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Supplementary Figure 1: Process used to hunt for missing human olfactory receptors using 5 
data from many publicly-available MS proteomic repositories, by computational 6 
identification of prototypic and high search engine (SE) scoring data for manual spectral 7 
quality check. Resulting best available spectral data were checked for sequence overlaps 8 
and then listed as most plausible of the best available MS evidence for missing ORs (details 9 
available in Supplementary Table 2). 10 
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Supplementary Table 1: Historical Efforts to Find the Missing Proteins – A PE2-4 HPP 12 
FactCheck (2012-current): 13 
Abbreviations:  DAVID, Database for Annotation, Visualisation and Integrated Discovery;  GRAVY;  14 
grand average of hydropathy;  Mr, molecular mass; pI, isoelectric point; PRIDE, Proteomics 15 
IDEntifications database; PXD; ProteomeXchange identifier. 16 
 17 
Missing Protein 
(PE2-4) 
Characteristic 

Property or 
Question 
Addressed 

Missing proteins/total human proteome (↑↓) Ref.

Physicochemical 
Properties 

pI, Mr, GRAVY, 
hydrophobicity 
 

PE1/PE2 protein ratios: pI ↓    Mr ↑    GRAVY ↑    
hydrophobicity ↓ 
 

1 
 

 Hydrophobicity and 
transmembrane 
domains 
 
 
 
Endopeptidase 
digestion 

1,224 were identified by modified ‘hppK’ analysis of human 
lymphoma cell lines out of which 2/3 were integral membrane 
proteins with 1-16 transmembrane segments. 13 missing 
proteins were identified which were previously in PE 2-5 
categories. 7 out of these 13 proteins are Integral membrane 
proteins with 2-7 transmembrane domains. FDR 0.01 and 
validation based on q value 
 
4 human proteins cannot produce a single proteotypic 
(tryptic) peptide with 36 not producing tryptic peptides in the 
9-30 amino acid range usually “seen” by MS. No analysis using 
PE1 metrics (i.e., 2 x >9 amino acid proteotypic peptides) was 
conducted. Combination “Confetti” endopeptidase digestion 
predicted to increase coverage. Physical data comparisons 
difficult, as their definition (PE2-5) is not aligned with current 
HPP/neXtProt missing protein nomenclature (i.e., PE2-4 
proteins are the missing proteins). 

2
 
 
 
 

3 

Protein Family, 
Subfamily or 
Biological 
Processes 

Membrane 
(PXD) 
 

Found 178 missing proteins expressed by 11 NSCL cancer cell 
lines, of which 74 were membrane proteins); 1% FDR >7aa, 
protein & peptide, GPCRs and Ig- like and P-loop containing 
NTPase zinc-finger proteins 
 

4

 Membrane 
 

PE5 proteins predicted (I-TASSER; COFACTOR) to be 
membrane/cell surface (transporter/receptor) and peptide 
fold families 
 

5
 

 Tissue distribution, 
cellular components 
and biological 
processes 

Manual curation of biological processes shows PE2-4 bias 
towards enriched zinc finger, GPCR (incl. olfactory receptors) 
and cadherin proteins. Data not condensed/quantitated. GO, 
Ingenuity IPA, neXtProt descriptor, PFAM and GPCR 
phylogeny remains to be done 

6 

Genetic or 
Evolutionary 
Aspects 

Chromosomal 
Geography 
 

http://proteomebrowser.org/tpb/home.jspx
This web portal driven by the AANZ Chr 7 team, brings 
together data and information about human proteins from a 
number of sources and presents them in a gene- and 
chromosome-centric, interactive format 
 

7

 Distribution PE2-4 
across chromosomes 
 

Genes for PE2-4 are not distributed evenly across human 
chromosomes or their regions. PE3/4 genes found outside 
conserved chromosomal regions. PE2-4 proteins tend to 
emerge at the telomere and centromere regions (more fragile 
experiencing breakage and rearrangement) and are adjacent 
to other protein coding genes but not adjacent to other PE-2-
4 coding genes. PE2-4 gene “clusters” tend to have similar 
functional descriptors. PE3/4 genes have higher tendency to 
be “young” (related to latest common ancestor) and less 
conserved across different species 
 

8
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Missing Protein 
(PE2-4) 
Characteristic 

Property or 
Question 
Addressed 

Missing proteins/total human proteome (↑↓) Ref.

Genetic or 
Evolutionary 
Aspects 

Chromosomal 
 

According to chromosomal files downloadable from neXtProt, 
PE2-4s are located on all 22 Chr pairs as well as X and Y, 
except MT. There are 2 MT proteins that fall into the PE1 
category but lack proteomic (MS) evidence 
 

9,10 

 Chr12 PE2-4 
chromosomal 
localisation 

Suggested co-localisation of Chr12 PE2-4 proteins in close 
proximity to functionally-related genes, protein:protein 
interaction and disease networks. Patterns of PE2-4 gene 
localisation should be confirmed across other chromosomes 

11 

Organ, Tissue, 
Cell or Disease 

Testis 
(PXD) 
 

PE2-4s restricted to particular tissues (e.g., testis, post-
meiotic germ cells). Found evidence for 89 PE2-4s, 1% peptide 
FDR; peptide length not mentioned, validated 3 PE5 proteins, 
twelve Chr2/14 PE2-4s found 

12 

 Testis 
(PXD) 
 

3 human testis tissues; separated high and low Mr proteins; 
166 PE2-4s identified by MS one > 9aa and others >7aa, 
FDR,1% peptide & protein levels, transcriptomics shows PE2-
4s; 108 PE2-4s (72% associated with disease (cancer) 
 

13 

 Testis Testicular tissues - 2 Chr Y PE2-4s by Western blotting; no MS 
 

14

 Retina/Placental Examined 2 cell lines - one replicate from each, 58 of 74 multi-
isoform genes are expressed at protein level 
 

15

 Multi-tissues 
(PXD) 
 

30 different tissues; 89 PE2-4s identified on Chr12; size of 
peptides not mentioned; 1% FDR peptide only 

16 

 HCC Cell lines 
 

3 HCC cell lines with mRNA cell line analysis; small β-defensin 
(DEFB) PE2-4s’ tryptic peptides will be very short; no other 
bias found; transcripts often not found as proteins 
 

17

 Lymphoma Cell lines
(PXD) 
 

370 PE2-4s identified in any replicate, length of 1+ proteotypic 
peptide, length not mentioned; FDR <1% protein and PSM 
level, 32 PE2-4s identified across 3 replicates; only 4 PE2-4s 
when 2 proteotypic peptide across triplicates 
 

18

 Lung adenocarcinoma 
(PXD) 
 

Two PE2-4s identified; <1% peptide, >2 proteotypic peptides, 
length no mentioned 
 

19 

 CRC Tissues 
(PXD) 

Claim 3,033 PE2-4s found <1% peptide FDR at 1 proteotypic 
peptide, protein FDR and peptide length not mentioned 
 

20 

 HCC cell lines 
 

In 3 HCC cell lines, high % missing protein coding genes 
(especially Chr11) contain no mRNA identified evidence while 
Chr19 did show mRNA evidence. Need to shift search for to 
missing mRNAs 
 

21 

 Cancer cell lines 
(epigenetically 
modified) 
(iProx) 
 

Found 19 PE2-4 proteins and 3 PE5 proteins, <1% peptide & 
protein FDR, a unique proteolytic peptide of >8aa. These 
proteins had no physicochemical differences with background 
proteins 

22

 HCC cell line/healthy 
sera (PXD/iProx) 

Separate high and low Mr subcellular fractionated proteins. 
30 PE2-4 proteins identified at 1% FDR protein/peptide, >7aa 
from HCC cell lines (13) and from healthy sera (17), as well as 
6 PE5 proteins 
 

23
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Missing Protein 
(PE2-4) 
Characteristic 

Property or 
Question 
Addressed 

Missing proteins/total human proteome (↑↓) Ref.

Organ, Tissue, 
Cell or Disease 

Breast cancer tissue 
(prior to HPP metrics) 
 

Propose PE2-4 proteins likely due to very low-abundance 
and/or absence of expression in given cells or tissues. 
Proteome Discoverer and DAVID analyses show % PE1 and 
PE2-4 total and membrane proteins. Ingenuity pathways 
analyses (see update in current work) demonstrated PE2-4 
proteins involved in molecular/cellular processes like lipid 
metabolism, small molecule biochemistry, cell-cell signalling, 
haematological function & immune cell trafficking. Propose 
subcellular membrane protein enrichment will improve low-
abundance PE2-4 protein coverage 

24

New Approach or 
Technology 

Antibodypedia 
 
 

Describe Antibodypedia as a curated, searchable database of 
Abs against human proteins. Ab coverage of the human 
genome graphically displayed on chromosome level (with 
validation and citation scoring criteria provided). 9% of human 
protein-coding genes lack Abs targeting any gene product and 
high redundancy in Abs against certain proteins exists. 5800 
gene products have only 0−9 available Abs and are suggested 
as future focus 
 

25

 Can PE2-4s be 
expressed and 
detected by MS 
 

Cell-free in vitro transcription/translation IVTT allows 
expression of 18 missing proteins from Chr16 

26

 MS CoPE2-4utational 
Analyses 
 

Reanalyses from PRIDE identified 24 (17 were transmembrane 
proteins and 17 associated with secretory pathway) PE2-4s; 
1+ proteotypic peptide, <1% protein FDR, peptide length not 
mentioned

27

 Multiple Spectral 
Library approach 
 

Reanalysed placental PXD tissue dataset using multiple 
spectral libraries to identify 12 PE2-4 proteins, >two 7aa or 
one 9aa proteotypic peptides, FDRs not mentioned 

28 

 Modified MRM 
Approach 
(PXD) 
 

Of 185 “targeted” PE2-4s 57 successfully detected using an 
MRM approach with synthetic peptide library 

29

 Complete reanalysis 
of neXtProt 

145 human proteins not expected to have proteotypic tryptic 
peptides (77 PE2-4, 58 PE1 and 10 PE5 proteins); length of 
peptides not mentioned. 58 neXtProt PE1 proteins that do not 
produce tryptic peptides emanate from highly similar protein 
evidence (40), experimental/functional characterisation (11), 
3D structure (6) and binary interaction (1). Authors suggest 
need for review and possible use of Confetti, Ab and top-
down MS approaches for proteins where tryptic digestion not 
anticipated 
 

30

 CoPE2-4lete 
reanalysis of Chr12 
neXtProt, GPMDB, 
PeptideAtlas, HPA & 
Ensembl data 
 

1,066 protein coding genes identified, including 171 PE2-4s 
(only 2 by MS, no metrics provided) 

31 

 Functional annotation
of neXtProt PE2-4 
Chr7 

New protocol integrating bioinformatics analysis and 
annotation tools, reporting mammalian homologues from 
sequential BLAST searches for 128 Chr 7 PE2-4 proteins and 
functional motifs, gene ontology and/or pathway analysis for 
another 27 proteins 
 

32
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Missing Protein 
(PE2-4) 
Characteristic 

Property or 
Question 
Addressed 

Missing proteins/total human proteome (↑↓) Ref.

 Reanalysis of 
neXtProt PE2-4 Chr2 
& 14   (PXD) 

Informatics reanalysis of neXtProt data found 58 Chr2 & 14 
PE2-4 proteins using >6aa, MASCOT ion score >30, 1% peptide 
FDR, SRM with synthetic peptides confirmation. Suggest PE1 
status be confirmed.

33 

    
 ProtAnnotator: 

functional annotation 
of all neXtProt PE2-4 

www.biolinfo.org/protannotator
Semi-automated pipeline, extending the bioinformatics 
approach in ref. 32. Homologues identified for 66%of PE2-4 
proteins, with functional 
annotation for 51%. 

34
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Supplementary Table 2: Currently assigned PE2-4 missing ORs with manually-curated, 22 
best-available proteotypic peptide MS spectra. 23 

Details of neXtProt identifier (ID), chromosome (Chr) number, peptide identified, with its length and 24 
start and end positions on protein sequence, number of MS observations (Obs.) and database(s) 25 
where peptide spectral information has been deposited.  26 

# neXtProt ID Chr Gene 
Name 

Peptides identified Peptide 
length 

Peptide 
position 

No of 
Obs 

Database/s Used

ORs that currently qualify as PE1 proteins according to neXtProt Feb 2016 HPP high-stringency metrics (≥ 2 uniquely 
mapping peptides ≥ 9 residues) 
NIL 
ORs that previously qualified as PE1 proteins according to 2015 HPP neXtProt metrics (≥ 2 uniquely mapping 
peptides ≥ 7 residues or 1 uniquely mapping peptide ≥ 9 residues) 

1 NX_Q8NGR6 9 OR1B1 IGAAILRLPSAAGR@ 14 227-240 1 GPMDB (yellow)

2 NX_Q8NGA1 19 OR1M1 ILVAIMKVPSAGGR*,# 14 221-234 2 GPMDB (both 
green) 

3 NX_Q8NGH9 11 OR52E4 TISILASVVVGR# 12 142-153 1 PRIDE 

4 NX_Q9H344 11 OR51I2 SVMATASREER 11 224-236 4 PRIDE 

5 NX_Q8NH03 1 OR2T3 SAAGHRKAL# 9 235-243 2 GPMDB (red)

6 NX_P0C629 1 OR10J4 DALLRALGR 9 299-307 1 PRIDE 

7 NX_Q8NH61 11 OR51F2 LYVVAVSGN 9 48-56 1 GPMDB (red)

8 NX_Q8N162 11 OR8H2 NAVIRVMQR 9 299-308 1 PRIDE 

9 NX_Q8WZA6 17 OR1E3 VPSTGGIQK# 9 228-236 2 PRIDE 

ORs that did not previously and do not currently qualify as PE1 proteins according to 2016 HPP neXtProt high-
stringency metrics (i.e., only 1 uniquely mapping 7-8 residue peptide) 
10 NX_O95047 6 OR2A4 GDNITSIR# 8 2-9 1 GPMDB (red)

11 NX_Q9Y5P1 11 OR51B2 QIQYGIIR# 8 296-303 1 GPMDB (red)

12 NX_O95221 11 OR5F1 ALANVISR# 8 300-307 1 PROTEOMICSDB

13 NX_Q8NGG7 11 OR8A1 EVKAAVQK 8 312-319 1 PROTEOMICSDB

14 NX_Q8NGG2 11 OR5T2 FVLDFNMK# 8 36-43 1 GPMDB (red)

15 NX_Q8NGJ8 11 OR51S1 ILNRLQPR 8 310-317 1 PRIDE 

16 NX_Q9H2C8 11 OR51V1 IGLTIIGR# 8 153-160 1 PROTEOMICSDB

17 NX_Q8NGE5 12 OR10A7 TVTLLGNF 8 36-43 1 PROTEOMICSDB

18 NX_Q8NGC5 14 OR6J1 MRAVLRSR 8 315-322 1 PRIDE 

19 NX_Q8NGB8 15 OR4F15 KHKAISFR 8 88-95 2 PRIDE 

20 NX_Q8NGY6 1 OR6N2 IIGAVLK# 7 221-227 1 PROTEOMICSDB

21 NX_Q9NZP5 3 OR5AC2 VLFDILK# 7 223-229 35 PRIDE, 
PROTEOMICSDB 

22 NX_Q8NGR8 9 OR1L8 ILTTVLK# 7 222-228 1 PROTEOMICSDB

23 NX_Q8NGC1 14 OR11G2 DMRKALK 7 334-340 1 PRIDE 

* overlapping peptides with overlap underlined 27 
# matches with SRM peptides shown in bold font, with partial overlaps shown in italics 28 
@ contains two complete SRM peptides  29 
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Supplementary Note 1: Brief description of the IL-9 proteomics experiment 30 

We carried out a secretome analysis of activated human T cells by performing a label-free bottom-31 
up proteomic study of the conditioned medium of a primary cell culture. Viable naïve T cells were 32 
isolated as described before35. In order to minimize cell stress and to maintain them in good 33 
condition for several days, cells were cultured in conventional DMEM/F12 culture medium 34 
supplemented with 7.5% fetal bovine serum (FBS). Reduced and iodoacetamide alkylated proteins 35 
from the harvested cell supernatant were prefractionated on a C5 column, digested with trypsin and 36 
further analysed by data dependent nanoLC tandem MS on an ion trap/OrbiTrap mass spectrometer 37 
(LTQ OrbiTrap Velos (Thermo Fisher Scientific)). Conditioned media of activated as well as of resting 38 
T cells were collected at 6, 24 and 48 hours after the time of activation, and analysed in duplicate. 39 
The experiment yielded approximately 340,000 peptide spectral matches (representing 20% of all 40 
1.69 million tandem MS spectra recorded). Nearly 320,000 of these PSMs could be mapped to just 41 
over 100 bovine (i.e. FBS derived) proteins. Slightly less than 21,000 PSMs uniquely mapped to a 42 
little over 500 human protein groups. Only in the medium of the 48h activated T cells, PSMs 43 
referring to human IL-9 were detected, yielding the representative MS/MS spectra shown in Figure 44 
6.  45 
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