , but short enough that thermal dispersion (produced

by grain peculiar kinetic energy) of the N’-grain system remains negligible. The latter constraint

ensures validity of momentum conservation, as applied to the system at any instant, t, and can
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be understood by a physical/intuitive derivation of the Navier-Stokes equations. [A balance of

instantaneous surface and body forces acting on an arbitrary fluid particle, combined with in-

troduction of an assumed linear/Newtonian constitutive relationship between surface stresses and

local velocity gradients, leads directly to these equations. Importantly, the derivation fails if the

time step used to determine the particle’s momentum change is so large that significant thermal

particle dispersion occurs.] The time scale for thermal dispersion of the N ′ grain fluid particle is

on the order of τd = N ′2/3d2
g,eD

−1, where D, the effective self-diffusion coefficient for grains, is

connected through the Einstein and Stokes relations (see, e.g.,13), D = keTe (6πdg,eµe)
−1 , to the

effective grain diameter, dg,e, (see below), and the effective grain viscosity, µe (see below). Note that

keTe = keTe (x, t) = mg 〈v′i (x, t) v′i (x, t)〉 , where, for example, in strongly two-dimensional, locally

isotropic grain flows (like those near the grain pile surface in our experimental system), i = 1, 2.

[Aside: For modeling purposes, it is often convenient to replace non-spherical grains with equivalent

spherical grains. A geometric conversion, expected to provide only semi-quantitative predictions

of grain dynamics, follows by, e.g., setting the actual grain volume equal to an equivalent sphere.

This then leads to an effective dg,e.]

Conservation equations, governing the instantaneous continuum dynamics of an arbitrary system

of N ′ grains lying within r̃ of r, are derived in wavenumber space, following.12 This approach

assumes a small disturbance to the equilibrium state of an N’-grain system, lying within a large

equilibrium reservoir, and explicitly captures the long wavelength, slow time-scale (hydrodynamic)

system response. An alternative approach, illustrated here via the mass conservation equation: i)

bypasses Fourier transforms, ii) explicitly demonstrates mass, momentum, and energy conservation,
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and iii) shows that each term in each continuum conservation law represents a volumetric average

over the instantaneous grain system volume, Vo (t) . It is important to note that in both approaches,

the smeared delta function, δ (r− rκ(t)) , is the mathematical device that spatially homogenizes

discrete number, momentum, and energy densities, allowing recasting of the conservation laws in

continuum form.

Thus, consider a system of N ′ grains lying within a deforming, translating volume Vo(t), having

characteristic dimension ro(t) = O
(
N ′1/3dg

)
, where Vo(t) translates with the local mean velocity,

u (r, t) = 〈
∑
κ vκ〉 , and where an equilibrium ensemble is used for averaging. The instantaneous

mass of grains lying within Vo (t) is given by

M (t) =
∫
Vo(t)

∑
κ

mκδ
(
r′ − rκ(t)

)
dV ′ (5)

Taking the time derivative inside the integral gives

∫
Vo(t)

∑
κ

mκvκ (t) δ,rκ
(
r′ − rκ(t)

)
dV ′ (6)

Next, calculate the net mass flux through the surface Ao (t) enclosing Vo (t)

∮
Ao(t)

g′ · n′dA′ =
∮
Ao(t)

[∑
κ

mκvκ (t) δ
(
r′ − rκ(t)

)]
· n′dA′ (7)
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and use the divergence theorem to obtain:

∫
Vo(t)

∇′ · g′dV ′ =
∫
Vo(t)

[∑
κ

mκvκ (t) δ,r′
(
r′ − rκ(t)

)]
dV ′ (8)

Since δ,rκ = −δ,r′ at all instantaneous grain positions, rκ (t) , where subscripts denote partial

derivatives, then ∫
Vo(t)

ρ,tdV
′ +

∫
Vo(t)

∇′ · g′dV ′ = 0 (9)

Three results follow from Eq. (9). First, by the Liebnitz theorem, the two terms on the left are

identically equal to

M (t)
dt

= 0

proving that the mass of the N ′−grain system is conserved. Second, by application of the mean

value theorem, we obtain the differential mass conservation law:

∂ρ

∂t
+∇ · g = 0 (10)

which holds at some location, r∗, within Vo (t) . Third, it is clear that each term in Eq. (10) can

be interpreted as the instantaneous volume-average of that term, over Vo (t) .

The hydrodynamic momentum and energy conservation laws are most easily derived by trans-

forming to wavenumber space.9,12 The resulting equations are given by:8

∂g
∂t

+∇ · τ = 0 (11)
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and

∂e

∂t
+∇ · je = 0 (12)

where τ is the momentum current density, or equivalently, the stress tensor:

τij (r, t) =
∑
κ

P κi P
κ
j

m
δ (r− rκ(t))−

−1
2

∑
κλ

rκλj φi
(
rκλ
)
·

·
∫ 1

0
δ

(
r− rκ + rλ

2
− l′

2
rκλ
)
dl′ (13)

and where je is the energy current density:

jei (r, t) =
∑
κ

P κi P κi
2m

+
1
2

∑
λ6=κ

φ
(
rκλ
) ·

·P
κ
i

m
δ (r− rκ(t))−

∑
κλ,κ 6=λ

1
4m

rκλi φj
(
rκλ
) (
P κj + P λj

)
·

·
∫ 1

0
δ

(
r− rκ + rλ

2
− l′

2
rκλ(t)

)
dl′ (14)

Here, φ
(
|rκλ|, t

)
= φ

(
|rκ(t)− rλ(t)|

)
is the elastic potential energy between pairs of directly

contacting grains, as well as between pairs of separated grains, instantaneously connected through

randomly connecting and disconnecting chains of elastic contact points. In order to take advantage

of the machinery developed for pairwise potentials, we express the elastic potential in this fashion.

Likewise, φi
(
rκλ
)

is the ith component of the corresponding elastic force between directly contacting

and indirectly contacting grain pairs.
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Given exact continuum conservation laws, the generalized Navier-Stokes equations follow by

expanding long-time/ensemble-averaged (local) mass, momentum, and energy current densities in

terms of both non-derivative reactive terms, which follow from Galilean transformation between

the local bulk fluid motion and the local rest state, and derivative dissipative terms which capture,

e.g., Fourier thermal conduction and Newtonian frictional/viscous stresses. See.7,8

Hydrodynamic organization of sub- and near-collision time scale

single grain dynamics

Due to random collisions between grains, sustained, high frequency elastic modes are excited in

each grain within the pile. The elastic modes, in turn, produce small, high frequency bumps on

each grain surface. Scaling shows that the characteristic contact time between pairs of colliding

grains, τc ≈ f−1
o , is much longer than the (slowest) time scale, τE , associated with bump formation.

Thus, in terms of single grain dynamics, and on the long collision time scale, τc, individual grains

can be modeled as memory-free Brownian particles immersed in a discontinuous bath of randomly

impinging elastic bumps.

This picture suggests the following hydrodynamic model of multiple grain dynamics, applicable

on time scales on the order of the collision time scale, τc, but long relative to τE . Consider a

continuous (and virtual) grain fluid composed of differential grain fluid elements. The dynamics of

the grain fluid are determined by the hydrodynamic (NS) equations derived above:

v′i,t = νe∇2v′i + Si (15)
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where v′i = v′i (r, t) is the ith component of the local grain fluid velocity relative to the local average

fluid velocity and Si = Si (r, t) is a volumetric momentum source. The pressure gradient term in

Eq. (15) has been dropped: we are modeling (experimentally accessible) surface and near-surface

grain hydrodynamics, where the hydrodynamic pressure is nominally fixed at ambient.

Concerning the source term, Si, over the course of any given vibration cycle, any given grain

remains in contact with a (small) number of neighboring grains; at each contact point, the grain

is acted upon by small, high-frequency elastic bumps. Over time scales greater than τE , but less

than or on the order of τc, we thus model the effect of intergranular elastic contact, which acts at

all times on all grains within the pile, as an isotropic, δ function momentum source:

Si = Si
(
r̃, t̃
)

= ae,iδ (r̃) δ
(
t̃
)

(16)

where r̃ = r−r′, t̃ = t− t′, (r′, t′) is the location and instant of momentum injection, and ae,i is the

average, elastic-contact-induced momentum source strength. Given Eq. (16), the time- and space-

dependent response of the granular fluid to vibration-driven momentum injection follows from Eq.

(15):

v′i
(
r̃, t̃
)

=
ae,i(

4πνet̃
)d/2 exp

[−r̃ · r̃
4νet̃

]
(17)

where d, is the dimension of the hydrodynamic (response) flow.

Turning to calculation of the single grain velocity autocorrelation function,

ψ
(
t̃
)

= 〈vg (0) · vg (0)〉−1 〈vg
(
t̃
)
· vg (0)

〉
(18)
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and again focusing on short sub- and near-collision time scales, t̃, where τE << t̃ = O (τc) , we

approximate the ensemble average,
〈
vg
(
t̃
)
· vg (0)

〉
, as

〈
vg
(
t̃
)
· vg (0)

〉
≈ a2

e(
4πνet̃

)d/2 exp
[−r̃ · r̃

4νet̃

]
(19)

where r̃ = r − r̃o, and r̃o is the grain’s initial position. In other words, the single-grain ensemble

average velocity at time t̃ is approximated as the grain fluid velocity at the same instant, while

the initial grain velocity is approximated as the fluid velocity at the instant of vibration-induced

momentum injection, vg(0) ≈ v′
(
r̃o, t̃ = 0

)
= ve ≈ aeτE .

Finally, due to the short time scale, single grain displacement is small, i.e., r̃o ≈ 0, so that

ψ
(
t̃
)
∝ t̃−d/2 τE << t̃ = O (τc) (20)

thus providing a purely hydrodynamic mechanism - pure diffusion of vibration-induced momentum

injection - for explaining the short-time, single grain dynamics exposed in Fig. 4.

Consistency check 1: Scaling estimate of the effective grain viscos-

ity via a macroscale Kubo relation

Here, a Kubo relation10 is used in a scaling estimate of the grain fluid’s effective shear viscosity,

µe, which, in turn, is compared against experimentally measured viscosities.11 This represents

a significant consistency check since the Kubo relations: i) assume existence of hydrodynamic-
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scale conservation laws associated with conserved microscale variables,7,9 ii) assume existence of a

Hamiltonian N-particle system, initially in thermodynamic equilibrium, but subject to small, non-

equilibrium fluctuations or forcing, iii) rigorously determine hydrodynamic transport coefficients in

terms of correlation functions of current densities, iv) require equilibrium ensemble averaging, and

v) connect long-time- and long-length-scale particle dynamics, typically beyond direct observation

in microscale systems, to directly observable continuum dynamics.

At least three approaches have been used to derive the Kubo relation for µe.8,9, 10,12,14,15 Using

any of these approaches, the shear viscosity can be expressed as the cumulative, long-time evo-

lution of the grain-scale transverse momentum current, i.e., shear stress, arising in response to a

perturbation to the transverse momentum density:9

η =
β

V

∫ ∞

0
〈τxy (t) τxy (0)〉 dt (21)

where the transverse grain-scale stress tensor component is given by

τxy (t) =
∑
κ

[
vκx (t)P κy (t) +

1
2

∑
λ

(
rκλ
)
x

∂uκλ

∂rαy

]
(22)

Here, the random or imposed perturbation acts in the x−direction, y is a transverse direction, rκλ =

|rλ − rκ| is the spatial separation between grains κ and λ, vκ (t) and Pλ (t) are the instantaneous

velocity and momentum of grains κ and λ, relative to the local mean velocity, and uκλ represents

the separation-dependent elastic potential between grain pairs. See above for a detailed version of

τ.
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In order to apply (21) to a grain pile undergoing low-amplitude vibration, we first use the

equipartition theorem to estimate βe, the Lagrange multiplier determined by satisfying the canonical

ensemble energy constraint. Thus, model pair-wise elastic contact between grain pairs via equivalent

elastic springs, note that the corresponding N-grain Hamiltonian is quadratic in its 3N momenta and

3N spatial coordinates, and use the equipartition theorem - see, e.g.,16 for a generic development -

to obtain:

〈H〉 = 3Nβ−1
e ∼ NA2ω2 (23)

where A and ω are respectively the vibration amplitude and frequency. Thus, as in microscale

problems, the macroscale single-grain energy scale, β−1
e , is on the order of the average kinetic

energy of the short, random, collision-time-scale motion of individual grains. Clearly, an equivalent

grain temperature could be defined, based on (23). Note too that we obtain the same scaling,

β−1
e ∼ A2ω2, for Hamiltonians that incorporate grain rotational energy.

Next, assume that the grain-scale transverse stress autocorrelation function, 〈τxy (t) τxy (0)〉 , de-

cays exponentially, 〈τxy (t) τxy (0)〉 = 〈τxy (0) τxy (0)〉 exp−t/τc, and assume that the time constant,

τc, is on the order of the grain collision time scale, which in turn corresponds to the inverse vibration

frequency, τ = f−1
o = 2πω−1. Noting that 〈τxy (0) τxy (0)〉 ∼ Nm2

gA
4ω4, that V = Nmgρ

−1
e , where

ρe is the effective density of N grains, each of mass mg, occupying volume V, and carrying out the

integral, finally leads to

νe ∼ 2πA2ω (24)

where νe = µeρ
−1
e is the effective momentum diffusivity, i.e., the kinematic viscosity.
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Figure 1: Comparison of measured kinematic viscosities, νe, against approximate grain-
independent ν ′es obtained by scaling. The grain types, having properties listed in Supplement
3, are: 1) 2050DZ, 2) RCP0909, 3) RS19K, 4) H1008D, 5) RS1022ZS, 6) RS3515DZS, 7) RSG1010,
8) RS1010, 9) mixed media. The relatively large ν ′es for 2050DZ and RS3515DZS likely reflect the
fact that these are approximately 20-30 times more voluminous than the other grain types tested.
The rough estimate for νe, Eq. (24), obtained by scaling the Kubo relation, Eq. (21), is drawn as
a horizontal blue line.

Three observations follow from Eq. (24). First, the estimate suggests that νe is largely insensitive

to grain shape, as well as grain effective density. Similarly, and consistent with the scaling estimates

in Supplement 1 - showing the dominance of grain inertia over elastic and friction forces - the
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estimate indicates that νe is also insensitive to grain elastic properties. Third, Eq. (24) indicates

that νe grows quadratically with vibration amplitude and linearly with frequency. Physically, while

this remains untested, it suggests a shear thickening effect with increasing vibration amplitude

and/or frequency.

In order to test the rough estimate in (24), we compare it against experimentally measured

kinematic viscosities, obtained for grain piles comprised of one of nine different grain shapes, each

shape composed of either high density plastic, ceramic, or high density ceramic.11 These experi-

ments, to be reported in a another paper,11 directly measure the total, time averaged drag force

produced on an instrumented cylinder, submerged in vibrating grain piles; see11 for details.

As shown in Fig. 1, the estimated νe ∼ 4.7(10−3) m2s−1, corresponding to our experimental

conditions, A = 2(10−3) m and ω = 188.5 s−1, is qualitatively consistent with the effective ν ′s we

have observed.

Consistency check 2: Continuum grain flow model and boundary

conditions at smooth, vibrating walls

This section serves two purposes. Fundamentally, we want to test, in a simple, preliminary way,

the ability of the NS equations to capture the non-trivial toroidal flow pattern we observe via PIV.

Practically, we wish to propose a boundary condition appropriate to vibration-driven grain flows

in smooth-walled containers.
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Flow model

Consider the steady, time average flow of a Newtonian, incompressible fluid in an open hemisphere,

where the hemisphere is subject to three modes of vibration, mimicking those in our experiments:

i) circular vibration in a vertical plane, ii) precessive rotation about a fixed vertical axis, and

iii) azimuthal back-and-forth vibration. In a non- inertial reference frame fixed to the bowl, the

non-dimensional, constant viscosity NS equations, stated in terms of vorticity, ω, take the form:

Re
Dω

Dt
= Re (ω · ∇)v +∇2ω (25)

where Re = vsR/ν is the Reynolds number, v is the local grain fluid velocity, vs ≈ 2
(
10−2

)
ms−1,

is the observed long-time scale average velocity (as measured by PIV or direct observation), ν ≈

4
(
10−3

)
m2s−1, is the characteristic kinematic viscosity, as measured in11 and as estimated above,

R ≈ 10−1 m, is the hemisphere/bowl radius, and D/Dt is the material derivative operator.

With regard to an assumed constant dynamic viscosity, µ,1,4, 5 provide strong evidence that

effective grain viscosities are not fixed, but are proportional to the local pressure, P, and inversely

proportional to the determinant, |γ̇|, of the local strain rate tensor. Scaling shows that in our

experimental grain piles, pressure varies essentially hydrostatically, and that the characteristic top-

to-bottom pressure variation across the grain pile (which includes an inertial Aω2
o contribution

to the gravitational body force) is only on the order of the 5 % of the background atmospheric

pressure. Similarly, scaling indicates that, due to the geometric simplicity and the low Reynolds

number character of our experimental flows, spatial variations in strain rate are relatively minor.
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Thus, for purposes of preliminary modeling, a fixed viscosity is a reasonable approximation. With

regard to density variations, a simple scaling argument shows that the relative density variation,

∆ρ/ρo, is on the order of A/dg,e << 1, where ρo is the measured (bulk) grain density under

static conditions, and again, A and dg,e are respectively the vibration amplitude and effective grain

diameter. Thus, in our system, the long-time-scale grain flow is effectively incompressible. Finally,

while Re = O (0.5) , for simplicity, we neglect the two inertial terms in Eq. (25).

Vorticity boundary condition

The walls of the vibrational bowl in our experiments are smooth, and in flow field measurements

about fixed smooth plates, we observe almost pure slip flow, with essentially no sticking. Focusing

for illustration on the boundary condition associated with precessive bowl rotation, and referring to

Fig. 2, we first set up the kinematics of the time-averaged grain-bowl wall interaction: i) picture the

at-wall motion of an idealized, spherical, representative grain (RG), produced by wall precession,

where, for small amplitude vibration, the diameter of the RG is significantly larger than A; ii) over

one vibration cycle, the RG traces out a bowl-grain interaction envelope, while a fixed point on

the wall traces out a (much) smaller circle of radius r′ (where the latter can be readily determined

as a function of vibration amplitude, A, and position,
(
r̂, θ̂
)
, on the bowl wall); iii) fill the latter

circle with a virtual solid disk of grain material, i.e., recognize that over time scales long relative

to f−1
o , the circle is, on average, occupied by grains (colliding randomly with the wall); and iv) on

the same long time scale, assume that the virtual grain disk rotates at the precessive frequency, fo.

Next, focus on the long-time-scale dynamics of the virtual disk and assume that the total, time-

averaged rotational inertia of the virtual disk (produced by random grain-bowl collisions), equals
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Figure 2: Derivation of vorticity boundary condition. For clarity, we show position-dependent
grain vorticity generation at the bowl wall produced by precession of the bowl’s otherwise vertical
rotation vector, Ω. The precessing vector produces position-dependent rotation, Ω̃, of the bowl;
over a large number of bowl rotations, the latter produces a time average, virtual, solid disk of
grain material at the wall, depicted as the small tilted disk in a and as a circle -viewed in the
direction opposite Ω̃ - in b. [Note: Ω̃ corresponds to Ωp in Fig. 6.] See text for derivation details.

the total, time- averaged viscous torque produced by grains outside the virtual disk:

1
T̃

[∫ r′(r̂,θ̂)

0
r̃∆m

v2 (r̃)
r̃

dt′
]

= r′
(
r̂, θ̂
)
τ
(
r′
)
2πr′

(
r̂, θ̂
)
dg (26)

where T̃ >> f−1
o is the averaging period, ∆m = ρor̃∆r̃∆θ̃dg, v2 (r̃) r̃−1 = Ω2

or̃, r
′ = r′

(
r̂, θ̂
)
, and

Ωo = 2πfo. The viscous shear at the edge of the virtual disk is τ (r′) = µe
∂vψ
∂n = µeωt

(
r̂, θ̂
)
, where

ωt
(
r̂, θ̂
)
, is the local vector vorticity produced by precession. [The partial derivative represents the

(local) change in the grain velocity component, vψ, parallel to Ω̃, in the local wall normal direction.]

A similar approach can be used to derive time-averaged, long-time-scale vorticity produced by

18



the other two components of bowl vibration. Given these boundary conditions, the steady state

vorticity equation governing the time-averaged vorticity field can be solved analytically, allowing,

in turn calculation, via the Biot-Savart relation, the steady time-averaged velocity field. Further

details will be reported in a forthcoming paper.

As shown in Fig. 6, this relatively simple model captures the non-trivial helical grain flow that

we observe. Importantly, and consistent with observed short-time-scale, single grain dynamics -

Fig. 3, and long-time- scale collective grain hydrodynamics - Fig. 4, we observe another significant

signature - the steady (time-averaged) flow of a vibration- driven atomic liquid/dense gas in a

vibrated hemisphere - of molecular hydrodynamics in vibrated grain piles.
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Supplement 3: Grain properties

R. G. Keanini, Peter T. Tkacik, Eric Fleischauer,

Hossein Shahinian, Jodie Sholar, Farzad Azimi and Brid Mullany

Department of Mechanical Engineering and Engineering Science

The University of North Carolina at Charlotte

Charlotte, North Carolina 28223-0001

1

Name Image Material Nominal 
Dimensions 
(mm) 

Density 

2050DZ Plastic 36 x 13 752 

RCP0909 Ceramic 9 x 9 2033 

RS19K Ceramic 19 x 20 1711 

H1008D Plastic 9 x 6 x 8 2033 



Figure 1: Grain properties. Dimensions represent maximum lengths of single grains in mutually 
perpendicular directions. Measured densities are those of the solid grain material. For H1008D, there is 
a slight taper in the (triangular) cross-sectional area of the grain: over the 6 mm height of the grain, the 
side length of the equilateral triangle decreases from 9 to 8 mm.  For mixed media, grain sizes fall within 
the dimensions shown.  

2

RS1022ZS Ceramic 10 x 20 1600 

RS3515DZ
S 

Ceramic 35 x 15 1285 

RSG1010 Ceramic 10 x 10 1390 

RS1010 Ceramic 10 x 10 1147 

Mixed 
Media 

Ceramic and 
Plastic 

 5 x 5 to 10 x 15  1615 
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