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Supplemental Figures 
 

 
Figure S1, Related to Modulation of Attention, Experimental Procedures. The eye-tracking measure was not 
biased towards faces, landmarks or tools. A. Number of trials on which each dimension was the maximally 
attended dimension (that is, the dimension that participants looked at for the longest duration for that trial). There 
was no significant difference between dimensions (one-way repeated measures ANOVA: F(2,48)=1.24, p = 0.3).  
B. The average proportion of time participants looked at each dimension on each trial did not differ significantly 
(one-way repeated measures ANOVA: F(2,48) = 0.24, p = 0.79). C. The average proportion of time participants 
looked at each dimension on each trial was not significantly different between dimensions over the course of a game 
(two-way repeated measures ANOVA: F(2,48) = 0.89, p = 0.42). Error bars: SEM.  
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Figure S2, Related to Modulation of Attention, Experimental Procedures. The MVPA attention measure was 
not biased towards faces, landmarks or tools. A. The number of trials on which each dimension was the 
maximally attended dimension (that is, the dimension with the highest classification probability for that trial) was 
not significantly different (one-way repeated-measures ANOVA: F(2,48) = 1.16, p  = 0.32). B. The average 
classifier probability of each dimension averaged over all trials and all participants was not significantly different 
between dimensions (one-way repeated measures ANOVA: F(2,48) = 0.88, p = 0.42). C. The average classifier 
probability of each dimension on each trial was not significantly different between dimensions over the course of a 
game (two-way repeated measures ANOVA: F(2,48) = 073, p = 0.49). Error bars: SEM. 
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Figure S3, Related to Modulation of Attention, Experimental Procedures. The eye-tracking and composite 
measures of attention become increasingly focused and consistent over the course of a game. A. Standard 
deviation of the three attention weights as a function of trial in the game, for different attention measures, and for 
learned and unlearned games. Standard deviation of eye-tracking (linear mixed-effects model: t(23.1) =  4.8, p < 
0.001) and composite attention weights (t(24) = 2.79, p = 0.01) increased over the course of a game, indicating a 
sharpening of attention. This increase was greater in learned games than unlearned games (eye-tracking weights: 
t(25.4) = 3.9, p < 0.001; composite weights: t(22.5) =  1.8, p = 0.08). The increase was not observed in the MVPA 
weights (t(28.5) = -1.0, p= 0.31).  B. Pearson correlation between attention weights for consecutive trials, separately 
for each attention measure, and for learned and unlearned games. We used Pearson correlation to quantify the 
similarity in the distribution of attention between consecutive trials. The eye-tracking and composite measures of 
attention changed less from trial to trial as games progressed (eye-tracking weights: t(23.0) = 6.4, p <0.001; 
composite weights: t(24.0) = 5.6, p < 0.001). This effect was more pronounced for learned games than for unlearned 
games (eye-tracking weights: t(46.4) = 4.7, p < 0.001; composite weights: t(36.5) =  2.96, p = 0.005), and not 
observed in the MVPA weights (t(24)  = 0.04, p = 0.97). These results suggest that the MVPA measure might be 
noisier than the eye-tracking measure. However, an alternative possibility is that while the eye-tracking measure 
reflects goal-oriented, value-driven attention that sharpens as participants become increasingly certain about the 
most-rewarding feature, the MVPA measure captures random fluctuations in attention that nevertheless affect value 
computation and value update (c.f. deBettencourt et al., 2015). Our finding that combining the eye-tracking and 
MVPA measures of attention improves the model’s ability to predict participants’ choices (Fig. S4) indicates that the 
MVPA measure did contribute independently to our measure of attention. Learned games: games in which 
participants chose the most rewarding feature on each of the last five trials. Error bars: SEM. 
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Figure S4, Related to Figure 3. Comparison of models with composite, eye tracking and MVPA measures of 
attention. Model fits of the ACL model (top), AC model (middle) and AL model (bottom) with eye tracking (blue), 
MVPA (green) and composite (red) measures of attention, all showed a better fit (higher average likelihood per trial 
and lower BIC score) for the composite measure of attention. Participants are ordered by average choice likelihood 
of the model that best explained their data. Comparison based on average likelihood/trial is shown on the left, while 
comparison based on BIC is shown on the right. For all three models, average likelihood per trial was significantly 
higher when using the composite measure than when using the eye tracking (ACL: t24 = 5.80, p < 0.001; AC: t24 = 
5.24, p < 0.001; AL: t24 = 4.48, p < 0.001) or MVPA measure (ACL: t24 = 4.86, p < 0.001; AC: t24 = 5.20 p < 0.001; 
AL: : t24 = 4.13 p < 0.001).  
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Figure S5, Related to Figure 3. The ACL model provides the best fit for unlearned games. Our study was 
aimed at investigating the neural and behavioral dynamics of learning what to attend to. As such, unlearned games 
were in many ways more revealing of the underlying learning dynamics, as there was no period of learned 
asymptotic behavior in these games. Here, we compare the models based on unlearned games only, and show that 
despite the reduced power, the ACL model still provides the best fit to the data. A. Average choice likelihood per 
trial for each model and each participant (ordered by likelihood of the model that best explained their data), 
calculated for unlearned games only (that is, games in which the participant did not consistently select the correct 
stimulus in the last five trials of the game). The ACL model explained the data significantly better than other models 
(ACL vs AC: t(24) = 5.4, p < 0.001; ACL vs AC: t(24) = 5.9, p < 0.001; ACL vs  UA: t(24) = 8.4, p < 0.001). Solid 
lines: mean for each model across all participants. B. BIC scores for the four models aggregated over all participants 
also support the ACL model. C. In unlearned games, the average choice likelihood of the ACL model was 
significantly higher than the next best model from as early as the 8th trial. Error bars: within-subject SEM.  
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Figure S6, Related to Measures of Attention, Experimental Procedures. See also Supplemental Methods below. 
Comparison of attention weights derived by averaging over different intervals. Average Pearson correlation 
coefficient (r) obtained by computing pairwise correlations between attention vectors on every trial and averaging 
within each subject and then across subjects. Attention at choice (AC) and attention at learning (AL) were 
moderately correlated (r = 0.56). The MVPA measure of attention was significantly more correlated with AC rather 
than AL, suggesting that the MVPA measure might reflect attention at choice more than attention at learning 
(average r between MVPA and AC: 0.37, average r between MVPA and AL: 0.27, t(24) = 4.63, p < .001).  
B. Average trial-by-trial Pearson’s r between AC and AL attention vectors increased throughout the game  
F(24,24) = 4.95, p < .001. Results were averaged across games within participant, and then across participants. Error 
bars: SEM. *** p < .001. 
 

 

 

 
 
Figure S7, Related to Figure 3. A reinforcement 
learning model that uses separate measures of 
attention at choice and at learning (ACLhr) 
predicts the choice data significantly better than 
the ACL model that uses the same attention 
measure for both. See also Supplemental Methods 
below. Shown are results of a paired-sample t-test for 
the cross-validated likelihood per trial obtained by 
performing leave-one-game-out cross-validation. 
Error bars: SEM. *** p < .001; ** p < .01; * p < .05. 
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Figure S8, Related to Figure 5. A model that allocates 
attention based on learned values matches the composite 
attention measure better than models where attention is 
allocated based on past choices or rewards. Comparison of 
models of attention according to the root mean squared deviation 
(RMSD) of the model’s predictions from the empirical data 
(lower values indicate a better model). For the uniform model 
(light gray), we computed the average per-trial RMSD between 
the observed attention vector on each trial and [1/3 1/3 1/3].  For 
the remaining models, we computed the RMSD by repeatedly 
fitting the models to all games except one and testing on the 
holdout game. Plotted is the subject-wise average per-trial 
RMSD from the composite measure of attention, calculated on 
the holdout games. The winning model (Value) is shown in 
orange. Error bars: SEM. *** p < .001; ** p < .01; * p < .05. 
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Supplemental Tables 
Table S1, Related to Choice models, Experimental Procedures. Best-fit parameters for each model 
with accompanying constraints. Models parameters fit to all data from each participant separately. 
Parameters were optimized to minimize the negative log posterior probability of the participant’s choice 
data given the model. β: softmax gain (inverse temperature); η: learning rate; ωET: smoothing weight 
for the eye-tracking attention measure; ωMVPA: smoothing weight for the MVPA attention measure. 
Because the β parameter takes on unbounded values, to stabilize model optimization and to prevent 
numerical overflows, a Gamma(2,3) prior distribution over this parameter was used. 
 

Model Parameters Constraints Priors Fit value ± SEM 
ACL β 0 ≤ β ≤ ∞ Gamma(2, 3) 13.5 ± 1.29 
 η 0 ≤ η ≤ 1  0.39 ± 0.03 
 ωET

 0 ≤ ωET ≤ 1  0.40 ± 0.05 
 ωMVPA 0 ≤ ωMVPA ≤ 1  0.29 ± 0.03 

AC β 0 ≤ β ≤ ∞ Gamma(2, 3) 16.0 ± 1.54 
 η 0 ≤ η ≤ 1  0.36 ± 0.04 
 ωET 0 ≤ ωET ≤ 1  0.53 ± 0.06 
 ωMVPA 0 ≤ ωMVPA ≤ 1  0.26 ± 0.03 

AL β 0 ≤ β ≤ ∞ Gamma(2, 3) 11.9 ± 1.2 
 η 0 ≤ η ≤ 1  0.50 ± 0.04 
 ωET 0 ≤ ωET ≤ 1  0.43 ± 0.06 
 ωMVPA 0 ≤ ωMVPA ≤ 1  0.40 ± 0.05 

UA β 0 ≤ β ≤ ∞ Gamma(2, 3) 18.3 ± 1.61 
 η 0 ≤ η ≤ 1  0.33 ± 0.03 
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Table S2, Related to Figure 4. Clusters significantly correlated with model-based estimates of 
expected value and prediction error. All clusters survived cluster correction at the p < 0.05 level with 
cluster-forming threshold of p < 0.001. Coordinates are in MNI space and correspond to the center of 
mass of the cluster. In general, estimates from the ACL model were most closely correlated with neural 
data.  
 

Region x (mm) y(mm) z(mm) 
Extent 
(voxels) 

Value Regressor 

ValueACL     
vmPFC -2 59 3 318 

ValueUA     
R Occipital Pole 13 -100 1 333 
L Occipital Pole -21 -100 -4 236 

Prediction Error Regressor 

PEACL
     

R Striatum 10 7 2 100 
L Striatum -6 5 3 80 
L Superior Temporal Sulcus -51 -62 14 343 
R Intraparietal Sulcus 31 -78 33 209 
L DLPFC -49 19 18 190 
R Parahippocampal Cortex 29 -37 -20 130 
L Parahippocampal Cortex -25 -43 -17 107 
L Extrastriate Cortex  -22 -68 -12 112 
L Precuneus  -5 -57 45 110 
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Table S3, Related to Figure 6. Brain areas correlated with attention switches. All clusters survived 
cluster-size correction (p < 0.05) with cluster-forming threshold of p < 0.001. Coordinates are in MNI 
space and correspond to the center of mass of the cluster. 

 

Region x (mm) y(mm) z(mm) 
Extent 
(voxels) 

Switch trials – stay trials 
R dlPFC 44 35 30 277 
L dlPFC -46 29 32 235 
Precuneus 
R IPS 
L IPS 

-6 -61 47 2063 

L preSMA -6 13 49 151 
R FEF 33 2 58 124 
L fusiform cortex -44 -52 -24 260 
Cerebellum 
Lingual gyrus 3 -79 -12 1038 

Cerebellum 42 -74 -25 290 
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Table S4, Related to Figure 8. PPI analysis with vmPFC activity as seed regressor and stay trials 
and switch trials as two task regressors. Shown are areas that showed a significant (negative) 
correlation with the stay-trials PPI regressor. All clusters survive FWE whole-brain cluster size correction 
(p < 0.05) with cluster-forming threshold of p < 0.001. No significant clusters were found for the switch-
trials PPI regressors. 
 

Region x (mm) m) z(mm) 
Extent 
(voxels) 

R dlPFC 46 30 32 234 
L dlPFC -47 24 29 238 
preSMA 1 42 36 108 
R vlPFC 29 57 2 290 
L vlPFC -35 50 9 273 
R striatum 5 9 6 130 
L striatum -14 22 3 103 
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Supplemental Experimental Procedures 
Support vector machine classifier 
Classification of fMRI data was performed using the SVM routine LinearNuSVMC (with Nu = 0.5) implemented in 
the PyMVPA package (Hanke et al., 2009). For multiclass problems, the algorithm first performs pairwise 
classification for each class (e.g., Face vs. Not Face, Landmark vs. Not Landmark and Tool vs. Not Tool). Pairwise 
classification probabilities are then calculated for each comparison using Platt scaling, which fits a logistic 
regression model to classifier evidence. Classifier evidence here refers to the signed distance between the 
multivariate measurement on a specific trial and the decision boundary for each class. The probability that a specific 
datapoint comes from each of the classes is then estimated by solving a linear system of equations with the pairwise-
classifier probabilities, under constraints that the probabilities for all classes are positive and sum to 1 (Wu et al., 
2004). The result of this procedure was therefore a vector of three probabilities (summing to 1) for each trial, which 
we used as the MVPA component of participants’ attention to the respective dimensions on that trial. 
 
Model comparison of choice models based on Bayesian information criterion 
We also compared the choice models based on the Bayesian Information Criterion (BIC, Schwarz, 1978). We first 
optimized model parameters by finding participant-specific parameters that minimized the negative log likelihood of 
the participant’s data given the model, using data from all games. These parameters were then used to compute the 
BIC approximation of model evidence, Em: 

 
where p(D|M, 𝜃M) is the likelihood of the participant’s choice data D given model M and maximum likelihood 
parameters 𝜃M, ||𝜃|| is the number of free parameters in the model and N is the number of data points (trials). BIC 
values were then summed across participants to compare between models. 
 
Modulation of attention by value and reward 
As a measure of the trial-by-trial attention bias, we computed the standard deviation of attention weights on each 
trial. Linear mixed models were used to test for the main effect of trial in game on attention bias, as well as for the 
interaction between trial in game and whether the participant successfully learned that game. Models were estimated 
using the lmerTest R package. We tested for significance using t-tests, with Satterthwaite approximations to degrees 
of freedom. To assess how much the attention bias changed with each trial, we computed the Pearson correlation 
between the attention weights on consecutive trials. Linear mixed effects models were again used to test for the main 
effect of trial in game on the correlation of consecutive attention weights, as well as for the interaction between trial 
in game and whether the participant successfully learned that game (Fig. S1, S2, S3). 

To investigate the relationship between attention bias and value, we performed a tercile split to bin trials 
according to strong, moderate and weak attention biases. We calculated, for each bin, the fraction of trials on which 
the most attended dimension was also the dimension with the highest feature value. We then tested if this fraction 
was higher on trials with stronger attention biases. Statistical significance for each pairwise comparison (i.e. strong 
vs. moderate, strong vs. weak, moderate vs. weak) was assessed using a bootstrap analysis. Specifically, attention 
weights for each game of each participant were replaced with those of a randomly selected game from the same 
participant. The ACL model was then run using these attention weights to generate estimates of feature values from 
participants’ actual choices and outcomes, creating a “fictitious” dataset that controlled for the dependence between 
attention weights and feature values inherent in the ACL model. This process was repeated 1000 times, and a null 
distribution of t-statistics was generated for each pairwise comparison by performing the corresponding paired t-test 
on each iteration of the fictitious dataset. p-values were then determined by comparing the t-statistic obtained from 
the unshuffled data to the corresponding null distribution for that comparison. 

We performed another tercile split to bin trials according to the standard deviation of the highest feature 
values (SDV) in each dimension. We then averaged the attention bias for each bin, and tested if the attention bias on 
high SDV trials was stronger than that on middle SDV trials and on low SDV trials, and if the attention bias on 
middle SDV trials was stronger than that of low SDV trials. Statistical significance was assessed using the same 
bootstrap method. For each SDV bin, we also calculated the fraction of trials on which there was a switch in 
attention. We defined a trial with an attention switch as one where the maximally attended dimension (i.e. dimension 
with the highest attention weight) was different from that in the previous trial. We then tested if the fraction of 
switches was higher in low SDV trials than in the middle and high SDV trials; and if the fraction of switches was 
higher in middle SDV trials than in high SDV trials. Statistical significance was again assessed using the bootstrap 
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method. All results were qualitatively similar if trials were binned based on the standard deviation of all feature 
values instead of SDV. 

Finally, we ran a logistic regression to predict attention switches from reward history in the preceding five 
trials. We then tested if the regression coefficient on each trial was significantly different from zero. We excluded 
the first five trials of each game in all analyses of attention switches, as behavior might have been more random 
early on in the game.  
 
Dissociating attention at choice and attention at learning 
Previous empirical and theoretical work makes a distinction between attention for choice and attention for learning 
(Dayan et al., 2000). Unlike with the MVPA measure, the temporal resolution of eye-tracking allowed us to 
separately measure attention at the time of choice (using data from 200ms after stimulus onset and up to the time of 
choice), and attention at the time of learning (using measurements in the 500ms of outcome presentation), and to 
analyze these separately.  

We first tested whether attention weights were different during these two time periods. For this, we 
computed the Pearson correlation coefficient between the two attention vectors on each trial (Fig. S6A), and found 
that on average, attention at choice and attention at learning were moderately correlated, with the correlation 
increasing over the course of a game, suggesting that as participants figured out the relevant dimension, they 
attended to the same dimension in both phases of the trial (Fig. S6B). 

We next asked whether attention at choice and attention at learning had different effects on task behavior. 
For this, we fit a modified version of the ACL model (which we call the “high resolution ACL model”, or ACLhr) 
that used separate attention weights at choice and learning. We found that the ACLhr model predicted choices 
slightly but significantly better than an ACL model, which used the same eye-tracking attention weights (combined 
across choice and learning) for both phases (Fig. S7). These results suggest that attentional processes at choice and 
at learning may reflect dissociable contributions to decision-making. 

We note, however, that our design was not optimized to disentangle attention at choice from attention at 
learning. In particular, while participants had 1.5 seconds to make their choice, the outcome was presented for only 
500ms. As such, there were fewer measurements during the time of outcome presentation than during the time of 
choice, resulting in a noisier estimate of attention at learning. Furthermore, the outcome was presented above and 
below the chosen stimulus, which meant that saccading to the outcome itself could contaminate our measure of 
attention at learning, as well as further reduce the time in which participants could look at the chosen stimulus after 
the outcome is revealed.  
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