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Supplementary Figure 1. Comparison of plasmonic super-lattice and effective medium theory as a 

function of sublayer thickness, total number of layers, and donor separation distance from top interface. 
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Supplementary Table 1: Comparison of Super-Coulombic interaction with established 

techniques for controlling dipole-dipole interactions. 



Supplementary Note 1. Plasmonic Super-Lattice analysis 

In this note, we provide numerical simulations comparing a practical plasmonic super-lattice 

structure with the corresponding effective medium theory. We consider the effect of sublayer 

thickness and total number of layers in the super-lattice metamaterial structure. 

 

In supplementary Fig. 1, we plot the energy transfer enhancement for two dipoles on either side 

of a slab with a fixed slab thickness of 100 nm. By controlling the total number of layers of the 

super-lattice, we show the net effect of sublayer thickness and unit-cell size. We also vary the 

separation distance 𝑧𝐴 of atom A from the top interface. Atom B is assumed to be adsorbed to the 

bottom interface. Note that the super-lattice structure has a better match with EMT as the unit-

cell size decreases and the total number of layers increases. This is a result of the wave-vector 

cut-off that is imposed by the finite unit-cell size. 

 

Supplementary Note 2. Dyadic Green function for hyperbolic meta-surface 

Here, we provide details for the calculation of resonant dipole-dipole interactions above a 

hyperbolic meta-surface. The hyperbolic meta-surface is modeled as uniaxial medium half-space 

with an optic axis c parallel to the interface, �̂� = �̂�. The dyadic Green function can be 

decomposed in terms of a bulk and scattered term in the upper half-space (z > 0) and a scattered-

only term in the lower half-space (z < 0) 

 

The source medium is assumed to be vacuum (𝜀1 = 1), while the uniaxial half-space has 

permittivity 𝜺 = diag[𝜀𝑥, 𝜀𝑧 , 𝜀𝑧]. Applying a plane-wave expansion, the reflected and transmitted 

dyadic Green functions for two z-oriented dipoles take the form 

 

 
 

where 𝑘1 = √𝜀1𝜔/𝑐, 𝑘2 = √𝜀𝑧𝜔/𝑐 and 𝑑 is the distance away from the interface of the donor 

dipole. Note that we have used the cylindrical coordinates 

 

 
 

and also defined 𝑘𝑧1 = √𝑘1
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2𝜀𝑥/𝜀𝑧 as the ordinary and extraordinary wave contributions in the lower 

half-space respectively. The p-polarization to p-polarization reflection coefficient takes the form 



 
 

while the p-polarization to ordinary- and extraordinary- polarization transmission coefficients 

take the form 

 

where 
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