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Supplementary figure legends: 

Fig.S1 Mouse (m)Pidd1-CC overexpression triggers the appearance of MDM2 

p55/p60 cleavage products in a RAIDD and Caspase-2-dependent manner. (A) A549 

cells stably expressing a reverse transactivator (rtTA) were transfected with the 

indicated siRNAs for 48h, followed by transduction with mPIDD-CC WT or mPIDD-

CC carrying the point mutation corresponding to human L828E, known to interfere 

with RAIDD binding (Park et al., 2007). 4h after the transduction, transgene 

expression (traceable in both cases by IRES-GFP) was induced for another 20h with 

Doxocycline. Cells were processed for immunoblotting using the indicated antibodies. 

* indicates signal generated by the GFP antibody that has been probed prior to 

RAIDD. (B) A549-rtTA cells were transfected with siRNAs targeting Luciferase (Gl2), 

Caspase-2 (C2-1), Caspase-9 (C9) or Caspase-8 (C8) for 48h, followed by 

transduction with mPIDD-CC and addition of Doxocycline, as described in (A). Cells 

were processed for immunoblotting with the indicated antibodies. (C-D) A549 cells 

treated with the indicated drug concentrations for 24h were processed for 

immunoblotting (C) or DNA content analysis (D), showing that Reversine, when used 

as in the manuscript at 500 nM, causes cytokinesis failure in a fraction of the cells 

and PIDDosome activation. 

Fig.S2 Cytokinesis failure triggers Caspase-2 activation and p53 stabilization in the 

absence of cell death. A549 cells were treated with ZM447439 for different times and 

processed for immunoblotting (A), for DNA content analysis (B) or for DNA content 

analysis simultaneously to assessment of the proliferative behaviour using a Ki-67 

staining and analysis in a flow cytometer (C). (D-E) Cells were transfected with 

siRNAs targeting targeting luciferase (Gl2) or ECT2 and processed for DNA content 

analysis in a flow cytometer (D) or for immunoblotting after various times (E). (F-G) 

Cells were treated with DHCB for different times and processed for DNA content 

analysis in a flow cytometer (F), or immunoblotting (G).  

Fig.S3 Caspase-2 triggers cleavage of MDM2 at D367 at ≤ 6h following cytokinesis 

failure. (A) A549 cells were either left asynchronous (Asynch) or pre-synchronized in 

S-phase with thymidine, followed by release in the presence of Nocodazole for 12h. 

Mitotic cells were harvested by selective shake-off (Noco) and released in the 

presence of either solvent control (DMSO) or ZM447439 for various times. Samples 

were processed for immunoblotting with the indicated antibodies. (B) Cells were 
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either left asynchronous or synchronized by double thymidine arrest, followed by 

release in the presence of either solvent control (DMSO) or ZM447439 for various 

times. Samples were processed for immunoblotting with the indicated antibodies. 

Note that the majority of cells enter G1 approximately 12h after release according to 

parallel DNA content analysis (not shown). (C) Cells were left untreated or were 

transfected with MYC-tagged MDM2, either in its wild type form or carrying the 

indicated point mutations rendering them caspase-cleavage resistant. DMSO or 

ZM447439 treatment was performed 4h after the transfection for an additional 24h 

prior to sample processing for immunoblotting.  

Fig.S4 siRNAs targeting the PIDDosome and PIDDosome activation in various cell 

lines. Following transfections with siRNAs, cells were left untreated or were treated 

with ZM447439 for 48h and processed for immunoblotting (A) or for DNA content 

analysis in a flow cytometer (B). (C) The indicated cell lines have been treated for 0, 

24 and 48h with ZM447439 and processed for immunoblotting with the indicated 

antibodies.  

Fig.S5. Assessment of Hippo and PIDDosome pathway interdependence. (A) A549 

cells were either treated with solvent control (DMSO) or with ZM447439 for 24h and 

whole cell lysates (WCL) were harvested or fractionated in cytoplasmic (cyto) and 

nuclear components and subjected to immunoblotting. (B-C) Following transfections 

with siRNAs, A549 cells were left untreated or were treated with ZM447439 for 48h 

and processed for immunoblotting (B) or for DNA content analysis in a flow cytometer 

(C). 

Fig.S6. Gating strategies for the analysis of hepatocyte ploidy. Example of gating 

strategy performed upstream of the hepatocyte data displayed in Fig. 4A-B. Cells 

were separated from debris first, followed by doublet-exclusion and quantitative 

assessment of ploidy distribution.  

Fig.S7. PIDDosome activation requires the presence of extra centrosomes in U2OS 

cells. Cells treated as in (Fig. 5A) were subjected to DNA-content analysis (A) and in 

parallel to immunoblotting with the indicated antibodies (B).  

Fig.S8 Long-term analysis of Caspase-2 deficient cells exposed to inhibition of 

cytokinesis. CASP2 knockout A549 cells obtained with the indicated sgRNA or 

parental A549 cells were treated with ZM447439 for the indicated times and 

processed for DNA content analysis in a flow cytometer (A) or for immunoblotting (B). 
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Fig.S9 Long-term live cell imaging analysis of Caspase-2 deficient cells exposed to 

inhibition of cytokinesis. (A) Movie stills from A549 parental cells or CASP2 knockout 

cells obtained with the indicated sgRNA, subjected to time-lapse video microscopy 

following exposure to solvent control (DMSO), ZM447439 and DHCB. Movies were 

acquired in the presence of siR-Hoechst to allow visualization of the chromatin. The 

cell shape was drawn before (first frame) and after (last frame) mitosis, based on 

phase contrast images (not shown). Time in hh:mm is indicated. Scale bar 10 µm. (B) 

Fate profiles of 50 cells treated as indicated followed from the first abortive mitosis 

(red) for 40h. (C) Movie stills from cells that have been treated for 24h with DHCB 

and released into fresh medium before imaging. While parental bi-nucleated cells did 

not traverse mitosis for the duration of imaging, CASP2 knockout displayed either bi-

polar or tri/tetra-polar mitoses. (D) Quantification of the mitotic polarity distribution 

across to individual cells of the indicated genotypes exposed to the indicated 

treatments. (E) Box (interquartile range) and whisker (min to max) plots showing the 

elapsed time (min) between NEBD and anaphase for the 50 individual cells analysed 

in (D). (F) Example of cells exposed to DHCB for over 80h: cells were pre-treated 

with DHCB for 24h before imaging and video microscopy was performed in the 

continuous presence of DHCB. While parental bi-nucleated cells do not traverse 

mitosis for the duration of the movie, some CASP2 knockouts traverse two mitoses, 

showing that CASP2 deficient cells undergo up to three subsequent rounds of 

abortive mitosis in the 80h DHCB treatment window.   

Fig.S10. Immunofluorescence staining, related to Figure 6. (A) Representative 

images of cells analyzed in the experiment shown in Figure 5A-C. (B) The anti-PIDD1 

antibody used is specific in immunofluorescence: parental A549 and PIDD1 knockout 

derivatives obtained with the indicated CRISPR-Cas9 lentiviral constructs were 

stained in immunofluorescence with the indicated antibodies. Representative pictures 

are shown. (C) A549 and U2OS cells were stained in immunofluorescence with the 

indicated antibodies (2 centrioles for G1, 4 centrioles for S or G2 phases. 

Representative images are shown. 
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Supplementary methods 

Cell Culture 

MCF10A cells were cultured in DMEM/F12 (Invitrogen, 11330-032), 

supplemented with 5% horse serum (Invitrogen, 16050-122), 20 ng/ml EGF 

(Peprotech, AF-100-15), 0.5 mg/ml Hydrocortisone (Sigma Aldrich, H-0888), 100 

ng/ml Cholera Toxin (Sigma Aldrich, C-8052), Insulin 10 µg/ml (Sigma Aldrich, I-

1882), 100 U/ml penicillin and 100 µg/ml streptomycin (PAA laboratories, P11-010). 

All other cell lines were cultured in DMEM (PAA laboratories, E15-009 or Sigma-

Aldrich, D5671) supplemented with 10% fetal bovine serum (FBS, PAA laboratories, 

A15-151), 1% L-glutamine (PAA laboratories, M11-004), 100 U/ml penicillin and 100 

µg/ml streptomycin. Cells were incubated at 37 °C with 5% CO2.	A549 (Haschka et 

al., 2015), U2OS (Sigl, Ploner, Shivalingaiah, Kofler, & Geley, 2014), U2OS-TRex-

MYC-PLK4 (Kleylein-Sohn et al., 2007), hTERT RPE-1 (Sigl et al., 2014), Cal51 

(Rashi-Elkeles et al., 2014) were previously described; MCF7 and MCF10A were a 

kind gift of Prof. H. Fiegl (Medical University of Innsbruck). 

Cell Fractionation 

Nuclear and cytoplasmic fractions were obtained according to (Suzuki, Bose, Leong-

Quong, Fujita, & Riabowol, 2010). Purity of the fractions was then assessed using 

PARP1 and GAPDH immunoblotting, present exclusively in the nuclear and 

cytoplasmic fraction, respectively.  

Synchronization Procedures 

Synchronization in mitosis (Fig. S3A) was performed as follows: A549 cells 

were pre-synchronized by a single thymidine arrest (24h), followed by a release in 

fresh medium in the presence of Nocodazole for 12h. Mitotic cells were harvested by 

selective shake-off, washed twice in PBS and twice in medium and released in the 

presence of either DMSO or ZM447439. Synchronization at the G1-S boundary (Fig. 

S3B) was performed by 22 h arrest with thymidine, followed after 9 h by a second 

arrest of 17 h. For release cells were washed twice with PBS and fresh medium was 

added. Mitotic cells were harvested by selective shake off.  

Cloning and site directed mutagenesis 
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 The expression construct coding mPidd1-CC (Fig. S1) was generated using a 

mouse cDNA corresponding to Pidd1, isoform 1. The coding region from position 

593-915 was amplified by PCR using high-fidelity Pfu-polymerase using the following 

oligonucleotides: GW-mPIDD-CC-fwd 5´ 

CAAAAAAGCAGGCTCCatgTCCTGGTACTGGCTCTGGTATACC, and GW-mPIDD-

CC-rev 5´ CAAGAAAGCTGGGTctaGGCCTGTGCAGACTCTGG. The PCR product 

was cloned into pDONR207 (Invitrogen) using BP clonase reaction mix (Thermo 

Fisher Scientific, Vienna) and then recombined into the lentiviral vector pHR-tet-

CMV-Dest-IRES-GFP using the GATEWAY™ technology (Invitrogen). The variant 

carrying the point mutation referred as L828E (corresponding to mouse L833E) was 

obtained by site directed Quickchange™ mutagenesis (Agilent), using the following 

oligonucleotides: mPIDD-L828E-fwd 5 

AATTCAGGGATGACgagGATGGCCAGGTCCGAC, mPIDD-L828E-rev 5´ 

GTCGGACCTGGCCATCctcGTCATCCCTGAATTC. Oligonucleotides yielding 

sgRNAs were sgCASP2#2 fwd: 5´caccgAGGACTCACACACCGGAAAA, rev: 5´ 

aaacTTTTCCGGTGTGTGAGTCCTc; sgCASP2#3 fwd: 5´ 

caccgTGGTGAGCAACATATCCTCC, rev: 5´aaacGGAGGATATGTTGCTCACCAc; 

sgPIDD1#2 fwd: 5´caccgGCCGATAGCGGATGGTGATG, rev: 

5´aaacCATCACCATCCGCTATCGGCc;  sgPIDD1#4 fwd: 

5´caccgGGCCCGGCGCTGCCGTGAAG, rev: 

5´aaacCTTCACGGCAGCGCCGGGCCc; sgRAIDD#3 fwd: 

5´caccgCGCTCACTTCGCCTGGAGCT, rev: 

5´aaacAGCTCCAGGCGAAGTGAGCGc; sgRAIDD#4 fwd: 

5´caccgCCAGCTCCAGGCGAAGTGAG, rev: 

5´aaacCTCACTTCGCCTGGAGCTGGc; mCD8 fwd: 

caccgGCTGGGTGAGTCGATTATCC, rev 5’ aaacGGATAATCGACTCACCCAGCc; 

sgp53 fwd: 5’ caccgTCCATTGCTTGGGACGGCAA, rev: 

aaacTTGCCGTCCCAAGCAATGGAc. 

Plasmid transfection 

For plasmid transfections (Fig. S3C) 2.5 µg of plasmid DNA were transfected 

into A549 cells (500.000 per 6 cm plate) using Metafectene (Biontex) according to 

the manifacturer´s protocol. The following plasmids were employed: pCMV-MYC3-

HDM2, a gift of Yue Xiong, Addgene plasmid 20935 (Zhang et al., 2003), pCMV-
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MYC3-MDM2 D367E (Addgene 52057) and pCMV-MYC3-MDM2 D367A (Addgene 

52058) were a gift of T. Jacks and T. Oliver (Oliver et al., 2011).   

siRNA sequences 

 siRNA duplexes (purchased from Microsynth AG) were siC2-1 GCC 

CAA GCC UAC AGA ACA AdTdT, siC2-3 ACA GCU GUU GUU GAG CGA AdTdT, 

siC8 AAG AGU CUG UGC CCA AAU CAA dTdT, siC9 CCA GGC AGC UGA UCA 

UAG AdTdT, siECT2 GCA CUC ACC UUG UAG UUG AdTdT, siRAIDD GGG UUU 

CCA CUA GAC AUU AdTdT, siPIDD1-1 CAG ACU GUU CCU GAC CUC AGA dTdT, 

siPIDD1-2 CUG CUU UGU CUU CUA CUC GCA dTdT, siPIDD1-3 AGA CCU ACC 

UGG AGG AAG AdTdT, sip21 ACA AAG UCG AAG UUC CAU CdTdT, sip53 AGU 

AGA UUA CCA CUG GAG UCdTdT, siLATS2 GCA CGC AUU UUA CGA AUU 

CdTdT, siODF2 GAG GUC AAG AUG CAA AAA GGU dTdT.  

 

Antibodies 

 The following antibodies were used in immunoblotting experiments: 

rabbit anti GAPDH (14C10 clone, Cell Signaling, 2118, 1:5000), rat anti CASP2 

(clone 10C6, 1 µg/ml), rabbit anti p53 (used throughout the manuscript, FL-393, 

Santa Cruz Biotechnology, sc 6243, 1:200), mouse anti p53 (used in hepatocytes, 

1C12, Cell Signaling, 2524, 1:500), mouse anti phosho-p53 Ser15 (clone 16G8, Cell 

Signaling, 9286, 1:500), mouse anti HSP90 (clone F8, Santa Cruz Biotechnology, sc-

13119, 1:1000) mouse anti MDM2 (IF2, Thermo Fisher Scientific, MA1-113, 1:500), 

mouse anti CHK1 (clone 2G1D5, Cell Signaling, 2360, 1:1000), rabbit anti phospho-

CHK1 Ser345 (Clone 133D3, Cell Signaling, 2348, 1:500), rabbit anti phospho-cdc2 

Tyr15 (Cell Signaling, 9111, 1:500), mouse anti p21 (BD, 554262, 1:500), mouse anti 

MYC (9E10, 1 µg/ml), mouse anti Tubulin (Sigma-Aldrich, T6199, 1:5000), rabbit anti 

GFP (rabbit SG4.1, 1:1000), mouse anti RAIDD (clone 4B12, LSBio, LS-C179788, 

1:1000), mouse anti CASP9 (Cell Signaling, 9508, 1:1000), rabbit anti CASP8 (R&D 

Systems, AF1650, 1:400), rabbit anti PARP1 (Cell Signaling, #9542, 1:1000), mouse 

anti CDC27 (clone 35/CDC27, 1:300, BD 610455), mouse anti PIDD1 (ENZO, ALX-

804-837-C100, 1:500), rabbit ODF2 (Sigma, HPA001874, 1:1000), rabbit anti YAP 

antibody (Cell Signaling, 4912, 1:1000), rabbit anti BAX antibody (Cell Signaling, 

2772, 1:1000), rabbit anti PUMA antibody (Cell Signaling, 4976, 1:1000), goat anti 

rabbit Ig/HRP (Dako, P0448, 25 ng/ml), rabbit anti mouse Ig/HRP (Dako, P0161, 
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0.13 µg/ml), rabbit anti rat IgG heavy chain/HRP (Jackson ImmunoResearch, 

discontinued, 1:10000). In immunofluorescence, the following antibodies were used: 

rabbit Cep164 (Graser et al., 2007) (1:500) rabbit CP110 (Schmidt et al., 2009) 

(1:500), mouse anti C-Nap1 (this study, see below, hybridoma supernatant 1:5), 

mouse PIDD1 (ENZO, ALX-804-837-C100, 1:500). Cep164 and CP110 antibodies 

were directly coupled to Alexa Fluor 488 and 555, respectively (Invitrogen), while anti 

PIDD1 and C-Nap1 antibodies were detected by goat anti-mouse antibodies coupled 

to either Alexa Fluor 488 (Fig. S7C), Alexa Fluor 568 (Fig. 4C and 5D) or Alexa Fluor 

647 (Fig. 5E and S7A-B), all used 1:750 (Invitrogen). The DNA was stained with 1 

µg/ml Hoechst 33342. 

 

Generation of the C-Nap1 monoclonal antibody 

 Hybridoma cell lines producing monoclonal antibodies against C-Nap1 were 

generated following standard procedures. A recombinant fragment of human C-Nap1 

(coding for amino acids 1988-2442) was expressed in E.coli, purified and injected 

into mice. The monoclonal antibody produced by the hybridoma cell line 150-230-1 is 

of the IgG1 subclass. 

Mouse strains 

Generation and genotyping of p53-/- (Lowe, Schmitt, Smith, Osborne, & Jacks, 

1993), Casp2-/-(O'Reilly et al., 2002) , Pidd1-/- (Manzl et al., 2009) and Raidd-/- 

(Berube et al., 2005) mice have been described. All mice were maintained on a 

C57BL6 genetic background and used at the indicated age. Animal experiments 

were performed in line with Austrian legislation (BMWFW-66.011/0108-

WF/V3b/2015).  

Primary Hepatocyte Isolation 
The two-step collagenase perfusion described in the main text was adapted 

from (Grompe, Jones, Loulseged, & Caskey, 1992; Seglen, 1976; Theurl et al., 

2011). 

Time-lapse video microscopy 

Cells were seeded 30 h before imaging into Ibidi µ-Slide 8 Well coverslip (Cat. No. 

80826) at a density of 20.000 cells per well. 4 h later cells were either left untreated 
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or treated with cytokinesis inhibitors. 2 h before imaging cells were washed with PBS 

twice and with Leibovitz 15 (LifeTechnologies, 21083-027) medium supplemented 

with 10 % FBS, 100 u/ml penicillin, 100 µg/ml streptomycin two more times. Cells 

were incubated in the same medium -/+ cytokinesis inhibitors in the presence of 2 µM 

SiR-Hoechst at 37°C (Lukinavičius et al., 2015). Imaging at multiple positions was 

performed every 5 min on a Leica DMI8 AF6000LX system equipped with Adaptive 

Focus Control, an HC PL FLUOTAR L 20x/0.40 dry objective, Hamamatsu Flash4.0 

camera and a Lumencor Spectra x light engine. Lif files were processed with Fiji and 

the contrast of movie stills was adjusted in Adobe Photoshop CS6. 
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