
1

Electronic Supplementary Material

Computational flux balance analysis predicts that

stimulation of energy metabolism in astrocytes and

their metabolic interactions with neurons depend on

uptake of K+ rather than glutamate

Mauro DiNuzzo1,*, Federico Giove2,3, Bruno Maraviglia2,3, Silvia Mangia4

1 Center for Basic and Translational Neuroscience, Division of Glial Disease and Therapeutics,

Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

2 Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy

3 Fondazione Santa Lucia IRCCS, Rome, Italy

4 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota,

Minneapolis, MN USA

* correspondence to: Mauro DiNuzzo, Ph.D.

Center for Basic and Translational Neuroscience, Division of Glial Disease and Therapeutics

Faculty of Health and Medical Sciences, University of Copenhagen

Blegdamsvej 3B, 24.2.40

2200 Copenhagen N, Denmark

e-mail: mauro.dinuzzo@sund.ku.dk

2

Online Resource 3

Description of the CLP-based sampling algorithm

Stoichiometric models can be used to simulate medium- to large-scale metabolic networks, as

they do not require details (i.e. parameter values) about each reaction or transport process

other than the underlying balance between reactants and products. The non-parametric

character of stoichiometric models is a great advantage compared with kinetic models, although

the applications of stoichiometric models are limited to steady-state analysis [1]. Flux balance

analysis (FBA) is a mathematical framework used to calculate solution of the fluxes defined by

the reconstruction of a metabolic network. Typically, optimization strategies (e.g. linear

programming) represent the underpinning of FBA to cope with the under-determined nature of

the problem. Standard FBA requires the minimization or maximization of a mathematical

expression called objective function. Biomass production has been the objective function of

choice for simulating metabolism of unicellar organisms [2], whereas other choices have been

used in simulations of brain energy metabolism, including maximization of ATP production or

redox potential [3]. Depending on the context, objective functions might be more or less arbitrary

and their definition might require the introduction of parameters and/or assumptions that can

considerably affect the results [4]. For these reasons, different methods have been suggested in

order to turn FBA from deterministic into probabilistic using, for example, a Bayesian statistical

approach [5]. Such approaches tipically introduce a term of uncertainty in mass-balance

equations to estimate the posterior probability densities, but still require the introduction of

acceptance/rejection criteria (e.g., [6]). Another means to make FBA amenable to statistics is to

change the postulates of mass-balance within the so-called Von Neumann’s scheme (for details,

see [7] and references therein). To make the sampling of the solutions space feasible, the

above-mentioned methods relax or remove the assumption of flux stationarity. The latter can be

maintained at the cost of inefficient sampling (e.g., using rejection sampling) or practical limited

coverage of the solution space (e.g., using hit-and-run algorithms) [8, 9]. Flux stationarity and

efficient sampling are achieved by other sampling methods, such as Artificial Centering Hit-and-

Run (ACHR) alogorithm, which however requires to give up the formal guarantee of

convergence characterizing Markov chain-based Monte Carlo sampling methods [8, 10].

We developed our metabolic model using constraint logic programming (CLP), which allows

determination of the exact domains of fluxes (i.e. the boundaries of the solutions space). We

3

finally implemented a sampling method (i.e. without definition of objective functions) based on

CLP capable, by remaining in the deterministic framework of FBA, of obtaining the distributions

of fluxes with both good convergence and high coverage of the solutions space.

A metabolic network is described by the set of mass balance equations:

jS
c


dt

d

where mcc ,...,1c is the vector of metabolite concentrations, njj ,...,1j is the vector of

metabolic fluxes and nmS is the stoichiometric matrix. The main idea underlying FBA is that the

stoichiometry of the metabolic network is the main source of constraints that cells must obey.

This entails that the non-equilibrium steady-state of the system can be studied by neglecting the

time-dependence of metabolite concentrations, which is equivalent to have:

0 jS

The equations underlying FBA can be interpreted as a constraint satisfaction problem (CSP).

Indeed, a CSP consists of a finite set of variables (here, metabolic fluxes), a domain of values

for each variable (here, real numbers for all variables), and a finite set of constraints involving

the variables (here, the metabolic network as well as the boundary conditions). CLP is a branch

of declarative programming that provides a powerful framework for constraint reasoning.

Specifically, CLP implements solving methods for CSPs in logic programming. These problems

involve finding solutions to a number of constraints, whereby each solution is represented by the

binding of each variable with a value within the relevant variable domain. Indeed, a constraint

problem is under-determined in many cases, which means that the set of constraints has more

than one solution. In the case of finite domains, variable binding is based on backtracking

search as in classical logic programming [11]. Although different solvers can be more or less

efficient, typically the underlying procedure is always complete, being based on systematic

search. For uncountable domains (e.g., real numbers), enumerating all solutions is of course not

possible. A common approach is to use an optimization criterion that is essentially based on the

assumption that one solution is better than another. To this end, a mathematical function

involving a combination of variables is minimized or maximized. In standard FBA, a single

solution is obtained via linear optimization of an objective function. However, the objective

function is arbitrary and system-dependent. Thus, for example, a “reasonable” objective function

for brain metabolism is difficult to identify and so is the interpretation of results coming from

4

objective function optimization. Therefore, in situations involving uncountable domains, but also

for very large finite domains, it would be preferable to obtain an estimate for the mass density

(i.e. the distribution) of the solutions. In the present work, we used a simple non-systematic,

stochastic search strategy for CLP over real numbers (CLP) [12], based on iterative sampling

[13].

The sampling algorithm is implemented by combining constraint propagation as an instance of

forward-checking [14] with random sampling, using the simplest possible scheme (i.e. uniform

random) of variable and value ordering [15, 16]. The method can be viewed as a hybridization of

pure Monte Carlo methods (see, for example, [17]). However, contrary to Monte Carlo methods,

in our approach an individual sample in the n-dimensional space is generated in n successive

steps. The idea is to estimate distributions of fluxes by applying repeated random sampling

while benefiting from CLP to reduce the sample space into a sharp enclosure of the region of

integration (see below). This feature guarantees that random values always fall inside the

relevant variable domains. Specifically, given the sequence of fluxes njj ,...,1j , the algorithm

proceeds as follows:

 Determine the initial flux domains nDD ,...,1 so that nn DjDj  ,...,11 by building

the initial constraint store from the mass-balance equations of the metabolic network

stoichiometry.

 Run an iterative procedure to generate a sample through successive bindings. A sample is

an element nDDs  ...1 that is also a solution if satisfies all given constraints. For each

iteration:

1. Randomly choose a flux kj (initially nk 1) from the set of currently unbound

fluxes (with uniform probability).

2. Bind the chosen flux to a random value ks within its domain kD (with uniform

probability). This binding is itself a constraint, i.e. a relation among variables that

specify the space of possible values of these variables, and as such it is added to

the constraint store (constraints are additive).

3. Propagate the constraint kkk Dsj  to prune (i.e. update) one or more

unbound flux domains and/or bind of one or more unbound fluxes (if the

corresponding domains become single-valued). The addition of a constraint

5

requires that it holds simultaneously with the the conjunction of all existing

constraints, otherwise the constraint store becomes inconsistent (i.e. over-

constrained). Therefore, the constraint store expands with the new flux binding

constraint, a process that reduces flux domains to

n

k

nkk

k DDsDDD )(

1

)(

1 },...,{,..., .

4. If one or more flux domains are pruned to empty or inconsistent domain (i.e. the

algorithm fails to meet current constraints), exit with no solution.

5. If all fluxes are bound (i.e. all domains are reduced to a single value through

either binding or constraint propagation), exit and store the solution

},...,{ 1 nsss  . Otherwise keep the binding of kj and iterate to perform

successive bindings.

 Restart the search (step 1) with all unbound fluxes until the desired sample size is

obtained.

See Online Resource 17 for a simple example of the above-mentioned steps underlying the

CLP-based sampling strategy.

Forward checking-based algorithms are very popular non-systematic search strategies for

solving constraint satisfaction problems, because they allow to detect inevitable failure early. In

our case, constraint propagation binds a variable and then removes conflicting values from the

domains of all future (unbound) variables. Since the constraint store is expected to change, the

CLP system solves the conjunction of arithmetic constraints in the constraint store by

performing incremental constraint solving. The knowledge about the domain () as well as the

operations on this domain are built into the solver, so that it does not have to rely on generate-

and-test procedures. Thus, for example, CLP can deduce that the conjunction of the

constraints ji jj  and ji jj  is false without testing the constraints for any particular value.

The solver uses Gauss-Jordan elimination for linear equalities and an adaptation of the Two-

Phase Simplex algorithm for linear inequalities, while non-linear constraints are delayed until

they become sufficiently linear, e.g. after the binding of some variables [18]. For example,

solving linear equality constraints with Gauss-Jordan elimination involves the substitution of

parametric variables with equivalent parametric expressions, which eventually allows estimation

of non-parametric variables. Inequality solvers can also determine implied equalities from the

set of inequalities. CLP uses constraint-handling rules (CHR) [19] in order to rewrite the set of

6

constraints and obtain simplification of constraints (replacement of constraints with simpler,

equivalent ones) and/or constraint propagation (addition of new redundant constraints that

eventually results in further simplification). This procedure can also detect a contradictory set of

constraints. Overall, constraint simplification and propagation results in the pruning of the

domains of one or more variables. Thus, constraint propagation is a mechanism to reduce the

space of solutions that will be explored by the searching algorithm.

As an example, consider the following constraint involving 3 fluxes:

0321  jjj

The domain of each flux is pruned using the following contracting operators (e.g., rules) of

interval arithmetics:

2133

1322

2311

DDDD

DDDD

DDDD







where

]supsup,infinf[jijiji DDDDDD 

and

]infsup,supinf[jijiji DDDDDD 

Importantly, contracting operators are correct (i.e. they do not eliminate solutions), which

provides a safe enclosure of the feasible space of solutions.

The present approach to obtain distributions of fluxes for FBA problems is conceptually different

from the approaches taken by Heino et al [4] or Martelli et al [7]. The latter are both based on

relaxation of steady-state equation to 0 jS or 0 jS , respectively, i.e. they remove the

assumption of strict flux stationarity. Instead, our approach remains in the deterministic

framework of FBA. Therefore, in order to obtain an unbiased benchmarking, we compared the

performance of CLP-based sampling algorithm with the ACHR sampling algorithm. ACHR is the

state-of-the-art algorithm used for flux sampling in FBA problems, and it is implemented in the

constraint-based reconstruction and analysis (COBRA) toolbox [20]. The main drawback of

these algorithms is that there is no formal proof of convergence of the sampled distribution both

7

for ACHR (the sequence of iterates is not a Markov Chain) and CLP. Therefore, the performance

of these algorithms can only be examined using empirical methods. We perfomed standard

convergence analysis (Online Resource 18) as well as empirical convergence diagnostics

(Online Resource 19) for CLP and ACHR, the latter run using different parameters (see below).

An important difference between our sampling algorithm and ACHR is that CLP is intrinsically

non-parametric. Indeed, CLP does not require the specification of (1) “reasonable” priors and

starting points to initiate sampling; (2) “large enough” warm-up (i.e. burn-in) periods that are

required by the sampler to find the numerically non-zero or non-next-to-zero parts of the

distributions; (3) skip parameters (e.g., number of steps per point) that are required by the

sampler to to fully explore the solutions space avoiding getting trapped near priors; and (4)

tolerance parameters, which are used, for example, to evaluate the distance of the current point

from the boundaries of the solution space in order to specify direction of next iterate. These

arguments must be taken into account when comparing the sampling generated by the two

algorithms. In principle, CLP-based sampling should be compared to ACHR run with no warmup

points and no skip. However, in these conditions the convergence of ACHR is highly

unsatisfactory (Online Resources 18 and 19). This is a known problem for hit-and-run based

algorithms, which may require a very large number of steps to achieve convergence [9]. The

CLP-based sampling algorithm exhibits very good convergence, which is achieved by ACHR

only when the number of warmup points and steps per point is relatively high (of course, these

numbers may depend on the specific problem and cannot be determined a priori). We found

that the most critical parameter for ACHR is the number of steps per point, which results in low

sample autocorrelation (Online Resource 18 Panel H) and good convergence (Online

Resources 19 Panels B,D,F,H). Next, we compared the distributions of fluxes generated by the

two algorithms by running ACHR with a high number of both warmup points and steps per point

(Online Resources 6-10 for unconstrained model and Online Resources 11-15 for model

constrained to awake conditions). In particular, given a sample size of 10,000 points, we set the

number of steps per points to 1,000 and that of warmup points equal to sample size (i.e.

10,000). The CLP-based sampling algorithm exhibits much higher coverage of the solutions

space than ACHR. This again is a known issue for hit-and-run based sampling algorithms, which

do not guarantee a high coverage in a high dimensional system [9]. We tested the ACHR

algorithm also by setting the number of steps per point to 10,000 but the results did not change

(data not shown). It is noted that the afore-mentioned diagnostics only tests whether a sample

distribution converges, but provide otherwise no information on the accurate sampling of the

solution space. To examine whether the collection of samples produced by our method can be

8

safely interpreted as realizations for an underlying distribution, we compared the spread

matrices calculated from the solutions produced by CLP and ACHR. Importantly, the two

sampling algorithms produces nearly identical spread matrices with only minor quantitative

differences (compare Figure 5 and Online Resource 20). Overall, the performances of the non-

parametric CLP-based sampling are at least comparable with those of the commonly employed

ACHR algorithm, with the advantage of a better coverage of the solution space.

The main limitation of the CLP-based method is that the time necessary to obtain a solution is

unpredictable and depends substantially on the specific problem (e.g., number of variables and

corresponding domain boundaries). This issue is related to the fact that the forward-checking

strategy belongs to the so-called heuristics, which are not guaranteed to succeed [21]. For the

present (relatively small) metabolic network, the performance of the algorithm is acceptable,

achieving a success rate (i.e. the fraction of iterations producing valid solutions) ranging from

60% to 90% and generating approximately 10 solutions per second on a standard personal

computer. This value has to be compared with the computational (CPU) time required by ACHR

algorithm to generate a solution, which is 3 orders of magnitude smaller relative to CLP.

Nevertheless, as illustrated above, for the present model ACHR requires to skip about 1,000

points for each solution to obtain a reliable sampling of the solution space (although with lower

coverage compared to CLP). Once this argument is taken into account, the CPU time of the two

algorithms become comparable. It should be noted, however, that the CLP-based method has

good potential for improvement. First, since the points generated do not depend on prior iterates

(contrary to ACHR), the algorithm can be easily made parallel resulting in performance gain

increasing linearly with the number of processors. Second, a substantial optimization can be

directed to implement (a) dynamic backtracking mechanisms that, for example, go back to the

variable that was responsible for the dead-end instead of restarting, and (b) non-random

dynamic variable ordering that, for example, bind first variables with smaller domains or those

with more constraints. Third, increases in performance could be obtained by translating the

present declarative implementation of the CLP-based sampling algorithm, which was developed

in Prolog (an interpreted and relatively slow language) to imperative languages using compiled

constraint programming libraries available for e.g., C, Python and Java.

Although the CLP-based algorithm will require further validation in the context of FBA flux

sampling, the close agreement in terms of distributions, mean values and correlations of fluxes,

between the sampled solutions produced by CLP and ACHR warrants the correctness of the

outcomes as well as the interpretation and the main conclusions of the present study.

9

References

1. Somersalo E, Cheng Y, Calvetti D (2012) The metabolism of neurons and astrocytes

through mathematical models. Annals of biomedical engineering 40:2328-2344

2. Feist AM, Palsson BO (2010) The biomass objective function. Current opinion in

microbiology 13:344-349

3. Cakir T, Alsan S, Saybasili H, Akin A, Ulgen KO (2007) Reconstruction and flux analysis

of coupling between metabolic pathways of astrocytes and neurons: application to

cerebral hypoxia. Theoretical biology & medical modelling 4:48

4. Heino J, Calvetti D, Somersalo E (2010) Metabolica: a statistical research tool for

analyzing metabolic networks. Computer methods and programs in biomedicine 97:151-

167

5. Heino J, Tunyan K, Calvetti D, Somersalo E (2007) Bayesian flux balance analysis

applied to a skeletal muscle metabolic model. J Theor Biol 248:91-110

6. Occhipinti R, Somersalo E, Calvetti D (2008) Astrocytes as the glucose shunt for

glutamatergic neurons at high activity: an in silico study. J Neurophysiol

7. Martelli C, De Martino A, Marinari E, Marsili M, Perez Castillo I (2009) Identifying

essential genes in Escherichia coli from a metabolic optimization principle. Proc Natl

Acad Sci U S A 106:2607-2611

8. Megchelenbrink W, Huynen M, Marchiori E (2014) optGpSampler: an improved tool for

uniformly sampling the solution-space of genome-scale metabolic networks. PLoS One

9:e86587

9. Schellenberger J, Palsson BO (2009) Use of randomized sampling for analysis of

metabolic networks. J Biol Chem 284:5457-5461

10. Kaufman DE, Smith RL (1998) Direction choice for accelerated convergence in hit-and-

run sampling. Oper Res 46:84-95

11. Jaffar J, Michaylov S (1987) Methodology and Implementation of a CLP System. In:

Lassez JL (ed) Logic Programming Proceedings of the 4th International Conference. MIT

Press, Cambridge, MA,

12. Holzbaur C (1995) OFAI CLP(Q,R), Manual, Edition 1.3.3. Technical Report TR-95-09.

In. Austrian Research Institute for Artificial Intelligence, Vienna,

10

13. Langley P (1992) Systematic and nonsystematic search strategies. In: Artificial

Intelligence Planning Systems: Proceedings of the First International Conference.

Morgan Kaufmann, College Park, MD, pp 145-152

14. Haralick RM, L. EG (1980) Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence 14:263-313

15. Nudel B (1983) Consistent-labeling problems and their algorithms: expected-

complexities and theory-based heuristics. Artificial Intelligence 21:135-178

16. Gent IP, MacIntyre E, Prosser P, Smith BM, Walsh T (1996) An Empirical Study of

Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Problem. In:

Freuder EC (ed) Principles and Practice of Constraint Programming. Springer-Verlag, pp

179-193

17. Correia M, Meshcheryakova O, Sousa P, Cruz J (2015) Probabilistic Constraints for

Robot Localization. In: Pereira F, Machado P, Costa E, Cardoso A (eds) Progress in

Artificial Intelligence. Springer International Publishing, Switzerland, pp 480-486

18. Shostak R (1981) Deciding linear inequalities by computing loop residues. Journal of the

Association for Computing Machinery 28:769-779

19. Frühwirth T (1998) Theory and practice of constraint handling rules. The Journal of Logic

Programming 37:95-138

20. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar

A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative

prediction of cellular metabolism with constraint-based models: the COBRA Toolbox

v2.0. Nature protocols 6:1290-1307

21. Lee JHM, Leung HF, Stuckey PJ, Tam VWL, Won HW (1996) Using stochastic methods

to guide search in CLP: A preliminary report. In: Jaffar J, Yap RC (eds) Concurrency and

Parallelism, Programming, Networking, and Security. Springer Berlin Heidelberg, pp 43-

52

