SUPPLEMENTARY MATERIAL

GENOME-WIDE ASSOCIATION STUDY OF POLYMORPHISMS PREDISPOSING TO BRONCHIOLITIS

Anu Pasanen^{1*}, Minna K. Karjalainen¹, Louis Bont², Eija Piippo-Savolainen³, Marja Ruotsalainen³, Emma Goksör⁴, Kuldeep Kumawat⁵, Hennie Hodemaekers⁶, Kirsi Nuolivirta⁷, Tuomas Jartti⁸, Göran Wennergren⁴, Mikko Hallman¹, Mika Rämet^{1,9†}, Matti Korppi^{10†}

* **Correspondence**: Anu Pasanen, MSc, Department of Children and Adolescents, Institute of Clinical Medicine, University of Oulu, 90220 Oulu, Finland. Tel. +358 50 342 7253, Fax +358 8 315 5559, E-mail: <u>anu.pasanen@oulu.fi</u>

[†]These authors contributed equally to this work.

The enrollment of GWAS populations

The Finnish individuals (n = 936) in the GWAS discovery population originated from Kuopio (64 cases, 64 controls), Tampere (124 cases), and Helsinki/Kuopio (684 controls) regions. Cases from Kuopio comprised two prospective cohorts of term children admitted to Kuopio university hospital with bronchiolitis in 1981–1982 and 1992–1993^{1,2}. Age matched controls (+/- two months) were collected for genetic analysis. Chronic pulmonary disease (including asthma) was an exclusion criterion for cases. For controls, exclusion criteria were wheezing or hospitalization before the age of 24 months. GWAS subjects from Tampere were healthy full-term infants less than 12 months of age hospitalized for bronchiolitis at Tampere university hospital³. The enrollment periods were between December 2001 and May 2002, and between October 2002 and May 2004. The controls from the Helsinki/Kuopio region were anonymous population controls obtained through the Nordic Control database (NordicDB)^{4,5}. The controls were selected from the database based on a city of origin. Remaining outliers were excluded based on genome-wide identity-by-state (IBS) information. A Swedish subset of the GWAS population (29 cases and 30 controls) comprised a prospective cohort of children who were hospitalized with a first wheezing episode (wheezing bronchitis/acute bronchiolitis)^{6,7} and age-matched controls (+/- two months). Hospitalizations occurred between March 1984 and November 1985.

Replication populations

Dutch population (n = 848) included previously healthy, native white Dutch children (n = 416) who were hospitalized for RSV-associated LRI during 1992–2006 and unselected controls born in the Netherlands from a Dutch health examination survey, the Regenboog study (n = 432) ^{8, 9}. Children with previous airway morbidity, wheeze or airway medication were excluded. A case set for further replication comprised 202 bronchiolitis cases aged 3–23 months collected in Turku, Finland, between September 2000 and May 2002, and between June 2007 and March 2010 (Vinku and Vinku2 studies) ^{10, 11}. These cases were tested against the NordicDB population controls. Exclusion criteria included more than one previous wheezing attack, inhaled or systemic corticosteroids and chronic nonatopic disease.

Quality control and imputation of the genome-wide data

We performed quality control (QC) of the genome-wide SNP data with PLINK 1.90 beta ("PLINK 1.9") ^{12, 13} and removed samples with a genotype call rate of <97%. Variants with a minor allele frequency (MAF) of <0.01, a genotyping rate of <0.9 or deviation from Hardy–Weinberg equilibrium (HWE, p < 0.001) were excluded. Based on pairwise identity-by-state (IBS) distances and identity-by-descent (IBD) similarities, fourteen samples were excluded as population outliers or to avoid confounding by cryptic relatedness (pihat cut-off 0.15). After QC, 995 study subjects were available for the analyses: 464 male subjects and 531 female subjects/217 cases and 778 controls. There were 79,563 autosomal SNPs with a MAF of >0.01.

Genome-wide data was prephased with SHAPEIT2, followed by genotype imputation (i.e., statistical prediction of missing genotypes) of autosomal chromosomes with IMPUTE2^{14, 15}. The reference panel used for prephasing and imputation was the 1,000 Genomes Phase 3 integrated variant set (release in NCBI build 37 (hg19) coordinates, 12 October 2014). Populations from the areas of Kuopio and Gothenburg, which were genotyped in the same platform, were imputed together first, and the population from Tampere was imputed together with the NordicDB controls later. We combined the two imputed data sets and implemented basic QC measures, which entailed removing variants with MAF < 0.01, genotyping rate < 0.9, or deviation from HWE (p < 0.001). An imputation info score of 0.7 was used as the cut-off value for excluding poorly imputed variants. The overall proportion of genotypes with non-missing data was 0.97. There were 5,304,323 SNPs post-imputation and QC.

References

1. Reijonen, T., Korppi, M., Pitkakangas, S., Tenhola, S. & Remes, K. The clinical efficacy of nebulized racemic epinephrine and albuterol in acute bronchiolitis. *Arch. Pediatr. Adolesc. Med.* **149**, 686-692 (1995).

2. Korppi, M., Halonen, P., Kleemola, M. & Launiala, K. Viral findings in children under the age of two years with expiratory difficulties. *Acta Paediatr. Scand.* **75**, 457-464 (1986).

3. Koponen, P., Helminen, M., Paassilta, M., Luukkaala, T. & Korppi, M. Preschool asthma after bronchiolitis in infancy. *Eur. Respir. J.* **39**, 76-80 (2012).

4. Leu, M. *et al.* NordicDB: a Nordic pool and portal for genome-wide control data. *Eur. J. Hum. Genet.* **18**, 1322-1326 (2010).

5. Bilguvar, K. *et al.* Susceptibility loci for intracranial aneurysm in European and Japanese populations. *Nat. Genet.* **40**, 1472-1477 (2008).

6. Goksor, E. *et al.* High risk of adult asthma following severe wheezing in early life. *Pediatr. Pulmonol.* **50**, 789-797 (2015).

7. Wennergren, G. *et al.* Characteristics and prognosis of hospital-treated obstructive bronchitis in children aged less than two years. *Acta Paediatr.* **81**, 40-45 (1992).

8. Viet AL, Kroesbergen HT, Verhoeff AP, Seidell JC, Otten F, Veldhuizen H van. Risk Factors and Health in the Netherlands, a Survey by Municipal Public; Regional results. RIVM Report 260854005. (2004).

9. Janssen, R. *et al.* Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. *J. Infect. Dis.* **196**, 826-834 (2007).

10. Lehtinen, P. *et al.* Prednisolone reduces recurrent wheezing after a first wheezing episode associated with rhinovirus infection or eczema. *J. Allergy Clin. Immunol.* **119**, 570-575 (2007).

11. Jartti, T. *et al.* Short- and long-term efficacy of prednisolone for first acute rhinovirus-induced wheezing episode. *J. Allergy Clin. Immunol.* **135**, 691-8.e9 (2015).

12. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets. *Gigascience* **4**, 7-015-0047-8. eCollection 2015 (2015).

13. Chang, C. C. & Purcell, S. PLINK 1.9. https://www.cog-genomics.org/plink2.

14. O'Connell, J. *et al.* A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness. *PLoS Genet.* **10**, e1004234. doi:10.1371/journal.pgen.1004234 (2014).

15. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *PLoS Genet.* **5**, e1000529 (2009).

Supplementary Figure S1. Manhattan plot showing bronchiolitis GWAS results for the discovery population of 217 cases and 778 controls analyzed with logistic regression under an additive model. X-axis represents the genome in physical order, y-axis shows $-\log 10$ *p* values for all SNPs (starting from 0.01). Blue line represents the threshold of suggestive associations ($p < 1 \times 10^{-5}$). The stringent level of genome-wide significance ($p < 5 \times 10^{-8}$) was not reached. The strongest suggestive signals were detected in the areas of *VSTM4*, *C10rf71*, and *DRGX* in chromosome 10 and *LOC105375265* and *LOC105375266* in chromosome 7.

Supplementary Figure S2. Manhattan plot showing results of the RSV bronchiolitis GWAS (121 cases, 778 controls). X-axis shows chromosomes 1–22, y-axis shows –log10 *p* values for all SNPs (starting from 0.01). The stringent level of genome-wide significance ($p < 5 \times 10^{-8}$) was not reached. Blue line represents the threshold of suggestive associations ($p < 1 \times 10^{-5}$). The strongest suggestive signal was detected in the area near genes *VSTM4*, *C10rf71*, and *DRGX* in chromosome 10. The best signal in chromosome 10 was shared between bronchiolitis GWAS and RSV bronchiolitis GWAS.

		Variant informat	tion		Bronchi	olitis GWAS	RSV bronc	Replication genotyping			
Chr	SNP	Location	Genes**	A1	OR‡	р	OR‡	p	A1	ORT	p
1	rs75508464	22288656	CELA3B, HSPG2	С	2.27	9.0×10 ⁻⁶	2.21	3.7×10 ⁻⁴	С	0.80	0.242
1	rs522468 [†]	36653677	MAP7D1, TRAPPC3	Т	1.33	0.023	1.78	2.1×10 ⁻⁴	-	-	-
1	rs35665787 [†]	43233988	C1orf50	G	1.77	0.013	2.88	3.4×10 ⁻⁵	-	-	-
1	rs269101	112628860	LOC643355, KCND3	Т	1.61	4.2×10 ⁻⁵	1.70	3.0×10 ⁻⁴	Т	1.21	0.054
1	rs269094	112639174	LOC643355, KCND3	С	1.67	5.3×10 ⁻⁵	1.81	1.9×10^{-4}	С	1.28	0.029
1	rs59449379	117480316	PTGFRN	А	1.85	6.8×10 ⁻⁵	2.36	3.2×10 ⁻⁶	А	0.69	0.018
1	rs75940909	153932075	SLC39A1	А	3.97	1.0×10 ⁻⁴	5.58	9.2×10 ⁻⁶	А	0.82	0.600
1	rs186841738 [†]	154187935	C1orf43	А	4.83	2.6×10-5	6.73	3.1×10 ⁻⁶	-	-	-
1	rs35835690†	189820786	LOC107985456, LOC105371657	DEL	2.80	1.1×10 ⁻⁵	2.41	0.0033	-	-	-
1	rs61202512	246860213	LOC102724382, SCCPDH	А	1.67	1.6×10 ⁻⁵	1.49	0.0077	А	1.00	0.971
1	rs3007311†	246866902	LOC102724382, SCCPDH	Т	1.69	1.1×10 ⁻⁵	1.62	0.0014	-	-	-
2	rs112913823	36617435	CRIM1	G	2.65	4.8×10 ⁻⁵	4.38	2.4×10-6	G	1.15	0.483
2	rs17749106	46719922	ATP6V1E2	С	1.66	1.4×10 ⁻⁵	1.60	0.0016	С	1.01	0.929
2	rs12712976	46786491	RHOQ	А	0.59	8.2×10 ⁻⁵	0.46	1.6×10^{-5}	А	1.01	0.905
2	rs782605π	55888413	PNPT1	G	2.04	0.0061	3.61	5.2×10-6	-	-	-
2	rs706551	55903620	PNPT1	G	1.67	0.028	2.60	1.6×10 ⁻⁴	G	1.40	0.125
2	rs774503	155399735	LOC105373693	Т	1.73	2.7×10 ⁻⁵	1.74	6.5×10 ⁻⁴	Т	0.93	0.507
2	rs11886348	235193436	LOC105373933	G	3.35	2.8×10-6	3.22	1.6×10 ⁻⁴	G	1.08	0.791
2	rs6437298	241120401	OTOS, COPS9	G	1.70	2.0×10 ⁻⁴	2.12	2.3×10 ⁻⁵	G	0.82	0.093
3	rs79062720*	5442550	MIR4790, EDEM1	С	3.79	4.7×10 ⁻⁶	4.04	8.3×10 ⁻⁵	-	-	-
3	rs9880307†	16974610	PLCL2	А	0.69	0.0022	0.53	5.9×10 ⁻⁵	-	-	-
3	rs6775709†	17114036	PLCL2	С	0.73	0.0081	0.53	5.1×10 ⁻⁵	-	-	-
3	rs4685426	17119238	PLCL2	G	0.75	0.015	0.54	1.0×10^{-4}	G	0.98	0.845
3	rs35439956	25953521	LINC00692, OXSM	G	4.28	1.6×10 ⁻⁵	3.92	6.5×10 ⁻⁴	G	1.07	0.811
3	rs7638123†	36363607	STAC, DCLK3	А	2.06	7.4×10 ⁻⁶	-	-	-	-	-
3	rs2127231	36391997	STAC, DCLK3	А	2.06	1.6×10 ⁻⁵	2.43	2.4×10-5	А	1.03	0.860
3	rs56039226†	39318192	CX3CR1	А	4.43	5.7×10 ⁻⁵	4.17	9.8×10 ⁻⁴	-	-	-
3	rs6437736	107208688	BBX, LOC101929607	А	0.58	3.0×10 ⁻⁶	0.63	0.0016	А	1.18	0.088
3	rs13079196	143197761	SLC9A9	G	2.20	1.4×10 ⁻⁵	2.45	6.4×10 ⁻⁵	G	0.76	0.121
3	rs35443555	143359156	SLC9A9	Т	2.20	4.2×10-4	3.04	1.8×10^{-5}	Т	0.89	0.643
3	rs36086140	153973898	ARHGEF26	Т	2.86	5.0×10 ⁻⁶	2.85	2.4×10-4	Т	0.91	0.682
3	rs6444089	185676350	TRA2B, ETV5	G	0.66	6.3×10 ⁻⁴	0.48	8.7×10 ⁻⁶	G	1.02	0.877
3	rs55675198	185677615	TRA2B, ETV5	DEL	0.66	8.4×10 ⁻⁴	0.46	6.2×10 ⁻⁶	DEL	1.02	0.822
4	rs4697072	24735463	SOD3, CCDC149	G	0.56	2.6×10-6	0.56	1.9×10^{-4}	G	1.08	0.451
4	rs4547837	32688632	LOC107986223, LOC101927363	Т	4.96	1.6×10 ⁻⁵	6.55	4.7×10 ⁻⁶	Т	0.97	0.934
4	rs79316039†	76644558	G3BP2	А	2.68	3.7×10 ⁻⁵	3.19	5.9×10 ⁻⁵	-	-	-
4	rs143848875†	89178625	PPM1K, ABCG2	С	2.96	2.5×10-4	4.05	4.7×10 ⁻⁵	-	-	-
4	rs7682161	89191346	PPM1K	С	3.08	1.6×10 ⁻⁴	4.17	3.5×10 ⁻⁵	С	0.86	0.526
4	rs1517945	137938336	LOC105377441	С	0.68	0.0012	0.58	3.5×10 ⁻⁴	С	0.89	0.216
5	rs13182546	82831359	VCAN	G	1.81	2.4×10-5	1.90	2.7×10 ⁻⁴	G	1.03	0.775
5	rs529998	82841764	VCAN	Т	1.47	0.0010	1.95	1.7×10^{-5}	Т	1.09	0.391

Supplementary Table S1. SNPs that that were chosen for replication genotyping in an independent Dutch population ($p = <5 \times 10^{-4} - 1.2 \times 10^{-7}$ in the whole GWAS population or in the RSV subset of GWAS). Blue shading denotes SNPs with ORs in the same direction in the discovery and replication populations.

5	rs4976604	167849667	WWC1	С	3.80	4.3×10 ⁻⁶	3.49	4.5×10 ⁻⁴	С	0.75	0.244
6	rs9502516	6905830	RP3-42906.1	А	1.35	0.012	1.77	2.0×10-4	А	0.98	0.861
6	rs2844575†	31334945	HLA-B, MIR6891	С	1.56	1.5×10 ⁻⁴	1.77	1.7×10^{-4}	-	-	-
6	rs1130153†	32610947	HLA-DOA1	С	2.72	7.7×10 ⁻⁶	1.73	0.073	-	-	-
6	rs28633411†	32613362	HLA-DOA1	А	2.58	2.9×10 ⁻⁵	1.63	0.120	-	-	-
6	rs210183	33486841	BAK1. RN7SL26P-201	G	1.40	0.011	2.06	8.1×10 ⁻⁶	G	0.87	0.182
6	rs210184†	33486954	BAK1. RN7SL26P-201	G	-	-	2.06	8.1×10 ⁻⁶	-	-	-
6	rs210196	33507723	BAK1. RN7SL26P-201	G	1.40	0.011	2.03	1.1×10 ⁻⁵	G	0.89	0.289
7	rs1525738	16889926	AGR3_AGR2	Т	1.35	0.0083	1.68	3.7×10 ⁻⁴	Т	1.05	0.638
7	rs10253036	46038606	LOC102723446	T	2.06	1.6×10 ⁻⁵	1.90	0.0023	T	0.77	0.086
, 7	rs62452699	46492326	100105375265 100105375266	Т	2.83	1.5×10 ⁻⁷	3 37	6.9×10 ⁻⁷	т Т	0.82	0.000
,	rs31674†	-0-12220	LOCI03373203, LOCI03373200	1	2.05	1.5×10	5.57	0.9/10	tSNP	tSNP	tSNP
7	tSNP: rs31672	87068464	ABCB4	А	1.67	1.1×10-4	1.85	1.9×10-4	С	0.89	0.321
7	rs144739276*	120062433	KCND2	G	2.27	8.8×10 ⁻⁵	2.86	2.8×10-5	-	-	-
7	rs139743624	148870713	ZNF398	А	4.25	1.8×10 ⁻⁴	6.51	8.5×10 ⁻⁶	А	0.82	0.511
8	rs12541098	67336382	RRS1-AS1	Т	0.64	2.0×10 ⁻⁴	0.57	3.2×10 ⁻⁴	Т	0.88	0.221
8	rs11985337	82443387	FABP12	С	1.43	0.0040	2.00	6.1×10 ⁻⁶	С	0.95	0.673
9	rs10738377	14757744	FREM1	A	0.62	8.9×10 ⁻⁴	0.49	3.3×10 ⁻⁴	A	0.82	0.066
9	rs10756611	14765611	FREM1	G	0.53	2.6×10 ⁻⁵	0.43	4.1×10 ⁻⁵	G	0.81	0.064
9	rs6560613	80340387	GNAO	C	2.48	7.7×10 ⁻⁷	2.42	6.8×10 ⁻⁴	C	0.88	0.533
9	rs3824464	114690765	UGCG	G	1.52	2.7×10 ⁻⁴	1.36	0.036	G	0.93	0.510
9	rs77887191*	118451733	LOC105376234, LOC105376235	G	2.44	0.0013	3.58	4.2×10 ⁻⁵	-	-	-
10	rs1334893	27693305	PTCHD3	G	2.34	1.8×10 ⁻⁴	3 11	0.0014	G	1.02	0.927
10	rs17009617	50453933	VSTM4, C10orf71	A	3.39	4.9×10 ⁻⁶	4.16	3.1×10 ⁻⁷	A	1.00	0.989
10	rs76728164	50465201	C10orf71. DRGX	Т	2.93	3.7×10 ⁻⁶	3.46	3.6×10 ⁻⁶	Т	1.33	0.233
10	rs1001338	50498449	C10orf71. DRGX	G	3.10	1.7×10 ⁻⁶	3.89	3.6×10 ⁻⁷	G	1.38	0.183
10	rs7099976	83865764	NRG3	A	1.62	2.8×10 ⁻⁴	1 47	0.058	A	0.89	0 299
10	rs111255454*	128777619	DOCKI	G	3.90	2.1×10 ⁻⁶	3.03	0.0030	-	-	-
11	rs9736426†	3597515	LOC101927708 ART5	G	1.63	2.1×10^{-4}	1.67	0.0019	-	-	_
11	rs75404994†	66612234	RCE1	Т	2.23	1.2×10 ⁻⁵	-	-	-	_	_
11	rs6589464	114811893	ACA59 CADMI	r C	0.57	3.5×10 ⁻⁵	0.58	0.0015	C	1.07	0 486
12	rs2137526†	17377995	LOC105369677 LOC105369676	Т	1.98	3.8×10 ⁻⁶	2.09	8.8×10 ⁻⁵	-	-	-
12	rs73070967†	18375073	RERGL	Т	1.50	2.1×10 ⁻⁴	2.09	4.3×10^{-5}	-	-	_
12	rs7314145	18375513	RERGL	ſ	1.67	1.5×10^{-4}	2.00	2.3×10^{-5}	С	0.97	0.837
12	rs7314267	76291888	PHIDA1 LOC105360846	Δ	1.00	0.034	1.93	2.5×10^{-4}	Δ	0.94	0.037
13	rs9597824+	59313613	LOC105370220	G	2.16	2.0×10 ⁻⁶	2.03	3.6×10^{-4}	-	-	-
13	rs9591920	59315119	LOC105370220	Т	2.10	2.0×10^{-6}	2.03	3.5×10^{-4}	Т	1 41	0.023
13	rs1/2670120	67850108	PCDH0_LOC105370246	DEI	2.10	2.0×10	3.45	3.0×10^{-5}	DEI	1.41	0.023
13	rs35746848	99059276	FARP1	T	2.45	1.1×10^{-4}	3.00	9.5×10 ⁻⁵	T	0.77	0.400
14	rs72686085	22121065	TRA	ſ	2.45	1.1×10^{-4}	3.81	5.3×10^{-6}	r C	0.75	0.152
14	rs200004756*	22121005	TRA	C C	2.20	0.0020	3 70	6.2×10^{-6}	C	0.75	0.240
14	rs7150036	22123009	TRA	۲ ۵	2.23	0.0020	3.79	6.9×10^{-6}	-	0.85	- 0.453
14	rs72688054	22172775		A C	2.10	0.0033	3.60	6.2×10^{-6}	A C	0.83	0.455
14	$r_{0}71/3050\pm$	51245666	NINI	с т	2.11 1.32	0.0051	5.09 1.97	2.0×10^{-5}	C	0.04	0.403
14	18/143939± rs71//21	71350585	PCNY1 LOC105370557	I T	0.73	0.0100	0.58	2.0×10^{-4}	- Т	-	0.834
14	rs8007603	80561521	DIO2 I OC105370501	ſ	1.43	0.0055	1.56	2.0×10 3.0×10-4	ſ	1.07	0.034
14	rs11/721075_	30370056	LOC105370777	^	2.04	0.0015	2 21	3.5×10	C	1.07	0.403
15	13114/210/3	37370730	L001033/0///	A	∠.04	0.0029	5.41	5.5×10	-	-	-

15	rs75360543	39505815	LOC105370777	G	2.46	3.0×10 ⁻⁴	4.10	6.5×10 ⁻⁷	G	0.94	0.790
15	rs664936	59064786	FAM63B	G	0.62	4.4×10 ⁻⁴	0.69	0.030	G	1.07	0.565
15	rs4777160	64142539	HERC1, MIR422A	С	0.64	1.5×10 ⁻⁴	0.54	5.9×10 ⁻⁵	Т	0.90	0.289
15	rs192701158†	82394155	LINC01583, EFL1	Т	2.31	7.0×10 ⁻⁶	1.79	0.0190	-	-	-
15	rs950419	82398217	LINC01583, EFL1	G	2.26	1.3×10 ⁻⁵	1.87	0.0096	G	1.01	0.960
15	rs187513321†	82398874	LINC01583, EFL1	Т	2.31	8.1×10 ⁻⁶	1.91	0.0077	-	-	-
16	rs1507010	7657373	RBFOX1	А	1.58	6.1×10 ⁻⁵	1.79	7.7×10-5	А	0.95	0.598
16	rs11639567	54415702	LOC100996345, IRX3	G	1.40	0.0057	1.74	2.6×10 ⁻⁴	G	1.11	0.292
16	rs76079505†	73136490	ZFHX3, C16orf47	Т	2.22	2.4×10 ⁻⁶	-	-	-	-	-
16	rs2240245	74758984	FA2H	А	1.84	1.0×10 ⁻⁴	2.21	3.3×10 ⁻⁵	А	0.91	0.475
17	rs35739738 π	1023740	ABR	Т	3.11	1.9×10 ⁻⁵	3.19	2.9×10 ⁻⁴	-	-	-
17	rs35883991†	1023778	ABR	Т	3.13	1.7×10 ⁻⁵	3.28	2.2×10 ⁻⁴	-	-	-
17	rs62068097	26064677	NOS2, LGALS9	А	2.82	0.0013	4.19	6.6×10 ⁻⁵	А	1.07	0.788
17	rs113409681*	72973962	HID1, CDR2L	А	3.58	2.1×10 ⁻⁶	3.24	5.2×10 ⁻⁴	-	-	-
18	rs17446644	25694712	CDH2	А	2.84	1.5×10 ⁻⁵	2.59	0.0020	А	0.92	0.719
19	rs2240702	4159873	CREB3L3	G	1.82	1.3×10 ⁻⁴	1.96	5.0×10 ⁻⁴	G	1.03	0.857
19	rs62124697†	8141455	FBN3	А	5.88	6.9×10 ⁻⁵	8.65	3.1×10 ⁻⁵	-	-	-
20	rs144475389	17351353	PCSK2	Т	3.09	2.8×10 ⁻⁵	3.62	5.7×10 ⁻⁵	Т	1.17	0.591
20	rs379083*	56527179	MIR4532, LOC100129869	Т	2.82	1.3×10 ⁻⁶	-	-	-	-	-
21	rs242341	28966522	LOC105372763, LINC00113	Т	0.71	0.0029	0.56	1.1×10 ⁻⁴	Т	0.89	0.230
21	rs1537091	29004226	LOC105372763, LINC00113	А	1.69	1.3×10 ⁻⁵	1.69	7.1×10 ⁻⁴	А	1.24	0.041
21	rs9976476	29017708	LOC105372763	G	1.65	1.7×10 ⁻⁵	1.71	3.2×10 ⁻⁴	G	1.17	0.131
21	rs148082602†	40685515	BRWD1	G	1.48	0.0016	1.88	4.3×10 ⁻⁵	-	-	-
21	rs78367934†	40786828	LCA5L	G	1.76	9.7×10 ⁻⁵	2.02	9.7×10 ⁻⁵	-	-	-
21	rs2837017	40788083	LCA5L	А	1.75	1.2×10 ⁻⁴	1.99	1.2×10 ⁻⁴	А	1.08	0.514
21	rs73906034	40788127	LCA5L	А	1.79	3.2×10 ⁻⁴	2.31	1.9×10 ⁻⁵	А	1.24	0.119
21	rs540798	40960096	B3GALT5	А	1.46	0.0019	1.86	5.7×10 ⁻⁵	А	1.00	0.967
21	rs117674297 ⊤	42343366	DSCAM, BACE2	А	2.96	2.6×10-6	2.05	0.0190	-	-	-
22	rs5994705	33647908	LARGE	С	1.66	2.6×10 ⁻⁵	1.56	0.0034	С	0.99	0.915

Abbreviations: Chr, chromosome; SNP, single nucleotide polymorphism; OR, odds ratio.

ЖLocation refers to human genome build 37 (GRCh37/hg19) coordinates.

**Corresponding locus shown for SNPs within genes; two nearest genes shown for intergenic SNPs.

‡ORs for A1 allele in logistic regression under additive model, with three principal components and gender as covariates.

TORs for A1 allele under additive model in logistic regression, with sex as a covariate.

[†]SNP did not settle in the iPLEX replication genotyping platform.

 π SNP was monomorphic or had a very low minor allele frequency (<0.01) in replication population.

 \pm SNP deviated from Hardy–Weinberg equilibrium (p < 0.001) in replication analysis.

*SNP was not genotyped in replicate analysis for technical reasons.

Supplementary Table S2. Areas (20 kb) around SNPs that have been suggested to play a role in bronchiolitis susceptibility in previous studies screened in our GWAS data. SNPs with $p \le 0.01$ (either in GWAS or RSV GWAS) are shown. The exact SNPs previously reported to be associated with bronchiolitis did not show associations or were not present in our data. The best variant was rs56039226 in *CX3CR1* intron ($p = 5.7 \times 10^{-5}$).

	S		M	AF in GW.	AS	GV	VAS	RSV GWAS			
		•				RSV					
Chr	SNP	Location W	Genes	A1	cases	cases	controls	OR‡	р	OR‡	р
1	rs2494251	159281151	3 kb 3' of FCER1A	А	0.408	0.409	0.469	0.73	0.0091	0.72	0.0377
2	2:191844678:TC:T	191844678	STAT1 intron	Т	0.026	0.029	0.008	3.89	0.0016	5.22	8.4×10 ⁻⁴
3	rs56039226	39318192	CX3CR1 intron	А	0.041	0.043	0.011	4.43	5.7×10 ⁻⁵	4.17	9.8×10 ⁻⁴
4	rs201853366	38768759	5 kb 3' of <i>TLR10</i>	Т	0.060	0.069	0.040	1.91	0.0125	2.31	0.0068
4	rs12503707	74590689	15,5 kb 5' of <i>IL8</i>	Т	0.028	0.029	0.011	2.95	0.0071	3.41	0.0111
6	rs9267492	31521481	NFKBIL1 intron; 7 kb 5' of LTA	Т	0.036	0.042	0.014	2.66	0.0072	2.90	0.0107
6	rs2230365	31525448	NFKBIL1; 3 kb 5' of LTA	Т	0.171	0.176	0.133	1.57	0.0060	1.67	0.0130
6	rs34877047	31525738	NFKBIL1 intron; 3 kb 5' of LTA	Т	0.029	0.031	0.014	2.37	0.0226	3.32	0.0087
6	rs4947326	31533718	6 kb 5' of LTA	G	0.034	0.038	0.012	2.85	0.0059	2.95	0.0140
6	rs4947327	31533728	6 kb 5' of LTA	А	0.034	0.038	0.012	2.85	0.0059	2.95	0.0140
6	rs9267497	31534500	5 kb 5' of <i>LTA</i>	G	0.034	0.038	0.012	2.85	0.0059	2.95	0.0140
6	rs1799964	31542308	200 bp 3' of <i>LTA</i>	С	0.205	0.226	0.169	1.41	0.0161	1.58	0.0094
6	rs1052248	31556581	LST1 3'UTR; near NRC3; 13.5 kb of TNF	А	0.269	0.302	0.227	1.40	0.0108	1.63	0.0034
6	rs3087617	31556656	LST1 3'UTR; near NRC3; 11 kb 3' of TNF	Т	0.090	0.095	0.056	1.85	0.0050	1.82	0.0271
6	rs34744948	31562767	17 kb 3' of TNF; 2 kb 5' of NRC3	С	0.108	0.105	0.072	1.73	0.0054	1.62	0.0538
6	rs71563353	31562924	17 kb 3' of TNF; 2 kb 5' of NRC3	Т	0.108	0.105	0.072	1.73	0.0054	1.62	0.0538
6	6:52064298	52064298	9 kb 3' of <i>IL17A</i>	С	0.026	0.038	0.011	2.78	0.0093	4.44	5.3×10 ⁻⁴
8	rs118073036	22027130	BMP1 intron, 5 kb 3' of SFTPC	А	0.059	0.049	0.028	2.88	1.5×10 ⁻⁴	2.37	0.0191
9	rs79896024	120492632	13kb 3' of <i>TLR4</i>	G	0.035	0.046	0.016	2.29	0.0129	2.79	0.0053
10	rs10887238	81716268	SFTPD intron	А	0.057	0.059	0.026	2.24	0.0027	2.34	0.0106
16	rs147427210	27318922	6.1 kb 5' of <i>IL4R</i>	G	0.031	0.014	0.011	3.49	0.0041	1.64	0.4591
16	rs145115415	27388083	12 kb 3' of <i>IL4R</i>	Т	0.028	-	0.006	1.66	0.0023	-	-
17	rs28943568	26082645	1.1 kb 3' of <i>NOS</i> 2	А	0.066	0.088	0.039	2.05	0.0044	2.83	2.9×10 ⁻⁴
17	rs11653716	26084532	NOS2 intron	G	0.101	0.046	0.069	2.29	0.0129	2.88	0.0053
17	rs200393040	34204173	CCL5 intron	CT	0.031	0.047	0.016	2.03	0.047	2.76	0.0076
20	rs17711842	3636929	3 kb 3' of GFRA4; 12 kb 3' of ADAM33	Т	0.069	0.089	0.035	1.81	0.0157	2.25	0.0040
20	rs7266815	3639077	0.9 kb 3' of GFRA4; 10 kb 3' of ADAM33	Т	0.069	0.090	0.035	1.83	0.0141	2.29	0.0035
20	rs7266457	3644478	0.5 kb 5' of GFRA4; 4 kb 3' of ADAM33	Т	0.076	0.098	0.036	2.01	0.0036	2.53	7.8×10 ⁻⁴
20	rs369784662	3645117	1 kb 5' of GFRA4; 3.5 kb 3' of ADAM33	А	0.075	0.098	0.036	1.98	0.0047	2.49	9.5×10 ⁻⁴
20	rs41530048	3651497	ADAM33 intron	А	0.079	0.103	0.035	2.08	0.0020	2.60	4.2×10 ⁻⁴
20	rs3918393	3653642	ADAM33 intron	Т	0.072	0.095	0.035	1.85	0.0109	2.32	0.0023
20	rs150996533	3664915	2 kb 5' of ADAM33	G	-	0.103	0.044	-	-	2.23	0.0033

20	rs78761371	3665371	3 kb 5' of ADAM33; 2,2 kb 3' of SIGLEC1	G	-	0.103	0.043	-	-	2.28	0.0026
20	rs17701662	3670512	SIGLEC1 intron; 8 kb 5' of ADAM33	Т	-	0.102	0.044	-	-	2.22	0.0033
21	rs143991016	42809489	MX1 intron	G	0.030	0.029	0.012	3.05	0.0038	2.96	0.0233
21	rs113340440	42811078	MX1 intron	А	0.049	0.058	0.021	2.61	0.0016	2.94	0.0023
21	rs77214232	42812445	MX1 intron	Т	0.032	0.033	0.012	2.94	0.0039	2.87	0.0212
21	rs2238714	42815008	MX1 intron	С	0.035	0.033	0.012	3.06	0.0024	2.87	0.0212
21	rs2075804	42815974	MX1 intron	А	0.035	0.033	0.012	3.06	0.0024	2.87	0.0212
21	rs34937035	42817245	MX1 intron	С	0.035	0.033	0.012	3.35	0.0012	3.24	0.0108
21	rs192084957	42818272	MX1 intron	С	0.035	0.033	0.012	3.06	0.0024	2.87	0.0212
21	rs74655087	42818844	MX1 intron	А	0.035	0.033	0.012	3.06	0.0024	2.87	0.0212
21	rs74429776	42819339	MX1 intron	А	0.035	0.033	0.012	3.06	0.0024	2.86	0.0215
21	rs116868083	42834988	1.5 kb 3' of <i>TMPRSS2;</i> 4 kb 3' of <i>MX1</i>	А	0.021	-	0.007	3.94	0.0038	-	-
21	rs8133614	42835739	5 kb 3' of MX1; 1 kb 3' of TMPRSS2	G	0.023	0.025	0.010	3.37	0.0076	3.89	0.0086
21	rs12627374	42837691	5 kb 3' of MX1; 3' UTR of TMPRSS2	Т	0.021	-	0.008	3.34	0.0098	-	-
21	rs80325088	46329175	ITGB2 intron	Т	0.046	0.043	0.024	2.29	0.0076	2.09	0.0646

Abbreviations: Chr, chromosome; SNP, single nucleotide polymorphism; OR, odds ratio; MAF, minor allele frequency.

ЖLocation refers to human genome build 37 (GRCh37/hg19) coordinates.

‡ORs for A1 allele in logistic regression under additive model, with three principal components and gender as covariates.

	Var	iant details			GV	WAS	RSV	GWAS	GWAS <1 year		
SNP	Chr	LocationӜ	Genes	A1	OR‡	р	OR‡	р	OR‡	р	
rs13182546	5	82831359	VCAN intron	G	1.813	2.4×10 ⁻⁵	-	-	-	-	
rs13159438	5	82839305	VCAN intron	Т	1.817	2.2×10 ⁻⁵	1.906	2.6×10 ⁻⁴	1.779	2.2×10 ⁻³	
rs529998	5	82841764	VCAN intron	Т	1.473	0.0010	1.952	1.7×10 ⁻⁵	-	-	
rs647873	5	82843440	VCAN intron	С	-	-	1.925	2.0×10 ⁻⁵	-	-	
rs9271499	6	32589291	6.7kb 5' of <i>HLA-DQA1</i>	Т	1.517	3.7×10 ⁻⁴	1.670	6.1×10 ⁻⁴	1.766	2.0×10 ⁻⁵	
rs9271500	6	32589300	6.7kb 5' of <i>HLA-DQA1</i>	Т	1.452	0.0012	1.555	0.0028	1.692	6.2×10 ⁻⁵	
rs9271501	6	32589301	6.7kb 5' of <i>HLA-DQA1</i>	G	1.452	0.0012	1.555	0.0028	1.692	6.2×10 ⁻⁵	
rs9271502	6	32589305	6.7kb 5' of <i>HLA-DQA1</i>	А	1.523	3.3×10 ⁻⁴	1.676	5.6×10 ⁻⁴	1.772	1.8×10 ⁻⁵	
rs9271566	6	32590443	5.5kb 5' of <i>HLA-DQA1</i>	G	1.573	7.8×10 ⁻⁵	1.697	3.1×10 ⁻⁴	1.821	5.2×10 ⁻⁶	
rs9271567	6	32590456	5.5kb 5' of <i>HLA-DQA1</i>	Т	1.573	7.8×10 ⁻⁵	1.697	3.1×10 ⁻⁴	1.821	5.2×10 ⁻⁶	
rs9271597	6	32591291	4.7kb 5' of <i>HLA-DQA1</i>	А	1.459	6.9×10 ⁻⁴	1.585	0.0011	1.650	7.5×10 ⁻⁵	
rs9271600	6	32591332	4.6kb 5' of <i>HLA-DQA1</i>	G	1.478	4.7×10 ⁻⁴	1.601	9.0×10 ⁻⁴	1.665	5.8×10 ⁻⁵	
rs9271601	6	32591337	4.6kb 5' of <i>HLA-DQA1</i>	Т	1.478	4.7×10 ⁻⁴	1.601	9.0×10 ⁻⁴	1.665	5.8×10 ⁻⁵	
rs142530081	6	32606682	HLA-DQA1 intron	G	2.561	3.1×10 ⁻⁵	1.581	0.1419	2.030	0.0079	
rs36223157	6	32606691	HLA-DQA1 intron	G	2.561	3.1×10 ⁻⁵	1.581	0.1419	2.030	0.0079	
rs1130153	6	32610947	HLA-DQA1 3'-UTR	С	2.716	7.7×10 ⁻⁶	1.732	0.0725	2.260	0.0018	
rs9282052	6	32613360	HLA-DQA1 3'-UTR	CA	1.790	1.4×10 ⁻⁴	-	-	1.996	5.6×10 ⁻⁵	
rs28633411	6	32613362	HLA-DQA1 intron	А	2.580	2.9×10 ⁻⁵	1.634	0.1164	2.076	0.0063	
rs28375404	6	32614917	HLA-DQA1 intron	Т	2.557	2.8×10-5	1.671	0.0930	2.067	0.0058	
rs28819191	6	32622110	HLA-DQA1 intron	А	2.659	1.4×10 ⁻⁵	1.619	0.1231	2.157	0.0036	
6:32631070:T:C	6	32631070	HLA-DQB1 intron	С	2.690	7.4×10 ⁻⁵	2.464	0.0030	2.357	0.0023	
rs73729452	6	32632547	HLA-DQB1 intron	С	2.448	7.0×10 ⁻⁵	1.434	0.2581	1.970	0.0105	
rs9788617	14	51244776	NIN intron	G	1.277	0.0339	1.814	5.7×10 ⁻⁵	1.367	0.0160	
rs7143959	14	51245666	NIN intron	Т	1.317	0.0158	1.865	2.0×10 ⁻⁵	1.413	0.0071	
rs34148215	14	51249238	NIN intron	Т	1.290	0.0270	1.804	6.1×10 ⁻⁵	1.376	0.0136	
rs764964	14	51254908	NIN intron	Т	1.322	0.0198	1.887	3.2×10 ⁻⁵	1.440	0.0065	
rs11157766	14	51262497	NIN intron	А	1.374	0.0073	1.950	1.3×10 ⁻⁵	1.461	0.0045	
rs12881609	14	51263301	NIN intron	С	1.399	0.0048	1.980	8.3×10 ⁻⁶	1.485	0.0033	

Supplementary Table S3. Areas (20 kb) around SNPs that have been suggested to play a role in asthma susceptibility in previous studies (SNPs in the NHGRI-EBI GWAS Catalog with $p \le 10^{-6}$) screened in our GWAS data. SNPs with $p \le 0.0001$ either in GWAS, RSV GWAS, or GWAS <1 year are shown.

SNP, single nucleotide polymorphism; GWAS, genome-wide association study; Chr, chromosome; OR, odds ratio.

ЖLocation refers to human genome build 37 (GRCh37/hg19) coordinates.

‡ORs for A1 allele in logistic regression under additive model, with three principal components and gender as covariates

	Variant details						GWAS RSV GWAS		GWAS < 1 year		Replication, NL		Meta-analysis: NL, GWAS		Meta-analysis: NL, RSV GWAS		Meta-analysis: NL, GWAS <1 year	
SNP	Chr	LocationӜ	Genes**	A1	OR‡	р	OR‡	р	OR‡	р	OR₹	р	OR	р	OR	р	OR	р
rs269101	1	112628860	LOC643355, KCND3	Т	1.605	4.2×10 ⁻⁵	1.703	3.0×10 ⁻⁴	1.599	2.4×10 ⁻⁴	1.213	0.0541	1.368	3.5×10 ⁻⁵	1.350	2.9×10 ⁻⁴	1.348	1.5×10 ⁻⁴
rs269094	1	112639174	LOC643355, KCND3	С	1.672	5.3×10 ⁻⁵	1.809	1.9×10 ⁻⁴	1.757	5.2×10 ⁻⁵	1.281	0.0292	1.442	1.5×10-5	1.439	8.1×10 ⁻⁵	1.453	2.2×10 ⁻⁵
rs10738377	9	14757744	FREM1	А	0.619	8.9×10 ⁻⁴	0.487	3.3×10 ⁻⁴	0.662	0.0085	0.816	0.0657	0.737	5.0×10 ⁻⁴	0.723	8.2×10 ⁻⁴	0.761	0.0025
rs10756611	9	14765611	FREM1	G	0.534	2.6×10-5	0.431	4.1×10 ⁻⁵	0.574	6.1×10 ⁻⁴	0.813	0.0638	0.699	6.2×10 ⁻⁵	0.704	3.3×10 ⁻⁴	0.727	5.2×10 ⁻⁴
rs9591920	13	59315119	LOC105370220	Т	2.162	2.0×10-6	2.033	3.5×10 ⁻⁴	1.853	7.1×10 ⁻⁴	1.405	0.0227	1.712	9.8×10 ⁻⁷	1.606	7.1×10 ⁻⁵	1.570	9.2×10 ⁻⁵
rs1537091	21	29004226	LOC105372763, LINC00113	А	1.691	1.3×10 ⁻⁵	1.693	7.1×10 ⁻⁴	1.606	4.5×10 ⁻⁴	1.240	0.0408	1.418	1.1×10 ⁻⁵	1.367	3.3×10 ⁻⁴	1.367	1.6×10 ⁻⁴

Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; OR, odds ratio; NL, Dutch replication population.

§Meta-analyses performed under fixed-effects model for logistic regression result files of discovery and replication data.

ЖLocation refers to human genome build 37 (GRCh37/hg19) coordinates.

**Corresponding locus shown for SNPs within genes; two nearest genes shown for intergenic SNPs.

‡ORs for A1 allele in logistic regression under additive model, with three principal components and gender as covariates.

TORs for A1 allele under additive model in logistic regression, with sex as a covariate.

Supplementary Table S5. SNPs that had a p-value < 0.05 in the Dutch replication population (NL) were further studied in the Finnish case set from Turku, with NordicDB population controls as a reference.

	V	ariant informat	tion		GW	VAS	Replicati	ion, NL	Repli Turku	cation, 1 (FIN)
SNP	Chr	Location	Genes**	A1	OR‡	р	OR₹	р	OR ⊤	р
rs269094	1	112639174	LOC643355, KCND3	С	1.672	5.3×10 ⁻⁵	1.281	0.0292	0.989	0.9352
rs9591920	13	59315119	LOC105370220	Т	2.162	2.0×10 ⁻⁶	1.405	0.0227	1.469	0.0415
rs1537091	21	29004226	LOC105372763, LINC00113	А	1.691	1.3×10 ⁻⁵	1.240	0.0408	1.167	0.2290

Abbreviations: GWAS, genome-wide association study; NL, Dutch population; SNP, single nucleotide polymorphism; Chr, chromosome; OR, odds ratio.

ÄLocation refers to human genome build 37 (GRCh37/hg19) coordinates.

**Corresponding locus shown for SNPs within genes; two nearest genes shown for intergenic SNPs.

‡ORs for A1 allele in logistic regression under additive model, with three principal components and gender as covariates.

TORs are for A1 allele under additive model in logistic regression with sex as a covariate.

Supplementary Table S6. Arrays used to genotype GWAS discovery populations.

GWAS population	Genome-wide genotyping method
Kuopio (FIN), Gothenburg (SWE)	HumanOmniExpress BeadChip, Illumina
Tampere cases (FIN)	Infinium HumanCoreExome BeadChip, Illumina
NordicDB population controls (FIN)	HumanCNV-370-v1.0, Illumina

Abbreviations: GWAS, genome-wide association study; FIN, Finland; SWE, Sweden