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Online Resource 3 

Description of the CLP-based sampling algorithm 

 

Stoichiometric models can be used to simulate medium- to large-scale metabolic networks, as 

they do not require details (i.e. parameter values) about each reaction or transport process 

other than the underlying balance between reactants and products. The non-parametric 

character of stoichiometric models is a great advantage compared with kinetic models, although 

the applications of stoichiometric models are limited to steady-state analysis [1]. Flux balance 

analysis (FBA) is a mathematical framework used to calculate solution of the fluxes defined by 

the reconstruction of a metabolic network. Typically, optimization strategies (e.g. linear 

programming) represent the underpinning of FBA to cope with the under-determined nature of 

the problem. Standard FBA requires the minimization or maximization of a mathematical 

expression called objective function. Biomass production has been the objective function of 

choice for simulating metabolism of unicellar organisms [2], whereas other choices have been 

used in simulations of brain energy metabolism, including maximization of ATP production or 

redox potential [3]. Depending on the context, objective functions might be more or less arbitrary 

and their definition might require the introduction of parameters and/or assumptions that can 

considerably affect the results [4]. For these reasons, different methods have been suggested in 

order to turn FBA from deterministic into probabilistic using, for example, a Bayesian statistical 

approach [5]. Such approaches tipically introduce a term of uncertainty in mass-balance 

equations to estimate the posterior probability densities, but still require the introduction of 

acceptance/rejection criteria (e.g., [6]). Another means to make FBA amenable to statistics is to 

change the postulates of mass-balance within the so-called Von Neumann’s scheme (for details, 

see [7] and references therein). To make the sampling of the solutions space feasible, the 

above-mentioned methods relax or remove the assumption of flux stationarity. The latter can be 

maintained at the cost of inefficient sampling (e.g., using rejection sampling) or practical limited 

coverage of the solution space (e.g., using hit-and-run algorithms) [8, 9]. Flux stationarity and 

efficient sampling are achieved by other sampling methods, such as Artificial Centering Hit-and-

Run (ACHR) alogorithm, which however requires to give up the formal guarantee of 

convergence characterizing Markov chain-based Monte Carlo sampling methods [8, 10]. 

We developed our metabolic model using constraint logic programming (CLP), which allows 

determination of the exact domains of fluxes (i.e. the boundaries of the solutions space). We 
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finally implemented a sampling method (i.e. without definition of objective functions) based on 

CLP capable, by remaining in the deterministic framework of FBA, of obtaining the distributions 

of fluxes with both good convergence and high coverage of the solutions space.  

A metabolic network is described by the set of mass balance equations: 

jS
c


dt

d
 

where mcc ,...,1c  is the vector of metabolite concentrations, njj ,...,1j  is the vector of 

metabolic fluxes and nmS  is the stoichiometric matrix. The main idea underlying FBA is that the 

stoichiometry of the metabolic network is the main source of constraints that cells must obey. 

This entails that the non-equilibrium steady-state of the system can be studied by neglecting the 

time-dependence of metabolite concentrations, which is equivalent to have: 

0 jS  

The equations underlying FBA can be interpreted as a constraint satisfaction problem (CSP). 

Indeed, a CSP consists of a finite set of variables (here, metabolic fluxes), a domain of values 

for each variable (here, real numbers for all variables), and a finite set of constraints involving 

the variables (here, the metabolic network as well as the boundary conditions). CLP is a branch 

of declarative programming that provides a powerful framework for constraint reasoning. 

Specifically, CLP implements solving methods for CSPs in logic programming. These problems 

involve finding solutions to a number of constraints, whereby each solution is represented by the 

binding of each variable with a value within the relevant variable domain. Indeed, a constraint 

problem is under-determined in many cases, which means that the set of constraints has more 

than one solution. In the case of finite domains, variable binding is based on backtracking 

search as in classical logic programming [11]. Although different solvers can be more or less 

efficient, typically the underlying procedure is always complete, being based on systematic 

search. For uncountable domains (e.g., real numbers), enumerating all solutions is of course not 

possible. A common approach is to use an optimization criterion that is essentially based on the 

assumption that one solution is better than another. To this end, a mathematical function 

involving a combination of variables is minimized or maximized. In standard FBA, a single 

solution is obtained via linear optimization of an objective function. However, the objective 

function is arbitrary and system-dependent. Thus, for example, a “reasonable” objective function 

for brain metabolism is difficult to identify and so is the interpretation of results coming from 
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objective function optimization. Therefore, in situations involving uncountable domains, but also 

for very large finite domains, it would be preferable to obtain an estimate for the mass density 

(i.e. the distribution) of the solutions. In the present work, we used a simple non-systematic, 

stochastic search strategy for CLP over real numbers (CLP ) [12], based on iterative sampling 

[13].  

The sampling algorithm is implemented by combining constraint propagation as an instance of 

forward-checking [14] with random sampling, using the simplest possible scheme (i.e. uniform 

random) of variable and value ordering [15, 16]. The method can be viewed as a hybridization of 

pure Monte Carlo methods (see, for example, [17]). However, contrary to Monte Carlo methods, 

in our approach an individual sample in the n-dimensional space is generated in n successive 

steps. The idea is to estimate distributions of fluxes by applying repeated random sampling 

while benefiting from CLP to reduce the sample space into a sharp enclosure of the region of 

integration (see below). This feature guarantees that random values always fall inside the 

relevant variable domains. Specifically, given the sequence of fluxes njj ,...,1j , the algorithm 

proceeds as follows: 

 Determine the initial flux domains nDD ,...,1  so that nn DjDj  ,...,11  by building 

the initial constraint store from the mass-balance equations of the metabolic network 

stoichiometry.  

 Run an iterative procedure to generate a sample through successive bindings. A sample is 

an element nDDs  ...1  that is also a solution if satisfies all given constraints. For each 

iteration:  

1. Randomly choose a flux kj  (initially nk 1 ) from the set of currently unbound 

fluxes (with uniform probability). 

2. Bind the chosen flux to a random value ks  within its domain kD  (with uniform 

probability). This binding is itself a constraint, i.e. a relation among variables that 

specify the space of possible values of these variables, and as such it is added to 

the constraint store (constraints are additive). 

3. Propagate the constraint kkk Dsj   to prune (i.e. update) one or more 

unbound flux domains and/or bind of one or more unbound fluxes (if the 

corresponding domains become single-valued). The addition of a constraint 
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requires that it holds simultaneously with the the conjunction of all existing 

constraints, otherwise the constraint store becomes inconsistent (i.e. over-

constrained). Therefore, the constraint store expands with the new flux binding 

constraint, a process that reduces flux domains to 

n

k

nkk

k DDsDDD  )(

1

)(

1 },...,{,..., . 

4. If one or more flux domains are pruned to empty or inconsistent domain (i.e. the 

algorithm fails to meet current constraints), exit with no solution. 

5. If all fluxes are bound (i.e. all domains are reduced to a single value through 

either binding or constraint propagation), exit and store the solution 

},...,{ 1 nsss  . Otherwise keep the binding of kj  and iterate to perform 

successive bindings. 

 Restart the search (step 1) with all unbound fluxes until the desired sample size is 

obtained. 

See Online Resource 17 for a simple example of the above-mentioned steps underlying the 

CLP-based sampling strategy.  

Forward checking-based algorithms are very popular non-systematic search strategies for 

solving constraint satisfaction problems, because they allow to detect inevitable failure early. In 

our case, constraint propagation binds a variable and then removes conflicting values from the 

domains of all future (unbound) variables. Since the constraint store is expected to change, the 

CLP  system solves the conjunction of arithmetic constraints in the constraint store by 

performing incremental constraint solving. The knowledge about the domain ( ) as well as the 

operations on this domain are built into the solver, so that it does not have to rely on generate-

and-test procedures. Thus, for example, CLP  can deduce that the conjunction of the 

constraints ji jj    and ji jj   is false without testing the constraints for any particular value. 

The solver uses Gauss-Jordan elimination for linear equalities and an adaptation of the Two-

Phase Simplex algorithm for linear inequalities, while non-linear constraints are delayed until 

they become sufficiently linear, e.g. after the binding of some variables [18]. For example, 

solving linear equality constraints with Gauss-Jordan elimination involves the substitution of 

parametric variables with equivalent parametric expressions, which eventually allows estimation 

of non-parametric variables. Inequality solvers can also determine implied equalities from the 

set of inequalities. CLP  uses constraint-handling rules (CHR) [19] in order to rewrite the set of 
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constraints and obtain simplification of constraints (replacement of constraints with simpler, 

equivalent ones) and/or constraint propagation (addition of new redundant constraints that 

eventually results in further simplification). This procedure can also detect a contradictory set of 

constraints. Overall, constraint simplification and propagation results in the pruning of the 

domains of one or more variables. Thus, constraint propagation is a mechanism to reduce the 

space of solutions that will be explored by the searching algorithm. 

As an example, consider the following constraint involving 3 fluxes: 

0321  jjj  

The domain of each flux is pruned using the following contracting operators (e.g., rules) of 

interval arithmetics: 

2133

1322

2311

DDDD

DDDD

DDDD







 

where 

]supsup,infinf[ jijiji DDDDDD   

and 

]infsup,supinf[ jijiji DDDDDD   

Importantly, contracting operators are correct (i.e. they do not eliminate solutions), which 

provides a safe enclosure of the feasible space of solutions. 

The present approach to obtain distributions of fluxes for FBA problems is conceptually different 

from the approaches taken by Heino et al [4] or Martelli et al [7]. The latter are both based on 

relaxation of steady-state equation to 0 jS  or 0 jS , respectively, i.e. they remove the 

assumption of strict flux stationarity. Instead, our approach remains in the deterministic 

framework of FBA. Therefore, in order to obtain an unbiased benchmarking, we compared the 

performance of CLP-based sampling algorithm with the ACHR sampling algorithm. ACHR is the 

state-of-the-art algorithm used for flux sampling in FBA problems, and it is implemented in the 

constraint-based reconstruction and analysis (COBRA) toolbox [20]. The main drawback of 

these algorithms is that there is no formal proof of convergence of the sampled distribution both 
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for ACHR (the sequence of iterates is not a Markov Chain) and CLP. Therefore, the performance 

of these algorithms can only be examined using empirical methods. We perfomed standard 

convergence analysis (Online Resource 18) as well as empirical convergence diagnostics 

(Online Resource 19) for CLP and ACHR, the latter run using different parameters (see below). 

An important difference between our sampling algorithm and ACHR is that CLP is intrinsically 

non-parametric. Indeed, CLP does not require the specification of (1) “reasonable” priors and 

starting points to initiate sampling; (2) “large enough” warm-up (i.e. burn-in) periods that are 

required by the sampler to find the numerically non-zero or non-next-to-zero parts of the 

distributions; (3) skip parameters (e.g., number of steps per point) that are required by the 

sampler to to fully explore the solutions space avoiding getting trapped near priors; and (4) 

tolerance parameters, which are used, for example, to evaluate the distance of the current point 

from the boundaries of the solution space in order to specify direction of next iterate. These 

arguments must be taken into account when comparing the sampling generated by the two 

algorithms. In principle, CLP-based sampling should be compared to ACHR run with no warmup 

points and no skip. However, in these conditions the convergence of ACHR is highly 

unsatisfactory (Online Resources 18 and 19). This is a known problem for hit-and-run based 

algorithms, which may require a very large number of steps to achieve convergence [9]. The 

CLP-based sampling algorithm exhibits very good convergence, which is achieved by ACHR 

only when the number of warmup points and steps per point is relatively high (of course, these 

numbers may depend on the specific problem and cannot be determined a priori). We found 

that the most critical parameter for ACHR is the number of steps per point, which results in low 

sample autocorrelation (Online Resource 18 Panel H) and good convergence (Online 

Resources 19 Panels B,D,F,H). Next, we compared the distributions of fluxes generated by the 

two algorithms by running ACHR with a high number of both warmup points and steps per point 

(Online Resources 6-10 for unconstrained model and Online Resources 11-15 for model 

constrained to awake conditions). In particular, given a sample size of 10,000 points, we set the 

number of steps per points to 1,000 and that of warmup points equal to sample size (i.e. 

10,000). The CLP-based sampling algorithm exhibits much higher coverage of the solutions 

space than ACHR. This again is a known issue for hit-and-run based sampling algorithms, which 

do not guarantee a high coverage in a high dimensional system [9]. We tested the ACHR 

algorithm also by setting the number of steps per point to 10,000 but the results did not change 

(data not shown). It is noted that the afore-mentioned diagnostics only tests whether a sample 

distribution converges, but provide otherwise no information on the accurate sampling of the 

solution space. To examine whether the collection of samples produced by our method can be 
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safely interpreted as realizations for an underlying distribution, we compared the spread 

matrices calculated from the solutions produced by CLP and ACHR. Importantly, the two 

sampling algorithms produces nearly identical spread matrices with only minor quantitative 

differences (compare Figure 5 and Online Resource 20). Overall, the performances of the non-

parametric CLP-based sampling are at least comparable with those of the commonly employed 

ACHR algorithm, with the advantage of a better coverage of the solution space. 

The main limitation of the CLP-based method is that the time necessary to obtain a solution is 

unpredictable and depends substantially on the specific problem (e.g., number of variables and 

corresponding domain boundaries). This issue is related to the fact that the forward-checking 

strategy belongs to the so-called heuristics, which are not guaranteed to succeed [21]. For the 

present (relatively small) metabolic network, the performance of the algorithm is acceptable, 

achieving a success rate (i.e. the fraction of iterations producing valid solutions) ranging from 

60% to 90% and generating approximately 10 solutions per second on a standard personal 

computer. This value has to be compared with the computational (CPU) time required by ACHR 

algorithm to generate a solution, which is 3 orders of magnitude smaller relative to CLP. 

Nevertheless, as illustrated above, for the present model ACHR requires to skip about 1,000 

points for each solution to obtain a reliable sampling of the solution space (although with lower 

coverage compared to CLP). Once this argument is taken into account, the CPU time of the two 

algorithms become comparable. It should be noted, however, that the CLP-based method has 

good potential for improvement. First, since the points generated do not depend on prior iterates 

(contrary to ACHR), the algorithm can be easily made parallel resulting in performance gain 

increasing linearly with the number of processors. Second, a substantial optimization can be 

directed to implement (a) dynamic backtracking mechanisms that, for example, go back to the 

variable that was responsible for the dead-end instead of restarting, and (b) non-random 

dynamic variable ordering that, for example, bind first variables with smaller domains or those 

with more constraints. Third, increases in performance could be obtained by translating the 

present declarative implementation of the CLP-based sampling algorithm, which was developed 

in Prolog (an interpreted and relatively slow language) to imperative languages using compiled 

constraint programming libraries available for e.g., C, Python and Java. 

Although the CLP-based algorithm will require further validation in the context of FBA flux 

sampling, the close agreement in terms of distributions, mean values and correlations of fluxes, 

between the sampled solutions produced by CLP and ACHR warrants the correctness of the 

outcomes as well as the interpretation and the main conclusions of the present study. 
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