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1st Editorial Decision 26 August 2015 

 
We have now heard back from the two referees who accepted to evaluate your manuscript. As you 
will see from the reports below, the referees raise substantial concerns on your work, which, I am 
afraid to say, preclude its publication. 
 
Both reviewers acknowledge that the ideas behind the presented analysis are good and the general 
topic of the study interesting. However, the reviewers also feel that the quality of the predictions 
made remains limited, in particular due to the fact that the only limited new data are provided to 
demonstrate the broad applicability of the proposed approach. While reviewer #1 is cautiously 
supportive, reviewer #2 is not convinced that the study would provide sufficient novel insights. 
 
With the rather limited level of support provided by the reviewers, I am afraid I see no choice but to 
return the manuscript with the message that we cannot publish it. 
 
Nevertheless, we recognize that the subject matter and your approach are of potential interest, and 
we would not be opposed to consider a new study that extends the present work, provide a more 
extensive and convincing validation of the presented approach with sufficient novel data. This 
would have a new number and receipt date. We recognise that this may involve further 
experimentation and analysis, and we can give no guarantee about its eventual acceptability. 
However, if you do decide to follow this course then it would be helpful to enclose with your re-
submission an account of how the work has been altered in response to the points raised in the 
present review. 
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I am sorry that the review of your work did not result in a more favourable outcome on this 
occasion, but I hope that you will not be discouraged from sending your work to Molecular Systems 
Biology in the future. 
 
 
_______________________ 
REFEREE COMMENTS 
 
Reviewer #1: 
 
This study presents a novel strategy for rationally designing combinatorial antibiotic treatments with 
the help of publically available large chemical genomic datasets. The authors build a machine-
learning algorithm (using Boolean operations and random forests), INDIGO, which can predict the 
outcome of combinatorial antibiotic treatments based on the sensitivity profiles of single-gene 
mutations of E. coli to the individual drugs. The model is initially trained and then validated on a 
drug-drug interaction dataset experimentally obtained by the authors, and slightly improved by 
integrating a few physicochemical properties of the drugs. The predictions are then extended to the 
entire collection of drugs and stresses present on the published E. coli chemical genomic dataset and 
the key genes contributing either to antagonism or synergy are extracted as "genetic predictors" of 
drug-drug interactions. Finally, the authors use orthology to predict the outcome of drug-drug 
interactions in the Gram+ pathogen, S. aureus, using the model initially built on E. coli data. 
 
Overall the study provides a solid new framework for predicting drug-drug interactions. Although 
the idea to use chemical genomics data for predicting drug-drug interactions is not new, and has 
been tried repeatedly in the past, this is by far the most convincing and thorough effort towards this 
direction (however see also major comment 5). The implications of a having a workable and 
transferable pipeline for predicting the effects of combinatorial treatments are immense -especially 
since this can go beyond the scope of antibiotics/adjuvants and used for drugs against other 
infectious and non-infectious diseases (e.g. anti-cancer drugs). 
 
Despite how much enthusiastic I am with the ideas, outcome and potential of this work, the 
manuscript has several flaws- ranging from poor description of analysis pipeline and lack of 
necessary quality controls to lack of focus/linearity and overstatements. The authors try to deal with 
way too many aspects, unavoidably leaving holes everywhere (problem formulation, experimental 
design, method documentation, result presentation and evaluation), breaking the flow of the text and 
making it harder to follow (e.g. relevant information for a given topic is often scattered between the 
main text, methods section and figure legends; clear definitions are scarce -e.g. what do authors 
mean by linear or non-linear interactions?- and in contrast different wording for the same concept - 
recall=sensitivity). 
 
That being said, I find all limitations addressable -some re-analysis is needed to solidify some of the 
conclusions and extensive re-writing (including some rethinking of focus) is required for making the 
story easy-to-follow by both a non-expert and an aficionado. The core results, concepts and message 
of the paper are certainly worth to be read by a broad audience. 
 
Major comments 
 
1. A good description of INDIGO is missing (Fig 1 and methods fail to do this). No clear description 
of the model input and model parameters (if any) are present in the entire manuscript. For example, 
what exactly are (and how many) the features and samples for the random forest input? Because this 
information is not present, the reader cannot understand what the authors mean with "sigma score", 
mentioned only at a late stage of the manuscript and never defined. Note that this renders the 
adaptation for the S. aureus model impossible to follow (see also 6th comment) 
 
2. There are a number of points not explained well/ not addressed in the drug-drug interactions 
tested by authors (either to train or validate their model). 
 
First, I would assume the null hypothesis is that most drugs have neutral interactions. However, the 
set used to train the model is extremely biased to antagonisms (56 vs 35 neutrals and 14 synergies). 
Does this imply a biased dataset, a high false positive rate for antagonisms, and/or just much more 
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room to detect antagonism (one can address antagonism in 8/9 drug concentrations tested) than 
neutrality (2/9) and synergy (1/9)? If/how that would affect predictions and whether there is room 
for improvement would be a great point of Discussion (see also comments 3, 9 &10). 
 
Second, it is very vague how interactions are quantified with visual representation making things 
worse (background coloring for synergy/antagonism in Figs 2 and 3A makes it impossible to 
differentiate the strength of growth). Among many examples, here are a few to illustrate the point: 
-why AMK+CLA is qualified synergistic and not additive (Fig 2)? 
-why is the synergy weighed differently for CIP-TRI and TET-CLA (Fig 2)? 
-NAL-FUS is additive and FUS-RIF is strong synergy, although they have the same pattern (Fig. 
3A). 
Third and most importantly, quality control for the experimentally measured interactions is 
insufficient: 
-what are the axes for replicate reproducibility in Fig 2? I assume some representation of growth 
(AUC) with a maximum threshold, but it is not stated. Also are all points of the 4x4 matrix for 105 
combinations (1680 points) present in this scatter plot? 
-how do authors deal with the large variation of the single-drug responses- e.g. AMK and TRI (but 
many others too) sometimes kill in the 2nd highest concentration on their own, sometimes in 3rd and 
sometimes not at all... Is this variance/experimental error taken into account when calling 
interactions? 
 
Taking into account these limitations, my suggestion would be: 
a) to address replicate reproducibility also on the basis of the α-score (calculate it for each of the 
replicates); this would be a better metric to get an idea on how many of the interactions are reliable. 
b) benchmark interactions on the Yeh et al. dataset -i.e. how many of the drugs show same 
interaction? You have 11/15 drugs in common (14/19 in total). 
 
3. H202 exhibits strong antagonism with each one of the 18 drugs tested! Do the authors think this is 
real or an artifact? How much does it affect their model (see 4th comment)? 
 
Assuming that at least some/most of these interactions are real, it would be helpful if authors 
reconcile this finding with the oxidative stress-bactericidal antibiotics model. Increasing ROS in the 
cell is reported to enhance bactericidal antibiotic action (Brynildsen, Nat Biotech 2013) -here you 
see the opposite. Also both from original papers and follow up work from the Collins lab, one would 
expect bactericidal and bacteriostatic antibiotics interacting differently with H202. Although I 
understand that solving this conundrum is not the purpose of this paper, I still think this unexpected 
result warrants some discussion. 
 
4. Looking into the experimental validation of the model (Fig. 3), the 10 top predicted antagonisms 
all involve either H2O2 or a DNA stressing antibiotic. Going back to 1st comment, is it possible that 
the training set for this model is biased to predict antagonism involving oxidative stress/DNA 
damage, thus introducing a high rate of false positives on one hand, and on the other hand missing 
interactions between drugs with other targets (false negatives)? Seeing the precision and ROC 
curves on antagonisms - Fig S2 and S3, this seems to be an issue. 
 
Would the leave-one-drug-out cross validation analysis presented on Fig S4 help to solve this 
question? It seems that removing H2O2 from the training set leads to a striking loss of prediction 
ability (at least of H2O2 interactions), implying that this compound may have a very strong 
influence on the outcome of the machine-learning algorithm. An easy-to-interpret figure assessing 
how the loss of each drug influences the prediction of all interactions (both experimental and 
validation set), not only for the same drug, would help evaluating what drugs help the model the 
most/least and to detect potential biases. 
 
5. Authors compare their pipeline with Jansen et al. 2009 (based on chemogenomic profile 
similarity) - but they have missed an important deviation of the same concept introduced by Brown 
JCS et al. Cell 2014, termed O2M. This is certainly a more advanced way of using the 
chemogenomic profile similarity to predict synergies (by identifying biomarker genes). 
Comparisons with the O2M algorithm (ROC curves) should be part of the manuscript. 
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6. The ability to even partially predict interactions in S. aureus with E. coli data is remarkable. Yet, 
the pipeline is poorly described and many of experimental/data analysis aspects are vague: 
a) was there are reason to test only a subset of drugs in S. aureus? 
b) why is there a different metric used to assess growth in S. aureus (endpoints vs AUC)? 
c) what is the reproducibility of S. aureus data? Since noise of single drugs is similar as in E. coli 
data (see 2nd comment)- how is this dealt with? 
d) what are the sigma scores calculated for genes (in Methods)? If you are perturbing the sigma 
scores for the non-common genes (setting them either to max or min value) then you should have 
millions of solutions for the score matrix. Or do you set all of them together at min or max value? 
 
In addition a plot of the predicted vs measured interaction score in S. aureus would be very useful. If 
the model is improving predictions, then the correlation should be higher than the one you have for 
the measured interactions in the 2 organisms (0.48; Fig. 6C). 
 
7. There is a number of data/info that should be made public available in a "raw" (tabulated/txt) 
format, so reader can evaluate, analyze or re-use data: 
a) drug concentrations and growth data for all drug-dosage matrixes (Fig. 2, 3A, 6B and S1) - at 
least the growth metric used in this study (AUC) 
b) 324X324 drug interaction matrix -generated by INDIGO using all conditions screened in the E. 
coli chemical genomics work 
c) set of genes that account for 50%, 75% and 95 % of INDIGO predictions 
 
8. There are parts of the paper that are poorly described and/or unnecessary for the main concussions 
(breaking its linearity). The authors should frame/explain them better, if they wish to keep them, or 
remove them: 
a) Reference to many of the Supplementary Figures is poor in main text -e.g. Figs S3-S9 are all 
introduced in one general sentence. Some of them are very important (e.g. S3-S5), others less- but in 
any case would need a discussion on what is the message - split between main text and perhaps an 
addition supplementary text. 
b) Fig S10 explanation in text and legend: too technical and cryptic for reader to understand. 
c) Benchmarking the INDIGO algorithm against the Yeh study data has limited value, since many 
drugs in Yeh et al. are common with initial drugs used for building the model (on the contrary, it can 
be used to benchmark the experimental data- 2nd comment) 
d) Role of drug dosage. Here I am missing the point entirely. If it is that drug interactions have to be 
probed in a dosage-dependent manner, then I would say is nothing new. If is that INDIGO can 
predict well interactions calculated either by Bliss or Loewe, then I would say semantics- boils 
down to the fact that Bliss or Loewe gives you similar solutions. If there is something that would be 
interesting for audience would be to address how drug dosage affects the predictive ability of the 
model INDIGO comes up with; the E. coli chemical genomics datasets have several concentrations 
for each and it is unclear if some are more/less helpful in building the model. 
 
9. Some of the interpretations (that are actually peripheral to the main messages of this paper) are 
not entirely justified by data presented in this paper. They may fit better to Discussion- using more 
cautious statements: 
a) are antagonistic interactions more often than synergistic (or using Loewe additivity for a 3x3 
combination matrix creates biases - see comment 1)? There is better evidence -by the same authors- 
for antagonisms being more prevalent in antifungals. 
b) are drug interactions driven by drug-target? Aminoglycosides are far away from other protein 
synthesis inhibitors, AMK is not with rest of aminoglycosides, NIT has DNA damage as main 
cytotoxic effect, but clusters with aminoglycosides. So best case this statement is to first 
approximation. 
c) why are the genes important for predicting drug interactions relevant as drug-targets? Is the 
assumption that genes involved in the drug-drug interactions (Chevereu & Bollenbach, 2015) are the 
same as genes that are good "genetic predictors" for interactions? If true, it would be nice to provide 
evidence for this. 
 
10. Discussion would benefit if it were more focused (targeted more to discussing the results rather 
than potential of method) and structured (subsections). Assessment of model and data used to build 
model, how each can improve (e.g. data for essential genes in chemogenomics), what would be 
needed to be expandable to other organisms, how chemogenomics data from different organisms can 
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be used to assess/improve ability to predict interactions in other organisms are all relevant points for 
discussion. 
 
Also some caution on the use of buzz-words and the claims would be beneficial - e.g. I would not 
call INDIGO an evolutionary algorithm (all done was reciprocal blasting to identify orthologues) 
nor have I seen any evidence that differences in effectiveness of drug combination can be spotted on 
a strain/"personal medicine" level (i.e. using E. coli data you can predict the differences in drug 
synergies over different clinical isolates of S. aureus). 
 
Minor comments 
 
1. Why is only drug sensitivity (and not resistance) used from the chemical genomics data? What is 
the reason for the renormalization of the chemical genomics data? Data scores are already 
normalized and represent adjusted t-tests according to authors. Quantile normalization and z-scoring 
t-tests on top sounds unnecessary/harsh. 
 
2. It is unclear how authors translate α-scores - calculated based on Loewe additivity to a 
classification that was based on scores calculated based on Bliss independence (Yeh et al., Nat Gen 
2006). Yeh et al rescale their "Bliss" scores to -1 to +2; do authors rescale their scores and what is 
the score range? 
 
3. Rifampicin is not targeting RNA metabolism, but RNA polymerase. 
 
4. The most fundamental limitation of correlation approaches for inferring drug-drug interactions is 
that they only account for synergies (not antagonisms). Synergies between distinct classes of drugs 
can be captured (as they may still have similarity in their chemogenomic profiles). 
 
5. Fig. 4: a proper explanation on how the interactions were "collapsed" into the major drug families 
and target process is absent form the manuscript. 
 
6. The fact that the mean error in prediction correlates with physicochemical properties is 
convincing, but at the same time intriguing. It would be worth discussing why would a large 
chemical genomic dataset miss this. 
 
7. Figure 5: Fusidic acid is not the best example; some predictions are getting better with 
physicochemical data (mentioned by authors), but others are worse. 
 
8. Figure 6- panels are mixed in description in text. Please also define in figure and/or legend that 
panel C is about measured interaction scores (not predicted). Common genes between E. coli and S. 
aureus are the minority, not the majority as Fig 6A implies. 
 
9. Consistency in Figures, Figure panels and corresponding text would be beneficial; for example 
giving AUC and p-value in all ROC curves in the graph (rather than alternating it in text and legend) 
would help. 
 
10. In methods there are reported 2 AUC's of 0.68 with very different significances (for model with 
biophysical properties alone) 
 
11. For many of the Supplementary Figures legends are not enough to follow the figure- this is more 
of a problem since reference to them in main text is often very minimal. 
 
 
Reviewer #2: 
 
In this manuscript, Chandrasekaran et al. develop a computational approach aimed at predicting 
drug interactions between antibiotics from their chemogenomic profiles. The authors developed an 
algorithm which they trained on a large data set of drug interactions and then used it to predict 
interactions with antibiotics that were not in the original data set. The authors show that their 
approach can make successful predictions at a significantly higher rate than two alternative 
approaches. Their analysis further reveals cellular pathways and physicochemical properties of the 
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drugs that play a central role for predicting drug interactions. Finally, the authors generalize their 
approach to predict drug interactions in a different species (S. aureus) from chemogenomic data that 
was obtained in E. coli -- a potentially useful approach since large chemogenomic data sets are 
currently only available for few model organisms. 
 
The study of antibiotic combinations and drug interactions is certainly a timely and relevant topic as 
evidenced by numerous recent studies that led to considerable conceptual progress on this topic. 
Computational approaches for predicting drug interactions could lead to important advances in drug 
combination design since, if successful, they could enable the systematic exploration of the 
extremely large space of possible drug combinations without a need for cumbersome large scale 
experimental screens. The present work makes an interesting attempt in this direction and appears 
technically sound. However, the conceptual advance made in this work remains slightly obscure and 
the quality of the computational predictions made is not entirely convincing (see major points 
below). Overall, while the topic is interesting, this manuscript in its current form might be better 
suited for a more specialized bioinformatics journal. 
 
Major points: 
1. A serious concern is that the predictions made by the authors' algorithm are not entirely 
convincing. Specifically, these predictions require a large training set of 15 drugs and are only tested 
on a considerably smaller set of 4 additional drugs. Even then, the quality of the predictions is 
relatively limited, e.g. the scatterplot of the predicted and measured interaction scores in Fig. 3C 
shows a weak rank correlation but it seems that only the strongest effects are predicted to some 
extent while the rest looks essentially random. A similar problem is apparent in Fig. 6D where the 
observations for S. aureus are compared to the predictions: the weak correlation that is observed 
seems to depend entirely on 3 or 4 data points (located in the top right and bottom left). Is this 
correlation significant? Independent of statistical significance, it looks as if only a small fraction of 
the differences are correctly predicted. The usefulness of this approach is thus doubtful and needs to 
be clarified. 
 
2. The "INDIGO" algorithm is central to the results of the study. However, its description in the 
main text is inadequate, making it hard to assess the conceptual advance achieved in this work. This 
algorithm is briefly introduced in the first paragraph of the results part and in Figure 1 but the main 
idea and procedure used to make the predictions did not become clear to me from this. This part will 
be particularly hard to understand for a broad audience of biologists. The main idea behind this 
algorithm should be clarified and its description considerably expanded. 
 
3. The overall approach is conceptually similar to (Yilancioglu et al., J Chem Inf Model, 2014) from 
the same last author. While this previous work focused on yeast and physicochemical properties of 
the drugs to predict drug interactions, the general approach of using available data on drugs and 
using machine learning or related approaches to predict drug interactions based on a training data set 
is conceptually similar. The advance of the present study thus appears incremental. It would need to 
be clarified how the present study presents a major step forward compared to this previous work. 
 
4. There is little novel experimental data in this work, so the predictions made are largely about the 
past. E.g. the experimental results shown in Fig. 2 were generated in this study but a similar study 
was published almost 10 years ago (Yeh et al., Nat Gen, 2006) and repeated for other organisms 
since then (as properly acknowledged by the authors). Similarly, the computational analysis relies 
almost entirely on the published chemical genomics data set from (Nichols et al., Cell, 2011). It is of 
course perfectly fine to reanalyze existing data but the lack of new data will likely limit the appeal 
of this study to a more specialized community of bioinfomaticians interested in drug interactions. In 
the absence of any mechanistic insight, the claim that drug interactions can be predicted based on 
chemical genomics data would be more convincing if the authors could validate predictions with a 
truly novel data set. One possibility could be to investigate combinations of three or more drugs. 
Recent studies (e.g. Wood et al., PNAS, 2012) made progress in predicting such higher order drug 
combinations and it would be interesting if the authors could at least discuss if their algorithm can 
make predictions for the effects of higher order drug combinations. It would strengthen this work if 
the authors could experimentally verify some of these predictions for a few selected combinations of 
three or more drugs. 
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 Resubmission  31 December 2015 

Reviewer #1:  
 
This study presents a novel strategy for rationally designing combinatorial antibiotic treatments 
with the help of publically available large chemical genomic datasets. The authors build a machine-
learning algorithm (using Boolean operations and random forests), INDIGO, which can predict the 
outcome of combinatorial antibiotic treatments based on the sensitivity profiles of single-gene 
mutations of E. coli to the individual drugs. The model is initially trained and then validated on a 
drug-drug interaction dataset experimentally obtained by the authors, and slightly improved by 
integrating a few physicochemical properties of the drugs. The predictions are then extended to the 
entire collection of drugs and stresses present on the published E. coli chemical genomic dataset 
and the key genes contributing either to antagonism or synergy are extracted as "genetic predictors" 
of drug-drug interactions. Finally, the authors use orthology to predict the outcome of drug-drug 
interactions in the Gram+ pathogen, S. aureus, using the model initially built on E. coli data. 
Overall the study provides a solid new framework for predicting drug-drug interactions. Although 
the idea to use chemical genomics data for predicting drug-drug interactions is not new, and has 
been tried repeatedly in the past, this is by far the most convincing and thorough effort towards this 
direction (however see also major comment 5). The implications of a having a workable and 
transferable pipeline for predicting the effects of combinatorial treatments are immense -especially 
since this can go beyond the scope of antibiotics/adjuvants and used for drugs against other 
infectious and non-infectious diseases (e.g. anti-cancer drugs). Despite how much enthusiastic I am 
with the ideas, outcome and potential of this work, the manuscript has several flaws- ranging from 
poor description of analysis pipeline and lack of necessary quality controls to lack of focus/linearity 
and overstatements. The authors try to deal with way too many aspects, unavoidably leaving holes 
everywhere (problem formulation, experimental design, method documentation, result presentation 
and evaluation), breaking the flow of the text and making it harder to follow (e.g. relevant 
information for a given topic is often scattered between the main text, methods section and figure 
legends; clear definitions are scarce -e.g. what do authors mean by linear or non-linear 
interactions?- and in contrast different wording for the same concept - recall=sensitivity).  
That being said, I find all limitations addressable -some re-analysis is needed to solidify some of the 
conclusions and extensive re-writing (including some rethinking of focus) is required for making the 
story easy-to-follow by both a non-expert and an aficionado. The core results, concepts and 
message of the paper are certainly worth to be read by a broad audience.  
 
We thank the reviewer for the feedback. We have significantly rewritten the manuscript to address 
the reviewer’s comments and suggestions. To streamline the main message of the text, we have 
moved specific sections to the supplement as suggested by this reviewer. We have expanded the 
description in each section so that each section stands independently on its own without referring to 
different parts of the manuscript.  
 
Major comments  
1. A good description of INDIGO is missing (Fig 1 and methods fail to do this). No clear description 
of the model input and model parameters (if any) are present in the entire manuscript. For example, 
what exactly are (and how many) the features and samples for the random forest input? Because 
this information is not present, the reader cannot understand what the authors mean with "sigma 
score", mentioned only at a late stage of the manuscript and never defined. Note that this renders 
the adaptation for the S. aureus model impossible to follow (see also 6th comment)  
 
We have considerably updated the section describing INDIGO to clarify the inputs and outputs 
(described below).  
The input to INDIGO consists of: (i) chemogenomic profiles of individual drugs of interest, and (ii) 
interaction scores for a pair of drugs or chemical agents. INDIGO infers genes that increase 
sensitivity to the drugs of interest from the chemogenomic profiles (z-score < -2). INDIGO then 
integrates the profiles of a combination of drugs using Boolean set operations that capture similarity 
(sigma) and dissimilarity (delta score). In this framework, the union (sigma score) and intersection 
(delta score) operations are proxies of molecular redundancy or similarity and uniqueness of 
mechanism of action of the individual drugs (Figure 2). This joint profile, which captures similarity 
and dissimilarity between two drugs’ profiles, is then used as input to a random forest regression 
algorithm.  
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2. There are a number of points not explained well/ not addressed in the drug-drug interactions 
tested by authors (either to train or validate their model). First, I would assume the null hypothesis 
is that most drugs have neutral interactions. However, the set used to train the model is extremely 
biased to antagonisms (56 vs 35 neutrals and 14 synergies). Does this imply a biased dataset, a high 
false positive rate for antagonisms, and/or just much more room to detect antagonism (one can 
address antagonism in 8/9 drug concentrations tested) than neutrality (2/9) and synergy (1/9)? 
If/how that would affect predictions and whether there is room for improvement would be a great 
point of Discussion (see also comments 3, 9 &10).  
 
We thank the reviewer for this suggestion. This preponderance of antagonism over synergy has been 
observed in other sensitive drug interaction screens (Ocampo et al, 2014; Yeh et al, 2006). So it is 
possible that it is not a bias in our data set but a natural phenomenon. In the revised version, we 
highlighted this observation.  
The validation set had significantly more synergistic interactions (13 synergies to 21 antagonisms), 
while the training data had only 14 synergies for 56 antagonisms. Yet INDIGO was able to predict 
these synergistic interactions with high accuracy. This highlights the fact that INDIGO not only 
takes in the distribution of interactions, but also the genetic markers in the chemogenomic profiles 
of the underlying drugs that lead to strong synergy or antagonism. Hence it is less prone to biases in 
the training data.  
Despite the bias in the training data, INDIGO accurately predicted self-self interactions of the same 
drug at different doses (represented by different chemogenomic profiles) to be linear or non-
interacting. Hence INDIGO is not affected by the bias or preponderance of antagonism in the 
training set. We found this to be true for 951 interactions between the same 73 drugs 
(Supplementary Figure 16).  
 
Second, it is very vague how interactions are quantified with visual representation making things 
worse (background coloring for synergy/antagonism in Figs 2 and 3A makes it impossible to 
differentiate the strength of growth). Among many examples, here are a few to illustrate the point: -
why AMK+CLA is qualified synergistic and not additive (Fig 2)? -why is the synergy weighed 
differently for CIP-TRI and TET-CLA (Fig 2)? -NAL-FUS is additive and FUS-RIF is strong 
synergy, although they have the same pattern (Fig. 3A).  
 
We have now displayed the growth data for both the replicates separately in the supplement. For 
each replicate drug interaction experiment, one alpha score is produced, which is 0 if the drug pair is 
additive, negative if synergistic, and positive if antagonistic. For each drug pair, the average of two 
replicates was defined as alpha. Some interactions, such as AMK + CLA, are strongly synergistic in 
one replicate and weakly synergistic in the other. By looking at both the replicates, it is clear why 
the interactions are quantified as synergistic. Similarly, NAL-FUS and FUS-RIF are also different in 
individual replicates. In the revised paper, we describe the drug interaction experiment setup and 
scoring in greater detail.  
 
Third and most importantly, quality control for the experimentally measured interactions is 
insufficient: -what are the axes for replicate reproducibility in Fig 2? I assume some representation 
of growth (AUC) with a maximum threshold, but it is not stated. Also are all points of the 4x4 matrix 
for 105 combinations (1680 points) present in this scatter plot?  
 
The scatter plot in the original version of Figure 2 has the alpha scores for each replicate of the 105 
interactions. The correlation between the interaction scores for both replicates is very strong (R = 
0.81, p-value = 10-26), indicating high data quality. In the revised paper, an analogous scatter plot is 
shown in Figure 1.  
 
-how do authors deal with the large variation of the single-drug responses- e.g. AMK and TRI (but 
many others too) sometimes kill in the 2nd highest concentration on their own, sometimes in 3rd and 
sometimes not at all... Is this variance/experimental error taken into account when calling 
interactions?  
 
Each drug interaction experiment conducted during this study was required to pass two quality tests 
to be included in the final data set: (i) for each individual drug, there should be >50% growth 
inhibition at the highest dose used, and (ii) for each individual drug, there should be <50% growth 
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inhibition at the lowest dose used. After a drug interaction experiment passes these quality tests, the 
largest isophenotypic contour is found and used to compute an interaction score (α). Hence, this 
variance between single-drug responses is taken into account for drug interaction scoring.  
 
Taking into account these limitations, my suggestion would be: a) to address replicate 
reproducibility also on the basis of the α-score (calculate it for each of the replicates); this would be 
a better metric to get an idea on how many of the interactions are reliable.  
 
In addition to the replicates of alpha scores we had earlier in Figure 2, we have also estimated 
replicate correlations of AUC values. Both rank correlation and spearman correlation show strong 
correlation between replicates (R = 0.77).  
In addition, while evaluating interactions, we have used the Probabilistic Concordance Index, which 
takes into account the variance between replicates to evaluate the predictive ability of the model.  
 
b) benchmark interactions on the Yeh et al. dataset -i.e. how many of the drugs show same 
interaction? You have 11/15 drugs in common (14/19 in total).  
 
We thank the reviewer for this suggestion. In the revised paper, we benchmark our experimental 
data with Yeh et al. Twelve of the 19 drugs we used in this study overlap with Yeh et al., which 
corresponds to 66 interactions. Among the 66 interactions, only one disagreed completely, i.e., it 
was synergistic in one data set and antagonistic in the other. Twenty seven were exact matches, 
while the remaining 38 were predicted to be synergistic or antagonistic in one data set, but predicted 
as additive in the other. The agreement between the two data sets is striking, especially given the 
fact that: (i) Yeh et al. used a 2x2 dose combination matrix while we used a more sensitive 4x4 
matrix, and (ii) Yeh et al. used LB as their growth media, while we used TSB. We have updated the 
corresponding methods section in the manuscript as follows:  
Comparison with existing drug interaction data: We chose drugs that overlap with Yeh et al 
study to compare our approach to existing data sets in literature. While we have done a multi-dose 
study, existing studies such as Yeh et al are single-dose measurements. Among the total 1539 dose-
specific measurements (171 pairs x 9 dose combinations) in our study, only 66 dose-specific 
measurements overlaps with Yeh et al. By using the bliss metric to evaluate our interactions and 
matching the dose used by Yeh et al, we found that the overall correlation between the two data sets 
among the 66 interactions that were shared was 0.42 (p-value = 0.0004). In addition to dose, the 
differences in growth media and the assay used for assessing growth, also affects the correlation 
between the two data sets. Among the 66 interactions, only one interaction disagreed completely i.e 
was synergistic in one data set and antagonistic in the other. 27 were exact matches, while the 
remaining 38 were predicted to be synergistic or antagonistic in one data set but predicted as non-
interacting in the other.  
 
3. H202 exhibits strong antagonism with each one of the 18 drugs tested! Do the authors think this 
is real or an artifact? How much does it affect their model (see 4th comment)? Assuming that at 
least some/most of these interactions are real, it would be helpful if authors reconcile this finding 
with the oxidative stress-bactericidal antibiotics model. Increasing ROS in the cell is reported to 
enhance bactericidal antibiotic action (Brynildsen, Nat Biotech 2013) -here you see the opposite. 
Also both from original papers and follow up work from the Collins lab, one would expect 
bactericidal and bacteriostatic antibiotics interacting differently with H202. Although I understand 
that solving this conundrum is not the purpose of this paper, I still think this unexpected result 
warrants some discussion.  
 
We agree that this is a surprising observation and needs further analysis. We would like to first 
mention that the dosage of hydrogen peroxide used in this study is 50x higher than used in 
Brynildsen et al. The treatment times are also much longer (days in our study vs 2 hr in Brynildsen 
et al). At this high concentration, hydrogen peroxide has been observed to be bacteriostatic (Imlay, 
2015) and hence leads to antagonism with many antibiotics. This is consistent with other studies 
from Collins lab and other groups (Lobritz et al. and Ocampo et al.). Hence our results are not 
directly comparable with Brynildsen et al., but they are consistent with other studies. We have 
updated our manuscript to address this difference with the Brynildsen et al. study as follows:  
We also observed very strong antagonism of hydrogen peroxide with other antibiotics, not observed 
in a previous study (Brynildsen et al., 2013). This could be because the dosage of hydrogen peroxide 
used in this study was 50-fold higher, and the treatment times were much longer (24 hours in our 
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study vs 2 hours) compared to Brynildsen et al. (Brynildsen et al., 2013). At this high concentration, 
hydrogen peroxide has been observed to be bacteriostatic (Imlay, 2015) and hence leads to 
antagonism with many antibiotics, which is consistent with other studies (Lobritz et al., 2015; 
Ocampo et al., 2014).  
 
4. Looking into the experimental validation of the model (Fig. 3), the 10 top predicted antagonisms 
all involve either H2O2 or a DNA stressing antibiotic. Going back to 1st comment, is it possible that 
the training set for this model is biased to predict antagonism involving oxidative stress/DNA 
damage, thus introducing a high rate of false positives on one hand, and on the other hand missing 
interactions between drugs with other targets (false negatives)? Seeing the precision and ROC 
curves on antagonisms - Fig S2 and S3, this seems to be an issue.  
 
We thank the reviewer for this insightful comment and we have addressed this problem through 
several analyses. First, we have repeated the analysis without hydrogen peroxide and its removal 
does not affect the predictive accuracy based on cross validation (described in detail for the next 
question). Secondly, despite the abundance of antagonistic interactions in the training data (14 
synergies and 56 antagonisms), the model was able to accurately predict synergistic interactions in 
the test set, where the distribution was less skewed (13 synergies and 25 antagonisms). Third, since 
the predictions are quantitative, we can still rank interactions and identify those interactions that are 
relatively more synergistic or antagonistic. Hence even if the interactions are biased towards 
antagonism, we can reduce false positives by choosing a higher threshold for antagonism. Overall, 
the broad range of antagonism leads to the lowered predictive ability (measured by AUC) compared 
to synergy. We have updated the results and discussion section to clarify the effect of antagonism 
and hydrogen peroxide on INDIGO’s predictive ability.  
 
Would the leave-one-drug-out cross validation analysis presented on Fig S4 help to solve this 
question? It seems that removing H2O2 from the training set leads to a striking loss of prediction 
ability (at least of H2O2 interactions), implying that this compound may have a very strong 
influence on the outcome of the machine-learning algorithm. An easy-to-interpret figure assessing 
how the loss of each drug influences the prediction of all interactions (both experimental and 
validation set), not only for the same drug, would help evaluating what drugs help the model the 
most/least and to detect potential biases.  
 
We have repeated the analysis without hydrogen peroxide and its removal does not affect the 
predictive accuracy based on cross validation (R = 0.55 vs R = 0.57 with peroxide; Supplementary 
Figure 7). Additionally, we still find strong AUCs for synergy and antagonism. Hence despite its 
promiscuous antagonism, it did not have a strong effect on the algorithm’s predictive accuracy. As 
the reviewer correctly points out, removing H2O2 from the training set leads to a striking loss in 
accuracy for predicting H2O2 interactions, but not for other drugs, suggesting that its mechanism of 
interaction might be radically different from what is reflected in its chemogenomic profile. We have 
now added a new supplementary figure that displays the results of this analysis without H2O2 
(Supplementary Figure 7).  
 
5. Authors compare their pipeline with Jansen et al. 2009 (based on chemogenomic profile 
similarity) - but they have missed an important deviation of the same concept introduced by Brown 
JCS et al. Cell 2014, termed O2M. This is certainly a more advanced way of using the 
chemogenomic profile similarity to predict synergies (by identifying biomarker genes). Comparisons 
with the O2M algorithm (ROC curves) should be part of the manuscript.  
 
In addition to the correlation and overlap-based approaches, we have now compared INDIGO with 
O2M as well. We show that INDIGO significantly outperforms O2M in predicting synergistic 
interactions in E. coli. We have added a supplementary figure comparing O2M with INDIGO 
(Supplementary Figure 4). While O2M outperforms Jensen et al., INDIGO’s accuracy was superior 
to that of O2M based on both cross validation and test set validation. Analogous to other similarity-
based approaches, O2M also does not have a model for antagonism. We have updated the main text 
based on this analysis as follows:  
INDIGO also significantly outperformed the O2M algorithm (Brown et al, 2014), which is an 
extension of the Jansen et al overlap-based approach (Supplementary Figure 4). Based on our 
analysis, we find that similarity and overlap-based approaches fail to correctly predict interaction 
outcomes for new classes of drugs and lack a model for antagonism.  
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6. The ability to even partially predict interactions in S. aureus with E. coli data is remarkable. Yet, 
the pipeline is poorly described and many of experimental/data analysis aspects are vague: a) was 
there are reason to test only a subset of drugs in S. aureus?  
 
The drugs were chosen to be a subset of the 19 drugs measured in E. coli; these included drugs from 
different classes that were predicted by INDIGO to have the greatest range of variation in their 
interactions (Supplementary Table 3).  
 
b) why is there a different metric used to assess growth in S. aureus (endpoints vs AUC)?  
 
From our E. coli data, we found that end point and AUC were highly correlated in E. coli. Since end 
point readings are faster and easier to measure (two factors that are especially important when 
handling potentially pathogenic bacteria) we used the end-point measurements for S. aureus. We 
have updated the orthology section to discuss the choice of drugs and approach as follows:  
 
We predicted interaction and deviation scores for all 171 drug combinations that were 
experimentally tested in E. coli using this orthology framework. To experimentally validate the 
predictions in S. aureus, 10 drugs from the E. coli data set were chosen; these drugs belong to 
different classes that were predicted by INDIGO to have the greatest range of variation in their 
interactions between E. coli and S. aureus (Methods; Figure 5, Supplementary Figure 13, and 
Supplementary Table 2, 3). The interaction score for all 45 pairs of these antibiotics were then 
experimentally measured in S. aureus using the same setup as E. coli (Figure 5b).  
 
And in the methods section:  
 
Since the E. coli area under the growth curve was highly correlated with the end point readings, only 
end-point OD measurement after 12 hours was used for S. aureus to expedite experiments.  
 
c) what is the reproducibility of S. aureus data? Since noise of single drugs is similar as in E. coli 
data (see 2nd comment)- how is this dealt with?  
 
The correlation between AUC growth values between replicates was 0.73, and the correlation 
between alpha scores was 0.56 (p-value = 10-5). We have updated Supplementary Figure 13 
displaying staph growth data to include these statistics.  
 
To account for the noise in the measurement, we also used the Probabilistic Concordance Index 
(PCI) to evaluate the predictions by INDIGO. PCI takes into account the variability between 
replicates to assess the predictive ability of the model. We found that the results were significant 
based on PCI (p-value = 0.009) and rank correlation (r = 0.52, p-value = 10-4) for INDIGO.  
 
d) what are the sigma scores calculated for genes (in Methods)? If you are perturbing the sigma 
scores for the non-common genes (setting them either to max or min value) then you should have 
millions of solutions for the score matrix. Or do you set all of them together at min or max value?  
 
We agree with the reviewer that there are millions of possible solutions for simulating S. aureus data 
using the sigma score matrix. To simplify the problem, we simulate the extreme case and set them 
all to be at the minimal value at the same time. This process corresponds to deleting the contribution 
of these genes from the E.coli INDIGO drug interaction model. Choosing min or max leads to the 
same set of predictions for conserved and divergent interactions. We have updated the methods 
section and the orthologous interactions section of the paper to better clarify this point.  
 
To quantify the relative contribution of non-orthologous genes on each drug interaction outcome, 
the chemogenomic scores of non-orthologous genes in the E. coli INDIGO model were set to take 
minimal value (Methods). This process corresponds to deleting these genes from the E.coli INDIGO 
model. The predictions from this modified model was then compared with the original E. coli model 
predictions. The difference in scores for each interaction, called the deviation score, allowed us to 
identify drug interactions most sensitive to the state of the non-orthologous genes and therefore are 
less likely to be conserved between E. coli and S. aureus.  
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Methods section:  
 
Theoretically, there are millions of possible solutions for changing the sigma score matrix to match 
S. aureus or M. tuberculosis. To simplify the problem, we simulate the extreme case and set the 
states of all non-orthologous genes to be zero. Choosing either the maximal (2) or minimal (0) sigma 
score value both led to the same correlation with the predicted difference (R = 0.52).  
 
In addition a plot of the predicted vs measured interaction score in S. aureus would be very useful. 
If the model is improving predictions, then the correlation should be higher than the one you have 
for the measured interactions in the 2 organisms (0.48; Fig. 6C).  
 
We have added a plot of predicted vs measured interaction score in S. aureus showing higher 
correlation by integrating INDIGO predictions (Figure 5). We find that this correlation (R = 0.47) is 
higher than the measured correlation between E. coli and S. aureus interaction scores (R = 0.39). We 
have updated the orthology section of the paper to include this information.  
 
7. There is a number of data/info that should be made public available in a "raw" (tabulated/txt) 
format, so reader can evaluate, analyze or re-use data:  
a) drug concentrations and growth data for all drug-dosage matrixes (Fig. 2, 3A, 6B and S1) - at 
least the growth metric used in this study (AUC)  
b) 324X324 drug interaction matrix -generated by INDIGO using all conditions screened in the E. 
coli chemical genomics work  
c) set of genes that account for 50%, 75% and 95 % of INDIGO predictions  
 
We have made all these data available as supplementary material or in the companion website on 
synapse.  
 
8. There are parts of the paper that are poorly described and/or unnecessary for the main 
concussions (breaking its linearity). The authors should frame/explain them better, if they wish to 
keep them, or remove them: a) Reference to many of the Supplementary Figures is poor in main text 
-e.g. Figs S3-S9 are all introduced in one general sentence. Some of them are very important (e.g. 
S3-S5), others less- but in any case would need a discussion on what is the message - split between 
main text and perhaps an addition supplementary text. b) Fig S10 explanation in text and legend: 
too technical and cryptic for reader to understand.  
 
We thank the reviewer for this suggestion. We have now added additional text in the methods 
section, in a subsection called ‘INDIGO: Cross Validation and Controls’, that describes in detail all 
the control and supplementary analysis performed to benchmark our approach. We have also 
corrected and updated the main text references to the supplementary figures. We have also now 
removed the figure S10 from the supplement as it is unnecessary for the main conclusions and 
breaks the flow of the manuscript.  
 
c) Benchmarking the INDIGO algorithm against the Yeh study data has limited value, since many 
drugs in Yeh et al. are common with initial drugs used for building the model (on the contrary, it 
can be used to benchmark the experimental data- 2nd comment)  
 
Even though many drugs overlapped between the data sets, in terms of total interactions only 66 
interactions (38%) did. By using the bliss metric and approximately matching the dose used by Yeh 
et al., we found that the overall correlation between the data sets was 0.42. In addition to dose, the 
differences in growth media can also affect the correlation between the data sets. Given that only a 
minority of interactions overlapped and the dosage and growth conditions used were different 
between the studies, the fact that INDIGO performed well in this data set is still significant. Overall, 
we agree with the reviewer that this breaks the flow from the main conclusion of the paper, and we 
have moved this analysis to the methods section with discussion on cross validation and additional 
controls.  
 
d) Role of drug dosage. Here I am missing the point entirely. If it is that drug interactions have to be 
probed in a dosage-dependent manner, then I would say is nothing new. If is that INDIGO can 
predict well interactions calculated either by Bliss or Loewe, then I would say semantics- boils 
down to the fact that Bliss or Loewe gives you similar solutions. If there is something that would be 
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interesting for audience would be to address how drug dosage affects the predictive ability of the 
model INDIGO comes up with; the E. coli chemical genomics datasets have several concentrations 
for each and it is unclear if some are more/less helpful in building the model.  
 
We agree with the reviewer that the observation that drug dosage affects interactions is not 
surprising, and this section breaks the flow from the main conclusion of the paper; hence we have 
removed this section from the main text of the revised paper. This greatly improved the flow of the 
manuscript since now we use the additive model of drug synergy (Loewe) throughout the 
manuscript except when benchmarking against Yeh et al.  
Similar to the effect of dose on drug interaction data, the dose used in chemogenomics data also 
influences drug interaction predictions. In general, we matched the closest dose in chemogenomics 
data to the experimentally used dosage. We found that choosing a dose in chemogenomics data that 
is significantly different from the dose range in drug interaction data reduced the accuracy in test set 
and cross validation but not significantly (R = 0.42 for test set from R = 0.52; Supplementary Table 
6; for those drugs for which multiple dose existed). So the predictive ability of the model can be 
improved by choosing the dose for chemogenomics data that are most relevant for analysis, or by 
determining the interaction outcomes at multiple doses. We have updated the methods section to 
highlight the role of dosage in both interaction data and chemogenomics data.  
 
9. Some of the interpretations (that are actually peripheral to the main messages of this paper) are 
not entirely justified by data presented in this paper. They may fit better to Discussion- using more 
cautious statements: a) are antagonistic interactions more often than synergistic (or using Loewe 
additivity for a 3x3 combination matrix creates biases - see comment 1)? There is better evidence -
by the same authors- for antagonisms being more prevalent in antifungals.  
 
We do not think the large number of antagonisms is a bias of the methodology as previous studies 
have also observed more antagonistic interactions than synergy studies (Cokol et al, 2011; Ocampo 
et al, 2014). This suggests that antagonism is more common in nature than synergy. We have 
updated the revised version to comment on the higher frequency of antagonism over synergy as 
follows:  
 
In agreement with previous studies in bacteria and yeast, antagonistic interactions are more 
prevalent than synergistic interactions. This underscores the difficulty of selecting drug 
combinations that do not adversely affect clinical outcomes.  
 
b) are drug interactions driven by drug-target? Aminoglycosides are far away from other protein 
synthesis inhibitors, AMK is not with rest of aminoglycosides, NIT has DNA damage as main 
cytotoxic effect, but clusters with aminoglycosides. So best case this statement is to first 
approximation.  
We agree with the reviewer that the clustering only approximately matches the drug target 
processes. There are additional factors that seem to play a role, such as whether the drug is 
bacteriostatic or bactericidal. We have now rewritten the text to reflect this:  
 
Further, unsupervised clustering of interactions grouped the drugs based on both their mechanism of 
action, and their bacteriostatic and bactericidal properties, consistent with previous studies (Ocampo 
et al, 2014; Yeh et al, 2006).  
 
c) why are the genes important for predicting drug interactions relevant as drug-targets? Is the 
assumption that genes involved in the drug-drug interactions (Chevereu & Bollenbach, 2015) are 
the same as genes that are good "genetic predictors" for interactions? If true, it would be nice to 
provide evidence for this.  
 
We found that many genes that are predictors are either involved in the target processes of the drugs 
or found to influence drug interactions as discovered by Chevereu & Bollenbach (2015). We have 
updated the relevant discussion to clarify this point:  
 
Genes identified to be top predictors of drug interactions from chemogenomic profiles by INDIGO 
(DIR genes) were involved in the processes targeted by the drugs or processes such as drug transport 
and bacterial metabolism that are known to influence drug interactions (Chevereu & Bollenbach, 
2015). DIR genes connected to energy metabolism might be necessary for facilitated transport of the 
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drugs (Allison et al, 2011) or may be connected to cellular damage induced by antibiotic-related 
redox changes (Dwyer et al, 2014; Kohanski et al, 2010; Kohanski et al, 2007; Lobritz et al, 2015). 
The top predictors and the associated cellular pathways can be targeted for enhancing synergy 
between antibiotics.  
 
10. Discussion would benefit if it were more focused (targeted more to discussing the results rather 
than potential of method) and structured (subsections). Assessment of model and data used to build 
model, how each can improve (e.g. data for essential genes in chemogenomics), what would be 
needed to be expandable to other organisms, how chemogenomics data from different organisms 
can be used to assess/improve ability to predict interactions in other organisms are all relevant 
points for discussion.  
 
We thank the reviewer for the suggestion. We have toned down the discussion and rewritten this 
section as suggested by the reviewer.  
 
Also some caution on the use of buzz-words and the claims would be beneficial - e.g. I would not 
call INDIGO an evolutionary algorithm (all done was reciprocal blasting to identify orthologues) 
nor have I seen any evidence that differences in effectiveness of drug combination can be spotted on 
a strain/"personal medicine" level (i.e. using E. coli data you can predict the differences in drug 
synergies over different clinical isolates of S. aureus).  
 
We agree with the reviewer and have rewritten the section accordingly. We have toned down our 
remarks on the potential future applications of our approach in the discussion section.  
 
Minor comments  
1. Why is only drug sensitivity (and not resistance) used from the chemical genomics data?  
 
As a result of the Nichols et al. study design, there were considerably fewer statistically significant 
associations for sensitivity than resistance. Nichols et al. report that “80% of the phenotypes were 
negative (gene deletion more sensitive) and 20% positive (gene deletion more resistant), consistent 
with recent genetic interaction analyses in S. cerevisiae (Fiedler et al., 2009) and S. pombe (Roguev 
et al., 2008)”. Hence we decided to use gene sensitivity profiles as they were more abundant and 
statistically significant interactions in Nichols et al. It should be possible to include resistant genes 
in the INDIGO framework. We have updated the methods section of the paper to clarify this point.  
 
What is the reason for the renormalization of the chemical genomics data? Data scores are already 
normalized and represent adjusted t-tests according to authors. Quantile normalization and z-
scoring t-tests on top sounds unnecessary/harsh.  
 
We did not perform a z-normalization on top of their data set; we used the z-scores from the Nichols 
study. We performed quantile normalization to ensure that the distributions across drugs were 
similar to have a uniform interpretation of the z scores. We have rewritten the relevant section of the 
paper to clarify this.  
 
2. It is unclear how authors translate α-scores - calculated based on Loewe additivity to a 
classification that was based on scores calculated based on Bliss independence (Yeh et al., Nat Gen 
2006). Yeh et al rescale their "Bliss" scores to -1 to +2; do authors rescale their scores and what is 
the score range?  
 
We did not rescale our alpha scores. Our analyses were performed on quantitative data and 
predictions by INDIGO are quantitative as well. The data were classified for visualization and for 
estimating AUC values. For such classifications, we had set -0.5 as the threshold for strong synergy 
and 1 as the threshold for antagonism. We performed sensitivity analysis to show that the model is 
robust to the choice of values for synergy and and antagonism (Supp. Figure 5).  
 
3. Rifampicin is not targeting RNA metabolism, but RNA polymerase.  
 
We agree with the reviewer and have revised the text accordingly.  
 
4. The most fundamental limitation of correlation approaches for inferring drug-drug interactions is 
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that they only account for synergies (not antagonisms). Synergies between distinct classes of drugs 
can be captured (as they may still have similarity in their chemogenomic profiles).  
 
We agree with the reviewer and have rewritten the section accordingly as follows:  
Based on our analysis, we find that similarity and overlap-based approaches fail to correctly predict 
interaction outcomes for new classes of drugs and lack a model for antagonism. Thus, taking into 
account the identity of the individual genes in the chemogenomic profile and accounting for both 
similarity and dissimilarity, increases the ability to predict drug interactions. Our data shows that 
drugs with similar targets and chemogenomic profiles can have both synergistic and antagonistic 
outcomes.  
 
5. Fig. 4: a proper explanation on how the interactions were "collapsed" into the major drug 
families and target process is absent form the manuscript.  
 
To determine average synergistic or antagonistic interactions between different groups, we 
compared the distribution of interaction scores for all drug combinations between two groups with 
the background interaction score for all drug pairs using a t-test. We have updated the figure legend 
to better describe this as follows:  
 
Figure 5: Global analysis of drug-drug and drug-stress interactions. Panels A and B summarize 
the interaction outcome between drugs from similar or different families and target processes. The 
heat-maps represents the entire drug interaction matrix, inferred from the entire compendium of 
Nichols et al., collapsed into 13 major drug families (panel A) or 10 major target processes (panel 
B). To determine average synergistic or antagonistic interactions between different groups, we 
compared the distribution of interaction scores for all drug combinations between two groups with 
the background interaction score for all drug pairs (Methods).  
 
6. The fact that the mean error in prediction correlates with physicochemical properties is 
convincing, but at the same time intriguing. It would be worth discussing why would a large 
chemical genomic dataset miss this.  
 
The connection between physicochemical properties and synergy/antagonism has been observed 
previously by other studies (Chongsiriwatana et al, 2011; Yilancioglu et al, 2014). However, 
previous chemogenomics studies have not attempted to predict drug interactions from 
chemogenomics data. In the revised paper, we remove the analysis on physicochemical properties in 
order to focus on the main findings on drug interaction prediction and orthology.  
 
7. Figure 5: Fusidic acid is not the best example; some predictions are getting better with 
physicochemical data (mentioned by authors), but others are worse.  
 
We agree with the reviewer that this section breaks the flow from the main conclusion of the paper 
(referring to major comment #8); hence we have removed this figure and the corresponding section 
from the manuscript.  
 
8. Figure 6- panels are mixed in description in text. Please also define in figure and/or legend that 
panel C is about measured interaction scores (not predicted).  
 
We have updated the figure legend of panel C to emphasize that the interactions are experimentally 
measured and not predicted by INDIGO.  
 
Common genes between E. coli and S. aureus are the minority, not the majority as Fig 6A implies.  
 
Common genes between the two species are enriched in the top predictive gene set. But overall, we 
agree  
with the reviewer that common genes are the minority and have updated the figure panel 
accordingly.  
 
9. Consistency in Figures, Figure panels and corresponding text would be beneficial; for example 
giving AUC and p-value in all ROC curves in the graph (rather than alternating it in text and 
legend) would help.  
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We have updated the figures and figure legends so that the AUC scores and the p-values are 
mentioned in the figure legend.  
 
10. In methods there are reported 2 AUC's of 0.68 with very different significances (for model with 
biophysical properties alone)  
 
The p-values were obtained from different distributions. It is harder to predict synergy than 
antagonism; so an AUC value of 0.68 for synergy is statistically more significant than an AUC value 
of 0.68 for antagonism. We have updated the relevant section (Supplementary Figure 6) to highlight 
the reason why the p-values were different.  
 
11. For many of the Supplementary Figures legends are not enough to follow the figure- this is more 
of a problem since reference to them in main text is often very minimal.  
 
We have rewritten many of the supplementary figure legends so that they can be assessed 
independently without referring to the text in the methods section.  
 
 
Reviewer #2:  
 
In this manuscript, Chandrasekaran et al. develop a computational approach aimed at predicting 
drug interactions between antibiotics from their chemogenomic profiles. The authors developed an 
algorithm which they trained on a large data set of drug interactions and then used it to predict 
interactions with antibiotics that were not in the original data set. The authors show that their 
approach can make successful predictions at a significantly higher rate than two alternative 
approaches. Their analysis further reveals cellular pathways and physicochemical properties of the 
drugs that play a central role for predicting drug interactions. Finally, the authors generalize their 
approach to predict drug interactions in a different species (S. aureus) from chemogenomic data 
that was obtained in E. coli -- a potentially useful approach since large chemogenomic data sets are 
currently only available for few model organisms.  
 
The study of antibiotic combinations and drug interactions is certainly a timely and relevant topic as 
evidenced by numerous recent studies that led to considerable conceptual progress on this topic. 
Computational approaches for predicting drug interactions could lead to important advances in 
drug combination design since, if successful, they could enable the systematic exploration of the 
extremely large space of possible drug combinations without a need for cumbersome large scale 
experimental screens. The present work makes an interesting attempt in this direction and appears 
technically sound. However, the conceptual advance made in this work remains slightly obscure and 
the quality of the computational predictions made is not entirely convincing (see major points 
below). Overall, while the topic is interesting, this manuscript in its current form might be better 
suited for a more specialized bioinformatics journal.  
 
Major points: 1.  
 
A serious concern is that the predictions made by the authors' algorithm are not entirely convincing. 
Specifically, these predictions require a large training set of 15 drugs and are only tested on a 
considerably smaller set of 4 additional drugs.  
 
We understand the reviewer’s concern. We would like to point out that our analysis is at the 
interaction level. For every addition of a drug, the number of interactions increases exponentially. 
The addition of four drugs is a 70% increase in total interactions measured. The training was done 
on 91 interactions and experimentally validated on 66. Hence the validation data set is not 
considerably small, but 72% of the size of the training set. Further to training on the experimental 
data set, we have applied our approach to predict interactions for over 52,000 dose-specific 
combinations. The scale of interactions that can be predicted by our approach is hence orders of 
magnitude larger. Most importantly, the method, which we demonstrate for S. aureus and M 
tuberculosis, can be extended to other organisms. Therefore, we think this is a significant advance 
for this field. We would also like to bring to the reviewer’s attention that we experimentally tested 
our predictions for 45 combinations in S. aureus (all pairwise interactions of 10 antibiotics), all of 
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which are novel.  
 
Even then, the quality of the predictions is relatively limited, e.g. the scatterplot of the predicted and 
measured interaction scores in Fig. 3C shows a weak rank correlation but it seems that only the 
strongest effects are predicted to some extent while the rest looks essentially random.  
 
As the reviewer correctly points out, our model predicts the strongest effects, i.e., the strongest 
synergies and antagonisms, which we believe are potentially of more interest than other weaker 
interactions. Nevertheless, we have assessed the overall statistical significance of our approach 
through several metrics. Both parametric and non-parametric approaches show that the correlation 
between model predictions and experimental observation is significant. We also used the 
probabilistic concordance index (PCC), which takes into account the noise in the data and the results 
were still significantly better than random (p-value < 10-6). We found that even after removing the 
strongest synergistic or antagonistic interactions, the correlation is still significant (r = 0.46, p-value 
= 10-4), suggesting that the model predictions for weaker interactions are also accurate. Most 
importantly, INDIGO performs significantly better than existing approaches, which make only 
qualitative predictions.  
 
A similar problem is apparent in Fig. 6D where the observations for S. aureus are compared to the  
predictions: the weak correlation that is observed seems to depend entirely on 3 or 4 data points 
(located in the top right and bottom left). Is this correlation significant?  
Independent of statistical significance, it looks as if only a small fraction of the differences are 
correctly predicted.  
 
The correlation is highly significant as assessed by several methods (p-value = 10-4 for spearman’s 
correlation). Given that a sizeable fraction of the interactions are conserved between the two species, 
a major challenge is to identify the subset of interactions that strongly differ between them. Our 
results suggest that INDIGO can identify conserved interactions and those that differ between the 
two species. Predictions from INDIGO are both visually and quantitatively better than the 
correlation with experimental E. coli interactions.  
 
We have expanded the validation data in this revision and our results are more significant than 
before (p = 10-4, r= 0.52), while the correlation with E. coli is only R = 0.39, further highlighting 
the accuracy of our approach. This result is noteworthy given that we did not use any S. aureus 
interaction data for training the model, and we also used chemogenomics data from a different 
species.  
 
The usefulness of this approach is thus doubtful and needs to be clarified.  
 
By the reviewer 1’s own words “Computational approaches for predicting drug interactions could 
lead to important advances in drug combination design since, if successful, they could enable the 
systematic exploration of the extremely large space of possible drug combinations without a need 
for cumbersome large scale experimental screens.” We also would like to quote reviewer 1 to 
clarify the usefulness of our approach: “The implications of a having a workable and transferable 
pipeline for predicting the effects of combinatorial treatments are immense -especially since this can 
go beyond the scope of antibiotics/adjuvants and used for drugs against other infectious and non-
infectious diseases” and “The ability to even partially predict interactions in S. aureus with E. coli 
data is remarkable”.  
 
Therefore, it is of great importance to predict interactions in clinically relevant organisms based on 
data from model organisms such as E. coli. Currently it is unclear if drug interaction outcomes in E. 
coli are conserved in other species. Here we have shown that by using chemogenomics-based 
models, that we can identify subsets of drug interactions that are conserved between species (broad 
spectrum synergy or antagonism) and those that are variable (narrow spectrum synergy or 
antagonism). We have identified several cases where interactions strongly differ between them (i.e., 
antagonistic in one species and synergistic in the other). The remarkable aspect of our approach is 
that only the genome information of another strain or organism is needed to extend the predictions 
from E. coli to another system. We have revised the section accordingly to further clarify the 
significance of our predictions.  
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2. The "INDIGO" algorithm is central to the results of the study. However, its description in the 
main text is inadequate, making it hard to assess the conceptual advance achieved in this work. This 
algorithm is briefly introduced in the first paragraph of the results part and in Figure 1 but the main 
idea and procedure used to make the predictions did not become clear to me from this. This part will 
be particularly hard to understand for a broad audience of biologists. The main idea behind this 
algorithm should be clarified and its description considerably expanded.  
 
We agree with the reviewer and have rewritten the relevant section accordingly. We have 
considerably rewritten the text describing INDIGO to be understandable for a broad audience. We 
have also updated Figure 2 to clarify the steps involved in this process.  
 
3. The overall approach is conceptually similar to (Yilancioglu et al., J Chem Inf Model, 2014) from 
the  
same last author. While this previous work focused on yeast and physicochemical properties of the 
drugs to predict drug interactions, the general approach of using available data on drugs and using 
machine learning or related approaches to predict drug interactions based on a training data set is 
conceptually similar. The advance of the present study thus appears incremental. It would need to 
be clarified how the present study presents a major step forward compared to this previous work.  
 
The present study is fundamentally different from Yilancioglu et al. in two ways.  
Firstly, here we have used chemogenomics data to predict drug interaction outcomes. In contrast, 
Yilancioglu et al. used only chemical properties of drugs. Prediction of drug interactions using 
physicochemical properties is unable to offer hypotheses for mechanism of drug interactions. In our 
study, however, since our learning algorithm uses genetic information, genes and gene sets 
associated with drug interactions can be found and used for furthering the biological understanding 
of drug interactions.  
Secondly, the Yilancioglu et al. study cannot be extended to other organisms since there is no 
information on species-specific effects of drug properties. However, thanks to comparative 
genomics and the available microbial genome sequences, our approach can be used to predict drug 
interactions in any species with a known genome.  
 
4. There is little novel experimental data in this work, so the predictions made are largely about the 
past. E.g. the experimental results shown in Fig. 2 were generated in this study but a similar study 
was published almost 10 years ago (Yeh et al., Nat Gen, 2006) and repeated for other organisms 
since then (as properly acknowledged by the authors).  
 
In our study, we report 153 and 45 drug interaction experiments in E. coli and S. aureus, 
respectively. (In our original submission, there were 28 experiments for S. aureus.) All of these data 
were produced in duplicate in this study. As such, our study not only has a considerable body of 
novel experimental data, it is on par with the drug interaction data sets reported in the literature (Yeh 
et al. involved 210 experiments whereas Cokol et al. involved 200). In addition, we would like to 
highlight that the experimental data for S. aureus is by far the largest existing systematic drug 
interaction screen in this organism, and these are all novel interactions experimentally measured for 
this study. Existing studies so far have focused on high-throughput screens that enhance the activity 
of single agents. In addition to the novel interaction dataset for S. aureus, a large fraction of E. coli 
data is also novel. As we had highlighted earlier, a majority of combinations (over 60%) do not 
overlap with Yeh et al. In addition, while Yeh et al. was a single-dose study, we have analyzed nine 
times more dose specific combinations than Yeh et al. while computing our drug interaction score. 
We have revised the results section and the abstract of the paper to highlight that these were novel 
experimental data sets and not extracted from literature.  
 
Similarly, the computational analysis relies almost entirely on the published chemical genomics 
data set from (Nichols et al., Cell, 2011).  
 
Chemogenomic profiling has been widely done for a range of model systems and an extensive 
resource of such data is now publicly available for E. coli, S. cerevisiae, and human cancer cell lines 
(Flores et al, 2005; Girgis et al, 2009; Ho et al, 2009; Lee et al, 2014; Muellner et al, 2011; Nichols 
et al, 2011; Tamae et al, 2008). Yet these data sets have been under-utilized for drug combination 
discovery. We show that one can leverage this vast resource of existing chemogenomic data to 
predict drug combinations for a wide range of drugs across different organisms.  
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It is of course perfectly fine to reanalyze existing data but the lack of new data will likely limit the 
appeal  
of this study to a more specialized community of bioinfomaticians interested in drug interactions. In 
the absence of any mechanistic insight, the claim that drug interactions can be predicted based on 
chemical genomics data would be more convincing if the authors could validate predictions with a 
truly novel data set.  
 
Here we have demonstrated for the first time that drug interactions in multiple pathogenic species 
can be predicted from chemogenomics data from model organisms. We have validated this novel 
approach using two novel experimental data sets: 66 new drug pairs in E. coli and 45 new drug pairs 
in S. aureus. Further, we demonstrate that genes that are important for drug interactions are 
conserved across species, hence suggesting that these mechanisms are conserved in evolution. Given 
the importance of multi-drug combinations across several disciplines, the novel data sets, and the 
provided mechanistic explanations, we believe that our paper will be relevant not only to 
bioinformaticians, but also to scientists interested in systems biology, drug discovery, drug 
resistance and infectious diseases.  
 
One possibility could be to investigate combinations of three or more drugs. Recent studies (e.g. 
Wood et al., PNAS, 2012) made progress in predicting such higher order drug combinations and it 
would be interesting if the authors could at least discuss if their algorithm can make predictions for 
the effects of higher order drug combinations. It would strengthen this work if the authors could 
experimentally verify some of these predictions for a few selected combinations of three or more 
drugs.  
 
We thank the reviewer for this suggestion. We agree that predicting higher-order combinations 
would be a great future application of INDIGO and we have highlighted this point in the discussion 
in the revised paper. Our analysis can be coupled with approaches that predict higher-order 
combinations based on pairwise interaction data. However, predicting pairwise combinations is still 
a considerable challenge, and we believe our study has taken an important step to address this issue. 
 
 
2nd Editorial Decision 11 March 2016 

We have now heard back from the referees who accepted to evaluate the study. Reviewer #1 saw the 
study for the first time, while reviewer #2 was involved in the evaluation of your first submission 
(reviewer #1 in previous round). As you will see, the referees raise a series of concerns, which we 
would ask you to convincingly address in a revision of the present work. The recommendations 
provided by the reviewers are very clear in this regard. 
 
---------------------------------------------------------------------------- 
REFEREE COMMENTS 
 
Reviewer #1: 
 
In this study the authors describe a computational approach INDIGO that uses E. coli genome wide 
mutant fitness data in the presence of drugs to predict drug-drug interactions. Using a training set of 
growth data from 15 compounds and an existing E. coli fitness data from >100 compounds, they 
identify a set of genes that can be used as classifiers to predict drug-drug interactions. Because many 
of these drug related genes have orthologs in diverse species, the authors used their model to predict 
drug interactions in two Gram-positive pathogens. 
 
Main points: 
 
1. Given the vast differences in gene content and physiology of E. coli compared to Gram-positive 
bacteria, I'm surprised that the E. coli based model made useful predictions in the other species. 
However, these Gram-positive predictions are only mildly accurate (Figure 5 and Supp info). The 
authors should discuss the limitations of their approach for predicting gene-gene interactions in non-
E. coli species, for example INDIGO cannot model the contribution of drug related genes that are 
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absent in E. coli. The best option is to directly collect chemogenomics data in diverse species (and 
advances in technology will soon move us there). 
 
2. The authors should further discuss what separates their INDIGO algorithm from existing 
approaches that use chemogenomics data to predict drug interactions (using global Pearson 
correlation). This is discussed briefly in the text but in my view (coming from a largely non-
computational background), the biggest difference is that the authors take into account the 
individual genes with sensitive phenotypes and assign them different weights in the model. A more 
detailed description of what I'm missing (and readers with a similar background) would be helpful. 
 
3. The Nichols dataset used colony imaging to assay the growth of individual mutants in the 
presence of drug. While this technology is not ideal for identifying detrimental genes (ie, genes that 
when mutated lead to an increase in fitness), there are some of these in their dataset. In addition, 
higher resolution approaches such as TnSeq and its associated derivatives are identifying many 
detrimental genes in diverse conditions. With these considerations in mind, I'm curious why the 
authors only looked at the sensitive genes. 
 
4. In the first results section, the authors should give specific examples of the consistency of their 
results with the Yeh et al. 2006 results, ie "and was consistent with existing interaction data 
(Supplementary Methods)". A brief discussion of the consistency or lack thereof for certain 
compounds is better merited in the results, not the supplemental material. I find it a bit disturbing 
that the literature will now report a non-linear drug interaction for 38 compound comparisons that 
two groups working independently with the same compounds and same organism didn't replicate. If 
these drug interactions are so sensitive to growth media and methods used to monitor/measure 
growth, are they really going to be clinically relevant? 
 
5. If the authors want to really claim that INDIGO makes quantitative predictions of synergy and 
antagonism, then they should plot the actual measured and predicted interaction scores in Figure 3, 
not the ranks. 
 
6. The focus on a small set of "DIR" drug-interaction related genes seems the wrong approach to 
identifying novel antimicrobial targets and modes of action. It also biases the search for synergistic 
interactions to a limited set of cellular processes and likely ignores other important ways in which 
drug-gene interactions could occur. The authors should at least mention this in the discussion. 
 
7. Related to the previous point, more attention should be given to explaining the mechanistic 
underpinnings of specific drug-interactions outcomes and why the predictions likely worked or 
failed in the Gram-positive or Mycobacterial systems. At the end or the day an R =O.52 is not great, 
and it would be nice to know which compounds are consistently working or failing. 
 
8. The tendency of the authors to use summary figures without drug mechanism and even drug 
names in many cases obfuscates the method. I think the paper would be much stronger with more 
mechanistic discussion and less focus on scoring the algorithms predictive power. Ultimately, 
computational methods such as this are valuable for moving beyond a set of compounds for which a 
wealth of experimental data exists and drug-interaction data can be readily and expediently 
obtained. What about a 100x100 matrix of compounds including new screening hits? 
 
Minor points: 
 
1. In Figure 1, add a color bar legend from blue to red that indicates the drug interaction scores. 
2. In Figure 1 legend, specify that the rank correlation is used, rather than the generic "correlation". 
3. The reproducibility of the drug interaction scores (and presumably the growth data they are based 
on) is not that great. The authors should state why this is the case and discuss whether more 
sensitive growth assays or more biological replicates would help. This is especially important in the 
light of these types of data being used for ultimately making clinical decisions. 
4. I suggest making Figure 1 more compelling and easier to follow by labeling the compounds (at 
least on the y-axis) based on mode of action or structure. 
5. Remove or replace "Remarkably" from the second paragraph of the results section "Experimental 
validation of novel predictions for 66 drug-drug interactions" 
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6. The authors should give an example or two of drugs with similar mechanisms of actions and/or 
chemogenomic profiles having synergistic or antagonistic outcomes (in the Experimental validation 
of novel predictions for 66 drug-drug interactions" results section. 
7. How many Drug Interaction Related (DIR) genes are there total? 
8. I don't understand what is being plotted in Figures 5D and 5E. Why are these rank ordered and not 
just the actual predicted interaction values? 
9. In the Figure5DE legends, it described experimentally measured interactions but the plot shows 
predicted interaction values. Also, as far as I can tell, no experimentation was done on M. 
tuberculosis. 
10. It's unclear how the growth assays were done. In a microplate reader? 
11. I don't understand why the same "area under the curve" methods were not used for both E. coli 
and S. aureus 
 
 
Reviewer #2: 
 
The revised manuscript by Chandrasekaran et al. fixes a number of flaws of the first submission and 
addresses the majority of the comments raised by both reviewers. Overall I find the revised 
manuscript to be better structured, methods and figs are better explained, messages are better 
conveyed and focus is kept on its strong points. As mentioned in first round, I find both the 
approach novel and the topic highly interesting. Nevertheless, and given the time passed from earlier 
submission (see also point 1), in my opinion the authors have to address a few more points on their 
manuscript - all can be fixed by small edits/additions. 
 
Major points 
1. In a recently published paper by the labs of Mike Tyers and Gerry Wright (Cell Systems, 2016) 
chemical genetics data and structural features of drugs are used to train a predictor (machine 
learning) for species-specific interactions. Although methods used and angle is rather different from 
this manuscript, the authors should discuss this paper: commonalities, complementarity of 
approaches but also some of the differences in the findings - e.g. Wildehain et al. find that chemical 
structural features of drugs have to be included for predictor to work. 
 
2. The authors should acknowledge in the manuscript that they see about twice as many interactions 
(56 antagonisms + 14 synergies) as non-interactions (35 neutral interactions), and discuss why this 
happens. I can understand the claims for more antagonism than synergy, but interactions being more 
common than non-interactions defy the null hypothesis of any interaction model, and should be 
addressed. 
 
3. In the resubmission authors increased the # of drug-drug interactions tested for S. aureus (2 new 
drugs are tested and a 10 x 10 matrix is presented). Correlation between experimentally tested 
interactions in S. aureus & E. coli drops from 0.48 in previous 8 x 8 dataset to 0.39 (Fig S17A). 
When incorporating the Indigo Predictions correlation goes up to 0.47 (Fig S5D and S17B; this 
analysis is missing from first submission and 8 x 8 dataset), which I would say is a marginal 
improvement - and comes from including more drugs that are predicted to behave differently 
between 2 organisms and thus need the Indigo predictions. So although I don't disagree with authors' 
statement that Indigo helps with predicting the interactions between organisms, I think the authors 
should make it clear that this about as good as it gets at the moment and still most of the "predictive 
power" comes from conserved interactions. So I would tone down abstract ("successfully predicted 
to some degree") and leave open the room for improving predictions across species in the future in 
discussion. 
 
Minor points 
1. Intro: define/cite the study you use for the chemogenomics data (Nichols et al.) 
 
2. In Fig 1 authors show the average AUC between the 2 replicates for each of the drug-pair 
concentration. Yet they don't use these data for calculating the final interaction α score, but instead, 
they calculate α scores on each experiment separately and average them. Although I don't disagree 
with the strategy, especially given the # of replicates, authors should make this clear in text. This is 
the reason for the discrepancy between some of the checkerboard patterns and the way interaction is 
called in Fig 1. 
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3. Interaction quantification; how did authors calculate largest isophenotypic contour for 
combinations that only 2 or 3 drug concentrations gave measurable growth? 
 
4. Chemogenomic profile: score compares fitness of mutant in a treatment to both wildtype fitness 
under same treatment and mutant fitness under no treatment. This is why it is actually not a z score. 
 
5. INDIGO: although authors refer to Methods for explaining the random forest algorithm, there is 
no further mention to this in text. Reply to reviewer 1 as to inputs on INDIGO can be included in 
text as it provides some more relevant info. 
 
6. Figs 3E and 3F are not mentioned in txt 
 
7. INDIGO predicts better synergies than antagonisms (ROC curves), despite being built with more 
antagonisms. This is not pointed out/discussed, despite authors mentioning in rebuttal that it is in 
Results & Discussion. Either I missed it or authors did. 
 
8. Benchmarking with Yeh data: supplementary scatter plots should be provided in addition to 
description in text. 
 
9. Peroxide response and discrepancy from Brynildsen (2013). According to Table 1, H2O2 has an 
MIC of 250 µg/ml (~7.34 mM - which at the high side), and you use sub-MIC concentrations. 5 mM 
is used in the Brynildsen study, so concentration cannot be the reason. Not sure why duration of 
treatment would make a difference either. 
 
10. Table 2b; needs correction for multiple testing 
 
11. Not clear how enrichment in DIR genes is concordant/related to Chevereau & Bollenbach study. 
Authors should elaborate more on this. 
 
12. Staph data (Fig S13) - include plots for replicate correlation (mentioned in response to review 1). 
 
13. Mtb interaction scores used from literature are not quantitative - should be pointed out. 
 
14. There is still no reference in main text for some of the Supp Material. 
 
 
1st Revision - authors' response 09 April 2016 

Reviewer #1:  
 
In this study the authors describe a computational approach INDIGO that uses E. coli genome wide 
mutant fitness data in the presence of drugs to predict drug-drug interactions. Using a training set 
of growth data from 15 compounds and an existing E. coli fitness data from >100 compounds, they 
identify a set of genes that can be used as classifiers to predict drug-drug interactions. Because 
many of these drug related genes have orthologs in diverse species, the authors used their model to 
predict drug interactions in two Gram-positive pathogens.  
 
Main points:  
 
1. Given the vast differences in gene content and physiology of E. coli compared to Gram-positive 
bacteria, I'm surprised that the E. coli based model made useful predictions in the other species. 
However, these Gram-positive predictions are only mildly accurate (Figure 5 and Supp info). The 
authors should discuss the limitations of their approach for predicting gene-gene interactions in 
non-E. coli species, for example INDIGO cannot model the contribution of drug related genes that 
are absent in E. coli. The best option is to directly collect chemogenomics data in diverse species 
(and advances in technology will soon move us there).  
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We agree with the reviewer that there is still room for improvement in terms of predictions, and the 
predictions for other organisms would be more accurate with chemogenomics data for the 
corresponding strains. New technologies for the generation of chemogenomic data sets for 
pathogens will undoubtedly move us towards more reliable prediction of drug interactions in 
pathogens. So far however, we have not yet generated such data for relatively well-studied 
pathogens such as S. aureus or M. tuberculosis. INDIGO thus provides a first estimate of drug 
interactions in these circumstances. In general, our discovery that we can predict drug interactions in 
other species by mapping orthologous genes thus provides a mechanism for extending predictions 
from model organisms or non-pathogenic strains to less-studied pathogens.  
 
The predictive power of INDIGO is also dependent on the drug interaction experiments conducted. 
Therefore, performing drug interaction assays in pathogens for training INDIGO is another venue 
that will improve INDIGO predictions.  
 
We have revised the Discussion section of the paper to highlight this important point raised by the 
reviewer as follows (Page 11, last paragraph) –  
  
“While this capability to predict drug interactions by mapping orthologous genes is a significant 
advance for this field and can be extended to any organism with genome sequence information, a 
limitation of this approach is that INDIGO cannot explicitly model the contribution of pathogen DIR 
genes that are not present in E. coli. Our interaction estimates for these systems could be further 
improved with the availability of chemogenomics data for these pathogens and by performing drug 
interaction measurements directly in pathogens as training data for INDIGO. Predictive accuracy of 
INDIGO can be enhanced in the future through new technologies for accurate measurement of drug-
drug and chemical-genetic interactions, performing chemogenomic screens with essential genes 
(Cameron & Collins, 2014), and by harnessing drug physicochemical properties and chemical 
structure (Wildenhain et al, 2015). INDIGO can complement theoretical models for predicting 
multi-drug interactions from pairwise interactions (Wood et al, 2012), and kinetic modeling-
based approaches, which are currently restricted to small pathways due to a lack of known kinetic 
parameters and drug targets (Singh et al, 2015). By transforming drug responses and interactions 
into the genomic space, our study provides a framework for genomics-driven drug combinations 
discovery. “ 
  
2. The authors should further discuss what separates their INDIGO algorithm from existing 
approaches that use chemogenomics data to predict drug interactions (using global Pearson 
correlation). This is discussed briefly in the text but in my view (coming from a largely non-
computational background), the biggest difference is that the authors take into account the 
individual genes with sensitive phenotypes and assign them different weights in the model. A more 
detailed description of what I'm missing (and readers with a similar background) would be helpful.  
 
As the reviewer correctly points out, the biggest difference is that INDIGO take into account the 
individual genes with sensitive phenotypes and quantifies their contribution to the drug-interaction 
outcome. In contrast, existing approaches use a bulk aggregate score to quantify the chemogenomic 
profile similarity. Hence, instead of using just one predictor (aggregate correlation or similarity), we 
are using hundreds of predictors in our study.  
 
Another important difference is that, the contribution of each gene is contextual, i.e. depends on the 
state of other genes (Figure 2). We have revised the Introduction, Results and Introduction sections 
to highlight the main difference of our approach compared to other existing approaches as follows –  
 
[Page 6, 2nd paragraph] 
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“INDIGO thus takes a systems approach to predict drug interactions; INDIGO quantifies the 
contribution of individual genes with a chemical-genetic interaction on the overall drug interaction 
outcome (synergy or antagonism). Importantly, the contribution of each gene in INDIGO is 
contextual, i.e. depends on the state of other genes.”  
 
[Page 4, 2nd paragraph] 
 
“INDIGO greatly expands the capability of current drug interaction prediction approaches by 
estimating interaction outcomes in clinically relevant pathogens by finding orthologous genes in 
model organisms.” 
 
[Page 11, 1st paragraph] 
 
“INDIGO assesses the influence of hundreds of individual chemical-genetic interactions on drug-
drug interaction outcomes. In contrast, existing chemogenomics-based approaches determine 
synergy based on a single aggregate metric of drug similarity. Our gene-centric model has also 
enabled us to apply our E. coli drug interaction model to predict outcomes in other bacterial 
species.” 
 
3. The Nichols dataset used colony imaging to assay the growth of individual mutants in the 
presence of drug. While this technology is not ideal for identifying detrimental genes (ie, genes that 
when mutated lead to an increase in fitness), there are some of these in their dataset. In addition, 
higher resolution approaches such as TnSeq and its associated derivatives are identifying many 
detrimental genes in diverse conditions. With these considerations in mind, I'm curious why the 
authors only looked at the sensitive genes.  
 
According to Nichols et al, “Overall, 80% of the phenotypes were negative (gene deletion more 
sensitive) and 20% positive (gene deletion more resistant), consistent with 
recent genetic interaction analyses in S. cerevisiae (Fiedleret al., 2009) and S. pombe (Roguev et al., 
2008). This suggests that removal of a gene product is more likely to decrease than 
enhance resistance to stress (Figure S2B).”  Hence, despite these biases pointed out by the reviewer, 
sensitive interactions are statistically more abundant and provide more information to the model 
than resistant interactions. As more effective screens become available in the future that avoid these 
biases, we expect that resistant gene data can also be used in building the model. We have 
highlighted this issue in the appendix (section: chemogenomics data processing; see below) 
 
[Appendix, Page 3, 3rd paragraph] 
 
In this study, we only used genes that lead to increased sensitivity (and not resistance) in the 
chemogenomics data. As a result of the Nichols et al study design, there were lot more statistically 
significant associations for sensitivity than resistance. 80% of the reported phenotypes were negative 
(gene deletion more sensitive) and 20% positive (gene deletion more resistant), consistent with other 
recent chemical-genetic interaction analyses in S. cerevisiae and S. pombe. Hence, only gene 
sensitivity profiles were used as they were more abundant and statistically significant in Nichols et 
al. In the future, it should be possible to include resistant genes in the INDIGO framework.  
 
4. In the first results section, the authors should give specific examples of the consistency of their 
results with the Yeh et al. 2006 results, ie "and was consistent with existing interaction data 
(Supplementary Methods)". A brief discussion of the consistency or lack thereof for certain 
compounds is better merited in the results, not the supplemental material. I find it a bit disturbing 
that the literature will now report a non-linear drug interaction for 38 compound comparisons that 
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two groups working independently with the same compounds and same organism didn't replicate. If 
these drug interactions are so sensitive to growth media and methods used to monitor/measure 
growth, are they really going to be clinically relevant?  
 
We completely agree with the reviewer that this is an important issue – this was the rationale for 
doing a more comprehensive experimental screen that looks across multiple doses in this study. We 
believe that our improved experimental setup that looks at a larger dose range (rather than single 
dose in Yeh et al.) should be better representative of the drug interaction outcomes.  
Nevertheless, only one combination among the 66 interactions disagrees completely (i.e. synergistic 
in one data set and antagonistic in the other). We have also included a supplementary figure 
summarizing the similarties and differences between the two data sets (Appendix Figure S3) in the 
revised paper.  
Therefore, while it is heartening to see broad similarities in the distribution of the interaction 
outcomes in Yeh et al and our study, it is not a direct validation of our approach due to differences 
in media and dosage used in the studies.  
 
5. If the authors want to really claim that INDIGO makes quantitative predictions of synergy and 
antagonism, then they should plot the actual measured and predicted interaction scores in Figure 3, 
not the ranks.  
 
We have plotted the predictions for all the three organisms with actual values as an expanded view 
figure (Figure EV3; shown below). The reason for plotting ranks was to show that the model was 
robust to outliers in the data and the method of normalization. Our correlations are in fact higher 
with actual values (R = 0.57, p-value = 10-7) compared to rank-transformed values (R = 0.52, p-
value = 10-6). Rank transformed data are also quantitative and more accurate than the actual values 
as they are robust to outliers in the data. In the revised paper, we have emphasized the rationale for 
using rank-normalized data in the figure legends.  
 
 
 

 
Expanded view figure 3: Scatter plots of measured interaction scores and predictions by 
INDIGO with drug combination labels (raw scores).  We have used rank normalized data for 
visualization in Figure 3 and 5, and for quantifying the accuracy of predictions as they are robust to 
outliers and the method of normalization. The correlations are higher with actual values (Pearson 
correlation R = 0.57, p-value = 10-7) compared to rank transformed values (R = 0.52, p-value = 10-6) 
for E. coli predictions. Strong synergistic, antagonistic interactions and outliers are highlighted for 
E. coli (panel A), S. aureus (panel B; rank correlation R = 0.47; Pearson correlation R = 0.5) and M. 
tuberculosis (panel C; rank & Pearson correlation R = 0.54) (M. tuberculosis interaction data are 
qualitative in nature). Abbreviations: NIG – Nigericin, STR – Streptomycin, CLA – 
Clarythromycin, MIT – Mitomycin. Please refer to table 1 for full list of drugs and abbreviations.  
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6. The focus on a small set of "DIR" drug-interaction related genes seems the wrong approach to 
identifying novel antimicrobial targets and modes of action. It also biases the search for synergistic 
interactions to a limited set of cellular processes and likely ignores other important ways in which 
drug-gene interactions could occur. The authors should at least mention this in the discussion.  
 
By focusing on the top DIR, our aim was to identify the dominant pathways that were commonly 
used by many drugs. However, this was not meant to be exhaustive, and as predicted by our 
approach, drug interactions are predicted to involve contributions from hundreds of genes involving 
a range of cellular processes. We agree that by focusing only on the top DIR genes we might miss 
other important mechanisms of interaction. We have addressed this rationale and concern in the 
results section as follows – 
 
[Page 8, 3rd paragraph] 
 
“Overall, the interaction outcomes for each drug combination depends on complex interaction 
between many genes. Nevertheless, the presence of these top genes can be a strong predictor of 
synergy or antagonism. For example, we find genes associated with synergy to be enriched in the 
chemogenomic profile of triclosan (p-value = 10-10, hypergeometric test), explaining its 
promiscuous synergy. By ranking genes used by INDIGO, we can determine the dominant pathways 
that are commonly used across drug classes.” 
 
We have also included the entire ranked list of DIR genes as a supplementary table (supplementary 
dataset 3) to enable future discovery of drug-interaction mechanisms. 
 
7. Related to the previous point, more attention should be given to explaining the mechanistic 
underpinnings of specific drug-interactions outcomes and why the predictions likely worked or 
failed in the Gram-positive or Mycobacterial systems. At the end or the day an R =O.52 is not great, 
and it would be nice to know which compounds are consistently working or failing.  
 
We thank the reviewer for the comment. We have addressed this issue in two ways as follows –  

1. For the E. coli predictions we have identified compounds for which the algorithm 
consistently works well based on leave-one-drug-out cross validation (S. Figure 8). 
Through this analysis we found that INDIGO can accurately predict interactions for most 
compounds and identified hydrogen peroxide as the compound for which INDIGO makes 
the most errors in prediction. The inability to predict hydrogen peroxide interactions 
suggest that its mechanism of action is different from what is learned from its 
chemogenomic profile. We have updated the Results section of the paper to highlight the 
drugs that lead to incorrect predictions as follows –  
 

[Page 7, 3rd paragraph] 
 
“Cross-validation analysis also revealed that predictions were consistently accurate across most 
drugs and identified hydrogen peroxide as leading to the largest errors in predictions (Appendix 
Figure S8, S9). This suggests that the chemogenomics profile of hydrogen peroxide may not 
accurately reflect its mechanism of interaction.”  
  

2. For cross-species predictions, we have quantified for both M.tb and S. aureus compounds 
that are more likely to have conserved interactions. For specific cases such as tetracycline, 
we have explained the reason the model predictions succeeded or failed in predicting 
interaction outcomes based on conservation of the drug-interaction-related genes. We have 
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now included this analysis of drug-interaction conservation as an expanded view figure 
(Figure EV4; shown below) instead of in the supplement. 

 

 
 
Expanded view figure 4: Interaction conservation between E. coli and S. aureus (top panel) 
and E. coli and M. tuberculosis (bottom panel). The heatmaps summarize the interaction outcome 
between drugs from similar or different chemical families (left panel) and target processes (right 
panel). The heat-maps represents the entire drug interaction matrix, inferred from the compendium 
of Nichols et al., collapsed into 13 major drug families and 10 major target processes. To determine 
average conservation of interactions between different groups, we compared the differences in 
interaction scores between the two species for all drug combinations between two groups (drug 
family or target process) with the background interaction score difference for all drug pairs.  
 
8. The tendency of the authors to use summary figures without drug mechanism and even drug 
names in many cases obfuscates the method. I think the paper would be much stronger with more 
mechanistic discussion and less focus on scoring the algorithms predictive power. Ultimately, 
computational methods such as this are valuable for moving beyond a set of compounds for which a 
wealth of experimental data exists and drug-interaction data can be readily and expediently 
obtained. What about a 100x100 matrix of compounds including new screening hits?  
 
We thank the reviewer for these suggestions. We have updated several sections of the manuscript 
with mechanistic information related to the drugs mechanism of action and interaction (described 
below):  
 

1. We have updated the figures (1, 3 & 5) to include more mechanistic information regarding 
target processes of the antibiotics (updated Figure 1 shown below). 

2. We have also provided information on interaction outcomes for antibiotics targeting similar 
and diverse target processes (results section; see minor comment #6). 

Variable

Conserved 

Staphylococcus aureus

Mycobacterium tuberculosis
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3. We have added expanded view figures that have the drug names on the scatter plots (Figure 
EV3; refer comment #5).  

4. We have included more mechanistic discussions on specific cases related to the interaction 
outcome based on the presence of certain genes in the chemogenomic profile of these 
drugs. Overall, the interaction outcomes for each drug combination are quite complex and 
depend on many genes. Nevertheless, the presence of certain genes can predispose to 
synergy or antagonism. For example, we find genes associated with synergy to be enriched 
in the profile of triclosan. This explains the promiscuous synergy of triclosan. We have 
updated the Results section of the paper to reflect this as follows –  
 

[Page 8, 3rd paragraph] 
 
“The presence of these DIR genes in the sensitivity profile of the drugs also correlated with 
either synergy or antagonism (Table 2a). Overall, the interaction outcomes for each drug 
combination depends on complex interaction between many genes. Nevertheless, the 
presence of these top genes can be a strong predictor of synergy or antagonism. For 
example, we find genes associated with synergy to be enriched in the chemogenomic 
profile of triclosan, explaining its promiscuous synergy. By ranking genes used by 
INDIGO, we can determine the dominant pathways that are commonly used across drug 
classes.” 
 

5. By looking at the conservation of this gene set, we can also explain the variability of 
tetracycline and quinolones (see comment #7). 

 
We agree that our approach is currently restricted to compounds with chemogenomics data. Yet, 
chemogenomic screens can now be done quickly and efficiently for a large number of model 
systems. In our manuscript we have performed predictions for 73 drugs and 53 stress agents; the 126 
x 126 matrix of interactions is provided as supplementary dataset 2.  
 
Similarly, screening hits from a 100x100 set of uncharacterized compounds could subsequently be 
profiled using chemogenomics. The interactions of the screening hit compounds with hundreds of 
existing drugs can then be quantified using INDIGO.  
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Figure 1 (shown above), Figure 3 and Figure 5 have been updated to have cartoons depicting the 
mechanism of action of the antibiotics. 
 
Minor points:  
 
1. In Figure 1, add a color bar legend from blue to red that indicates the drug interaction scores.  
 
2. In Figure 1 legend, specify that the rank correlation is used, rather than the generic 
"correlation".  
  
We have updated Figure 1 accordingly (see above).  
 
3. The reproducibility of the drug interaction scores (and presumably the growth data they are 
based on) is not that great. The authors should state why this is the case and discuss whether more 
sensitive growth assays or more biological replicates would help. This is especially important in the 
light of these types of data being used for ultimately making clinical decisions.  
 
The correlation between replicates is very high (R = 0.81, p-value = 10-26). While there is some 
variability between replicates in terms of degree of synergy or antagonism, in terms of interaction 
outcomes none of 171 combinations showed a change from synergy to antagonism between 
replicates. Overall we do agree with the reviewer that more sensitive growth assays and more 
biological replicates would help increase the correlation between replicates further.  We have 
updated the Discussion section accordingly as follows –  
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[Page 11, 4th paragraph] 
 
“Predictive accuracy of INDIGO can be enhanced in the future through new technologies for 
accurate measurement of drug-drug and chemical-genetic interactions, performing chemogenomic 
screens with essential genes (Cameron & Collins, 2014), and by harnessing drug physicochemical 
properties and chemical structure (Wildenhain et al, 2015).” 
 
4. I suggest making Figure 1 more compelling and easier to follow by labeling the compounds (at 
least on the y-axis) based on mode of action or structure.  
 
We thank the reviewer for the suggestion. We have now added a small image next to the drugs that 
show the cellular process targeted by each drug (see Figure 1 above comment #8).  
 
5. Remove or replace "Remarkably" from the second paragraph of the results section "Experimental 
validation of novel predictions for 66 drug-drug interactions"  
  
We have updated the text and removed “Remarkably”. 
 
6. The authors should give an example or two of drugs with similar mechanisms of actions and/or 
chemogenomic profiles having synergistic or antagonistic outcomes (in the Experimental validation 
of novel predictions for 66 drug-drug interactions" results section.  
 
We thank the reviewer for the suggestion. We found that drugs with similar targets and 
chemogenomic profiles can have both synergistic and antagonistic outcomes. For example, 
combinations of tobramycin-spectinomycin, tobramycin - gentamicin, and fusidic acid - 
clarithromycin, share similar chemogenomic profiles and target processes, yet have antagonistic, 
neutral and synergistic outcomes respectively (Figure EV1; see below). We have updated this 
section accordingly and added a new expanded view figure showing the chemogenomic similarity 
scores of these combinations. 
 
We have updated the Results section of the paper as follows: 
 
[Page 7, 2nd paragraph] 
 
“Our data shows that drugs with similar targets and chemogenomic profiles can have both 
synergistic and antagonistic outcomes. For example, combinations of tobramycin-spectinomycin, 
tobramycin - gentamicin, and fusidic acid - clarithromycin, share similar chemogenomic profiles 
and target processes, yet have antagonistic, neutral and synergistic outcomes respectively (Figure 
EV1).” 
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Expanded view figure 1: Drugs with similar targets and chemogenomic profiles can have both 
synergistic and antagonistic interactions. Combinations highlighted in this plot tobramycin - 
spectinomycin, tobramycin - gentamicin, and fusidic acid - clarithromycin, share similar 
chemogenomic profiles, as measured by the correlation between their chemogenomic profiles, and 
similar target processes. Yet they have antagonistic, neutral or synergistic outcomes suggesting that 
chemogenomic profile or target similarity is not a strong predictor of drug interaction outcome.  
 
7. How many Drug Interaction Related (DIR) genes are there total?  
 
The Supplementary dataset 3 has the full list of genes and the corresponding rank by INDIGO. We 
defined the set of top 250 genes that contributed to over 75% of the variance predicted by the model 
as Drug Interaction Related (DIR) genes. We have updated the ‘Genetic predictors of synergy and 
antagonism’ section as follows –  
 
[Page 8, 2nd paragraph] 
 
“The top 81 genes accounted for 50%, the top 222 accounted for 75%, and the top 581 accounted for 
95% of variance in the predicted data (Figure EV3). We defined the set of top 250 genes that 
contributed to over 75% of the variance predicted by the model as Drug Interaction Related (DIR) 
genes. “ 
 
8. I don't understand what is being plotted in Figures 5D and 5E. Why are these rank ordered and 
not just the actual predicted interaction values?  
 
We had used ranks for reasons mentioned earlier with respect to robustness to outliers (refer 
comment #5); we have also now plotted the same using actual values as an enhanced view figure 
(Figure EV3). The correlation is once again higher with actual values; we nevertheless recommend 
using rank normalized data.  
 
9. In the Figure5DE legends, it described experimentally measured interactions but the plot shows 
predicted interaction values. Also, as far as I can tell, no experimentation was done on M. 
tuberculosis.  
 
We have updated the figure legend and results section to clarify that these data were obtained from 
the literature. Further, we have updated the legend to clarify that the x-axis shows model predictions 
and the y-axis shows literature data for M. tb. 
 
We have updated Figure 5E legend as follows:  
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“M. tuberculosis interaction data were curated from literature and are qualitative in nature. See 
Figure EV3 for a more detailed plot with drug labels. “ 
 
10. It's unclear how the growth assays were done. In a microplate reader?  
 
We used TECAN Infinite F200 microplate reader for our growth assays. We have updated the 
Methods section accordingly as follows 
 
[Page 12, 3rd paragraph] 
 
“For E. coli experiments, optical density (OD) measurements were done every 15 minutes for 12 
hours in a TECAN Infinite F200 microplate reader. Growth rate was then estimated based on the 
area under the growth curve.” 
 
11. I don't understand why the same "area under the curve" methods were not used for both E. coli 
and S. aureus  
 
From our E. coli experimental data, we found that the interaction measures from end point and AUC 
methods were highly correlated. Since end point readings are faster and easier to measure (two 
factors that are especially important when handling potentially pathogenic bacteria), we used the 
end-point measurements for S. aureus.  
 
 
Reviewer #2:  
 
The revised manuscript by Chandrasekaran et al. fixes a number of flaws of the first submission and 
addresses the majority of the comments raised by both reviewers. Overall I find the revised 
manuscript to be better structured, methods and figs are better explained, messages are better 
conveyed and focus is kept on its strong points. As mentioned in first round, I find both the approach 
novel and the topic highly interesting. Nevertheless, and given the time passed from earlier 
submission (see also point 1), in my opinion the authors have to address a few more points on their 
manuscript - all can be fixed by small edits/additions. 
 
Major points  
1. In a recently published paper by the labs of Mike Tyers and Gerry Wright (Cell Systems, 2016) 
chemical genetics data and structural features of drugs are used to train a predictor (machine 
learning) for species-specific interactions. Although methods used and angle is rather different from 
this manuscript, the authors should discuss this paper: commonalities, complementarity of 
approaches but also some of the differences in the findings - e.g. Wildehain et al. find that chemical 
structural features of drugs have to be included for predictor to work.  
 
As the reviewer correctly suggests, these studies are complementary in several aspects. 
While the Tyers-Wright manuscript focuses on finding species specific interactions experimentally, 
our approach uses a computational approach to discover these outcomes. Their data set and analysis 
are hence complementary to our study and could be used for developing drug interaction models for 
yeast species. We have cited this study in the Discussion section as follows –  
 
[Page 11, 3rd paragraph] 
 
“Species-specific interaction outcomes have also been observed for drug combinations against 
fungal pathogens, similar to our observation in bacteria (Wildenhain et al, 2015).” 
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Another complementary area of these studies is the use of compound structure to make predictions. 
Although they are less accurate than the chemogenomics-based predictions reported in our study, 
combining these approaches can potentially lead to enhanced predictive power. We have cited this 
study in the Discussion section as follows –  
 
[Page 11, 4th paragraph] 
 
“Predictive accuracy of INDIGO can be enhanced in the future through new technologies for 
accurate measurement of drug-drug and chemical-genetic interactions, performing chemogenomic 
screens with essential genes (Cameron & Collins, 2014), and by harnessing drug physicochemical 
properties (Yilancioglu et al, 2014) and chemical structure (Wildenhain et al, 2015).” 
 
2. The authors should acknowledge in the manuscript that they see about twice as many interactions 
(56 antagonisms + 14 synergies) as non-interactions (35 neutral interactions), and discuss why this 
happens. I can understand the claims for more antagonism than synergy, but interactions being 
more common than non-interactions defy the null hypothesis of any interaction model, and should 
be addressed.  
 
Our null hypothesis based on the Loewe’s interaction model is that a drug is non-interacting with 
itself.  Deviations from this null model leads to either synergy or antagonism. Hence using this 
framework, it is possible that there are considerably more antagonistic interactions than non-
interactions. There is no underlying assumption that the data should be normally distributed. We 
have updated the Methods section to make our null hypothesis clear as follows – 
 
[Page 12, 2nd paragraph] 
 
“Our null hypothesis based on the Loewe’s interaction model is that a drug is non-interacting with 
itself.  Deviations from this null model leads to either synergy or antagonism. The advantage of this 
approach is that there is no underlying assumption that the data should be normally distributed with 
similar numbers of synergy and antagonism, or that neutral interactions should be more common 
than synergy or antagonism.” 
 
Interestingly, consistent with our null hypothesis, INDIGO correctly predicted no interaction 
between the same drug at different doses, with each dose represented by a unique chemogenomic 
profile (median score = 0 for self-self interactions involving 73 drugs; Appendix Figure S16). This 
indicates that INDIGO can differentiate chemogenomic profiles of the same drug at different doses 
from other drugs. 
 
3. In the resubmission authors increased the # of drug-drug interactions tested for S. aureus (2 new 
drugs are tested and a 10 x 10 matrix is presented). Correlation between experimentally tested 
interactions in S. aureus & E. coli drops from 0.48 in previous 8 x 8 dataset to 0.39 (Fig S17A). 
When incorporating the Indigo Predictions correlation goes up to 0.47 (Fig S5D and S17B; this 
analysis is missing from first submission and 8 x 8 dataset), which I would say is a marginal 
improvement - and comes from including more drugs that are predicted to behave differently 
between 2 organisms and thus need the Indigo predictions. So although I don't disagree with 
authors' statement that Indigo helps with predicting the interactions between organisms, I think the 
authors should make it clear that this about as good as it gets at the moment and still most of the 
"predictive power" comes from conserved interactions. So I would tone down abstract ("successfully 
predicted to some degree") and 
leave open the room for improving predictions across species in the future in discussion.  
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We agree with the reviewer that there is more room for improvement and have updated the language 
in the manuscript. We have revised the Abstract and replaced “predicted’ with “estimated”. While 
we cannot accurately predict the exact outcome in other species, a key strength is that we can still 
accurately predict the combinations that would be conserved or likely to change between the species 
based on the deviation score. We have also updated the Discussion to reflect this as follows – 
 
[Page 11, 4th paragraph] 
 
“While this capability to predict drug interactions by mapping orthologous genes is a significant 
advance for this field and can be extended to any organism with genome sequence information, a 
limitation of this approach is that INDIGO cannot explicitly model the contribution of DIR genes 
that are not present in E. coli. Our interaction estimates for these systems could be further improved 
with the availability of chemogenomics data for these pathogens and by performing drug interaction 
measurements directly in pathogens as training data for INDIGO.” 
 
Minor points  
1. Intro: define/cite the study you use for the chemogenomics data (Nichols et al.)  
 
We have revised the text accordingly. 
 
 
2. In Fig 1 authors show the average AUC between the 2 replicates for each of the drug-pair 
concentration. Yet they don't use these data for calculating the final interaction α score, but instead, 
they calculate α scores on each experiment separately and average them. Although I don't disagree 
with the strategy, especially given the # of replicates, authors should make this clear in text. This is 
the reason for the discrepancy between some of the checkerboard patterns and the way interaction 
is called in Fig 1.  
 
We have revised the text accordingly. We have made it clear that the final alpha scores were 
estimated separately for each replicate and then averaged. We have revised Figure 1 legend as 
follows – 
 
“The α-scores were calculated for each replicate and the average score was overlaid on the growth 
data.” 
 
3. Interaction quantification; how did authors calculate largest isophenotypic contour for 
combinations that only 2 or 3 drug concentrations gave measurable growth?  
 
We defined the largest isophenotypic contour as the largest unbroken contour that connects drug 1 to 
drug 2. This is the identical definition used previously in Cokol et al 2011 MSB. This contour has 
the largest number of data points and is used for fitting to the function to compute alpha score. This 
quantification method is most robust when the inhibition level in the largest isophenotypic contours 
is reached at the largest doses used, since then isophenotypic contours will be connecting two far 
edges of the checkerboard matrix. However, for the quantification to work, the minimum 
requirement is some inhibition at the lowest dose of a drug used. Therefore, even if MIC is 
prematurely reached at the third dose used, interaction is still quantifiable. 
 
4. Chemogenomic profile: score compares fitness of mutant in a treatment to both wildtype fitness 
under same treatment and mutant fitness under no treatment. This is why it is actually not a z score.  
 
We thank the reviewer for pointing this out. We have revised the text and call the score as 
chemogenomics fitness-score instead of z-score.  
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5. INDIGO: although authors refer to Methods for explaining the random forest algorithm, there is 
no further mention to this in text. Reply to reviewer 1 as to inputs on INDIGO can be included in 
text as it provides some more relevant info.  
 
We have revised the results section as follows –  
 
[Page 6, 1st paragraph] 
 
“A machine learning algorithm called random-forests is then used to build a predictive model that 
links interaction outcome of drug combinations to the joint chemogenomic profile of the drug pair 
(Methods; Figure 2). The random forest algorithm builds an ensemble of decision trees using the 
training data set and outputs the mean prediction of the individual trees; it also identifies genes in 
the chemogenomics data that are most predictive of drug interactions. INDIGO learns the 
mechanism of drug interactions from the chemogenomics data in an unsupervised fashion by using 
the random forest algorithm.” 
 
6. Figs 3E and 3F are not mentioned in txt  
 
We apologize for the oversight. We have revised the Results and Methods section to mention these 
figures 
 
7. INDIGO predicts better synergies than antagonisms (ROC curves), despite being built with more 
antagonisms. This is not pointed out/discussed, despite authors mentioning in rebuttal that it is in 
Results & Discussion. Either I missed it or authors did.  
 
INDIGO performs equally well for both synergy and antagonism based on area-under-the-curve 
measurement of the ROC curves - AUC for synergy = 0.79, p-value = 10-16; AUC for antagonism = 
0.8, p-value = 10-16, as highlighted in the Methods section. Correlation or similarity based 
approaches perform poorly for antagonism (based on the ROC curves) because they do not have a 
model for predicting antagonism. We have also highlighted the actual AUC values in the legend of 
the ROC curves.  
We had misinterpreted this comment as relating to the differences in distribution of the training data 
set which we had addressed in the the methods section – “controls for INDIGO” as it fit better in 
that section.  The theoretical framework of the random forest algorithm allows it to be robust to 
these differences in the distribution of the training set.  
 
8. Benchmarking with Yeh data: supplementary scatter plots should be provided in addition to 
description in text.  
 
We have added a supplementary figure that compares the interaction scores in both the data sets 
(Appendix Figure S3). 
 
9. Peroxide response and discrepancy from Brynildsen (2013). According to Table 1, H2O2 has an 
MIC of 250 µg/ml (~7.34 mM - which at the high side), and you use sub-MIC concentrations. 5 mM 
is used in the Brynildsen study, so concentration cannot be the reason. Not sure why duration of 
treatment would make a difference either.  
 
We believe that one important reason for this discrepancy could be due to the difference in 
intracellular peroxide generation (the focus of Brynildsen et al study) and extracellular addition of 
peroxide (done in our study). Dwyer et al recently highlighted that the levels of intracellular and 
extracellular peroxide can be very different, and not reach equilibrium, due to biological constraints 
on H2O2 diffusion across the membrane, compartment-specific scavenging of H2O2, and rapid 
Fenton chemistry destruction of intracellular H2O2 (Dwyer et al, 2014). Brynildsen et al predicted 
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synergy with bactericidal antibiotics with gene knockouts that lead to the generation of intracellular 
peroxide. The extracellular addition of H2O2 in our study may not hence have similar effect as 
intracellular generation of H2O2. We overall agree that this is a surprising observation and needs 
further analysis. We have updated the Methods section discussing the surprising effect of hydrogen 
peroxide as follows – 
 
[Appendix, Page 2, 4th paragraph] 
 
‘We also observed very strong antagonism of hydrogen peroxide with other antibiotics, not observed 
in a previous study (Brynildsen et al, 2013). Brynildsen et al predicted synergy between bactericidal 
antibiotics and gene knockouts that lead to the generation of intracellular hydrogen peroxide. Dwyer 
et al recently highlighted that the levels of intracellular and extracellular hydrogen peroxide can be 
very different, and not reach equilibrium, due to biological constraints on hydrogen peroxide 
diffusion across the membrane, compartment-specific scavenging of hydrogen peroxide, and rapid 
Fenton chemistry destruction of intracellular hydrogen peroxide. The extracellular addition of 
hydrogen peroxide in our study may not have a similar effect as intracellular generation. At this high 
concentration, hydrogen peroxide has been observed to be bacteriostatic (Imlay, 2015) and hence 
may lead to antagonism with many antibiotics, consistent with other studies (Lobritz et al, 2015; 
Ocampo et al, 2014).’ 
 
10. Table 2b; needs correction for multiple testing  
 
We have revised Table 2b with p-values corrected for multiple hypotheses testing  
 
 
11. Not clear how enrichment in DIR genes is concordant/related to Chevereau & Bollenbach study. 
Authors should elaborate more on this.  
 
We have revised our text to better explain the connection with Chevereau & Bollenbach study as 
follows –  
 
[Page 8, 3rd paragraph] 
 
“Notably, lipopolysaccharide biosynthesis and oxidative phosphorylation were found as two of the 
top ten pathways associated with drug interactions. This is in agreement with a recent study that 
screened antibiotic combinations in all non-essential gene deletion strains of E. coli and found that 
strains harboring deletions in these pathways resulted in altered drug interaction outcomes 
(Chevereau & Bollenbach, 2015). This further affirms the validity and significance of the DIR genes 
identified by INDIGO.” 
 
12. Staph data (Fig S13) - include plots for replicate correlation (mentioned in response to review 
1).  
 
We thank the reviewer for these valuable comments; we have revised Fig S13 accordingly. 
 
13. Mtb interaction scores used from literature are not quantitative - should be pointed out.  
 
We have revised the legend of Figure 5 accordingly. 
 
14. There is still no reference in main text for some of the Supp Material. 
 
We thank the reviewer for these valuable comments; we have revised the manuscript accordingly. 
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3rd Editorial Decision 19 April 2016 

We are now satisfied with the modifications made and I am pleased to inform you that we will be 
able to accept your paper for publication pending the following minor points: 
 
- Figure EV2 is not cited in the text. It should probably be cited in the sentence "The top 81 genes 
accounted for 50%, the top 222 accounted for 75%..." instead of Figure EV3. 
- Datasets EV1, EV2, EV3 should be individually called out as such (using the "EV1" 
nomenclature) in the text at the appropriate locations. as well as in the data availability section, so 
that they are properly hyperlinked in the HTML. 
- Dataset 4 should be renamed 'Computer Code EV1' and called out as such from the text. 
- Please include a short legend and explanation in the first cell of each dataset or, alternatively, 
include a short README plain text file that is zipped together with the respective dataset. 
- The numbering of the subsections within Materials & Methods should be removed. 
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http://www.antibodypedia.com
http://1degreebio.org
http://www.equator-‐network.org/reporting-‐guidelines/improving-‐bioscience-‐research-‐reporting-‐the-‐arrive-‐guidelines-‐for-‐reporting-‐animal-‐research/

http://grants.nih.gov/grants/olaw/olaw.htm
http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance/Useofanimals/index.htm
http://ClinicalTrials.gov
http://www.consort-‐statement.org
http://www.consort-‐statement.org/checklists/view/32-‐consort/66-‐title



http://www.equator-‐network.org/reporting-‐guidelines/reporting-‐recommendations-‐for-‐tumour-‐marker-‐prognostic-‐studies-‐remark/
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http://figshare.com


http://www.ncbi.nlm.nih.gov/gap


http://www.ebi.ac.uk/ega

http://biomodels.net/

http://biomodels.net/miriam/
 http://jjj.biochem.sun.ac.za
 http://oba.od.nih.gov/biosecurity/biosecurity_documents.html
 http://www.selectagents.gov/








 common	  tests,	  such	  as	  t-‐test	  (please	  specify	  whether	  paired	  vs.	  unpaired),	  simple	  χ2	  tests,	  Wilcoxon	  and	  Mann-‐Whitney	  
tests,	  can	  be	  unambiguously	  identified	  by	  name	  only,	  but	  more	  complex	  techniques	  should	  be	  described	  in	  the	  methods	  
section;

 are	  tests	  one-‐sided	  or	  two-‐sided?
 are	  there	  adjustments	  for	  multiple	  comparisons?
 exact	  statistical	  test	  results,	  e.g.,	  P	  values	  =	  x	  but	  not	  P	  values	  <	  x;
 definition	  of	  ‘center	  values’	  as	  median	  or	  average;
 definition	  of	  error	  bars	  as	  s.d.	  or	  s.e.m.	  

1.a.	  How	  was	  the	  sample	  size	  chosen	  to	  ensure	  adequate	  power	  to	  detect	  a	  pre-‐specified	  effect	  size?

1.b.	  For	  animal	  studies,	  include	  a	  statement	  about	  sample	  size	  estimate	  even	  if	  no	  statistical	  methods	  were	  used.

2.	  Describe	  inclusion/exclusion	  criteria	  if	  samples	  or	  animals	  were	  excluded	  from	  the	  analysis.	  Were	  the	  criteria	  pre-‐
established?

3.	  Were	  any	  steps	  taken	  to	  minimize	  the	  effects	  of	  subjective	  bias	  when	  allocating	  animals/samples	  to	  treatment	  (e.g.	  
randomization	  procedure)?	  If	  yes,	  please	  describe.	  

For	  animal	  studies,	  include	  a	  statement	  about	  randomization	  even	  if	  no	  randomization	  was	  used.

4.a.	  Were	  any	  steps	  taken	  to	  minimize	  the	  effects	  of	  subjective	  bias	  during	  group	  allocation	  or/and	  when	  assessing	  results	  
(e.g.	  blinding	  of	  the	  investigator)?	  If	  yes	  please	  describe.

4.b.	  For	  animal	  studies,	  include	  a	  statement	  about	  blinding	  even	  if	  no	  blinding	  was	  done

5.	  For	  every	  figure,	  are	  statistical	  tests	  justified	  as	  appropriate?

Do	  the	  data	  meet	  the	  assumptions	  of	  the	  tests	  (e.g.,	  normal	  distribution)?	  Describe	  any	  methods	  used	  to	  assess	  it.

Is	  there	  an	  estimate	  of	  variation	  within	  each	  group	  of	  data?

Is	  the	  variance	  similar	  between	  the	  groups	  that	  are	  being	  statistically	  compared?
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authorship	  guidelines	  in	  preparing	  your	  manuscript.	  	  
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Please	  fill	  out	  these	  boxes	  	  (Do	  not	  worry	  if	  you	  cannot	  see	  all	  your	  text	  once	  you	  press	  return)

a	  specification	  of	  the	  experimental	  system	  investigated	  (eg	  cell	  line,	  species	  name).

Each	  figure	  caption	  should	  contain	  the	  following	  information,	  for	  each	  panel	  where	  they	  are	  relevant:

2.	  Captions

The	  data	  shown	  in	  figures	  should	  satisfy	  the	  following	  conditions:

Source	  Data	  should	  be	  included	  to	  report	  the	  data	  underlying	  graphs.	  Please	  follow	  the	  guidelines	  set	  out	  in	  the	  author	  ship	  
guidelines	  on	  Data	  Presentation.

a	  statement	  of	  how	  many	  times	  the	  experiment	  shown	  was	  independently	  replicated	  in	  the	  laboratory.

Any	  descriptions	  too	  long	  for	  the	  figure	  legend	  should	  be	  included	  in	  the	  methods	  section	  and/or	  with	  the	  source	  data.

Please	  ensure	  that	  the	  answers	  to	  the	  following	  questions	  are	  reported	  in	  the	  manuscript	  itself.	  We	  encourage	  you	  to	  include	  a	  
specific	  subsection	  in	  the	  methods	  section	  for	  statistics,	  reagents,	  animal	  models	  and	  human	  subjects.	  	  

In	  the	  pink	  boxes	  below,	  provide	  the	  page	  number(s)	  of	  the	  manuscript	  draft	  or	  figure	  legend(s)	  where	  the	  
information	  can	  be	  located.	  Every	  question	  should	  be	  answered.	  If	  the	  question	  is	  not	  relevant	  to	  your	  research,	  
please	  write	  NA	  (non	  applicable).

B-‐	  Statistics	  and	  general	  methods

the	  assay(s)	  and	  method(s)	  used	  to	  carry	  out	  the	  reported	  observations	  and	  measurements	  
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  being	  measured.
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  altered/varied/perturbed	  in	  a	  controlled	  manner.

the	  exact	  sample	  size	  (n)	  for	  each	  experimental	  group/condition,	  given	  as	  a	  number,	  not	  a	  range;
a	  description	  of	  the	  sample	  collection	  allowing	  the	  reader	  to	  understand	  whether	  the	  samples	  represent	  technical	  or	  
biological	  replicates	  (including	  how	  many	  animals,	  litters,	  cultures,	  etc.).

1.	  Data

the	  data	  were	  obtained	  and	  processed	  according	  to	  the	  field’s	  best	  practice	  and	  are	  presented	  to	  reflect	  the	  results	  of	  the	  
experiments	  in	  an	  accurate	  and	  unbiased	  manner.
figure	  panels	  include	  only	  data	  points,	  measurements	  or	  observations	  that	  can	  be	  compared	  to	  each	  other	  in	  a	  scientifically	  
meaningful	  way.
graphs	  include	  clearly	  labeled	  error	  bars	  for	  independent	  experiments	  and	  sample	  sizes.	  Unless	  justified,	  error	  bars	  should	  
not	  be	  shown	  for	  technical	  replicates.
if	  n<	  5,	  the	  individual	  data	  points	  from	  each	  experiment	  should	  be	  plotted	  and	  any	  statistical	  test	  employed	  should	  be	  
justified

YOU	  MUST	  COMPLETE	  ALL	  CELLS	  WITH	  A	  PINK	  BACKGROUND	  

To	  test	  the	  INDIGO	  model,	  four	  antibiotics	  whose	  chemogenomic	  profiles	  were	  reported	  in	  Nichols	  
et	  al.	  were	  chosen.	  These	  antibiotics	  had	  distinct	  chemical	  properties	  and	  mechanisms	  of	  action	  
compared	  to	  the	  antibiotics	  used	  in	  the	  training	  set.	  Hence	  this	  set	  of	  antibiotics	  provides	  a	  strong	  
test	  of	  the	  model's	  predictive	  ability.	  	  To	  experimentally	  validate	  the	  predictions	  in	  S.	  aureus,	  10	  
drugs	  from	  the	  E.	  coli	  data	  set	  were	  chosen;	  these	  drugs	  belong	  to	  different	  classes	  that	  were	  NA
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The	  model	  predictions	  were	  tested	  using	  both	  parametric	  and	  non-‐parametric	  tests	  such	  as	  rank	  
correlation.	  	  The	  results	  are	  robust	  to	  any	  assumptions	  regarding	  the	  underlying	  distribution	  of	  the	  
data	  
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6.	  To	  show	  that	  antibodies	  were	  profiled	  for	  use	  in	  the	  system	  under	  study	  (assay	  and	  species),	  provide	  a	  citation,	  catalog	  
number	  and/or	  clone	  number,	  supplementary	  information	  or	  reference	  to	  an	  antibody	  validation	  profile.	  e.g.,	  
Antibodypedia	  (see	  link	  list	  at	  top	  right),	  1DegreeBio	  (see	  link	  list	  at	  top	  right).

7.	  Identify	  the	  source	  of	  cell	  lines	  and	  report	  if	  they	  were	  recently	  authenticated	  (e.g.,	  by	  STR	  profiling)	  and	  tested	  for	  
mycoplasma	  contamination.

*	  for	  all	  hyperlinks,	  please	  see	  the	  table	  at	  the	  top	  right	  of	  the	  document

8.	  Report	  species,	  strain,	  gender,	  age	  of	  animals	  and	  genetic	  modification	  status	  where	  applicable.	  Please	  detail	  housing	  
and	  husbandry	  conditions	  and	  the	  source	  of	  animals.

9.	  For	  experiments	  involving	  live	  vertebrates,	  include	  a	  statement	  of	  compliance	  with	  ethical	  regulations	  and	  identify	  the	  
committee(s)	  approving	  the	  experiments.

10.	  We	  recommend	  consulting	  the	  ARRIVE	  guidelines	  (see	  link	  list	  at	  top	  right)	  (PLoS	  Biol.	  8(6),	  e1000412,	  2010)	  to	  ensure	  
that	  other	  relevant	  aspects	  of	  animal	  studies	  are	  adequately	  reported.	  See	  author	  guidelines,	  under	  ‘Reporting	  
Guidelines’.	  See	  also:	  NIH	  (see	  link	  list	  at	  top	  right)	  and	  MRC	  (see	  link	  list	  at	  top	  right)	  recommendations.	  	  Please	  confirm	  
compliance.

11.	  Identify	  the	  committee(s)	  approving	  the	  study	  protocol.

12.	  Include	  a	  statement	  confirming	  that	  informed	  consent	  was	  obtained	  from	  all	  subjects	  and	  that	  the	  experiments	  
conformed	  to	  the	  principles	  set	  out	  in	  the	  WMA	  Declaration	  of	  Helsinki	  and	  the	  Department	  of	  Health	  and	  Human	  
Services	  Belmont	  Report.

13.	  For	  publication	  of	  patient	  photos,	  include	  a	  statement	  confirming	  that	  consent	  to	  publish	  was	  obtained.

14.	  Report	  any	  restrictions	  on	  the	  availability	  (and/or	  on	  the	  use)	  of	  human	  data	  or	  samples.

15.	  Report	  the	  clinical	  trial	  registration	  number	  (at	  ClinicalTrials.gov	  or	  equivalent),	  where	  applicable.

16.	  For	  phase	  II	  and	  III	  randomized	  controlled	  trials,	  please	  refer	  to	  the	  CONSORT	  flow	  diagram	  (see	  link	  list	  at	  top	  right)	  
and	  submit	  the	  CONSORT	  checklist	  (see	  link	  list	  at	  top	  right)	  with	  your	  submission.	  See	  author	  guidelines,	  under	  
‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  submitted	  this	  list.

17.	  For	  tumor	  marker	  prognostic	  studies,	  we	  recommend	  that	  you	  follow	  the	  REMARK	  reporting	  guidelines	  (see	  link	  list	  at	  
top	  right).	  See	  author	  guidelines,	  under	  ‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  followed	  these	  guidelines.

18.	  Provide	  accession	  codes	  for	  deposited	  data.	  See	  author	  guidelines,	  under	  ‘Data	  Deposition’.

Data	  deposition	  in	  a	  public	  repository	  is	  mandatory	  for:
a.	  Protein,	  DNA	  and	  RNA	  sequences
b.	  Macromolecular	  structures
c.	  Crystallographic	  data	  for	  small	  molecules
d.	  Functional	  genomics	  data	  
e.	  Proteomics	  and	  molecular	  interactions
19.	  Deposition	  is	  strongly	  recommended	  for	  any	  datasets	  that	  are	  central	  and	  integral	  to	  the	  study;	  please	  consider	  the	  
journal’s	  data	  policy.	  If	  no	  structured	  public	  repository	  exists	  for	  a	  given	  data	  type,	  we	  encourage	  the	  provision	  of	  
datasets	  in	  the	  manuscript	  as	  a	  Supplementary	  Document	  (see	  author	  guidelines	  under	  ‘Expanded	  View’	  or	  in	  
unstructured	  repositories	  such	  as	  Dryad	  (see	  link	  list	  at	  top	  right)	  or	  Figshare	  (see	  link	  list	  at	  top	  right).
20.	  Access	  to	  human	  clinical	  and	  genomic	  datasets	  should	  be	  provided	  with	  as	  few	  restrictions	  as	  possible	  while	  
respecting	  ethical	  obligations	  to	  the	  patients	  and	  relevant	  medical	  and	  legal	  issues.	  If	  practically	  possible	  and	  compatible	  
with	  the	  individual	  consent	  agreement	  used	  in	  the	  study,	  such	  data	  should	  be	  deposited	  in	  one	  of	  the	  major	  public	  access-‐
controlled	  repositories	  such	  as	  dbGAP	  (see	  link	  list	  at	  top	  right)	  or	  EGA	  (see	  link	  list	  at	  top	  right).
21.	  As	  far	  as	  possible,	  primary	  and	  referenced	  data	  should	  be	  formally	  cited	  in	  a	  Data	  Availability	  section.	  Please	  state	  
whether	  you	  have	  included	  this	  section.

Examples:
Primary	  Data
Wetmore	  KM,	  Deutschbauer	  AM,	  Price	  MN,	  Arkin	  AP	  (2012).	  Comparison	  of	  gene	  expression	  and	  mutant	  fitness	  in	  
Shewanella	  oneidensis	  MR-‐1.	  Gene	  Expression	  Omnibus	  GSE39462
Referenced	  Data
Huang	  J,	  Brown	  AF,	  Lei	  M	  (2012).	  Crystal	  structure	  of	  the	  TRBD	  domain	  of	  TERT	  and	  the	  CR4/5	  of	  TR.	  Protein	  Data	  Bank	  
4O26
AP-‐MS	  analysis	  of	  human	  histone	  deacetylase	  interactions	  in	  CEM-‐T	  cells	  (2013).	  PRIDE	  PXD000208
22.	  Computational	  models	  that	  are	  central	  and	  integral	  to	  a	  study	  should	  be	  shared	  without	  restrictions	  and	  provided	  in	  a	  
machine-‐readable	  form.	  	  The	  relevant	  accession	  numbers	  or	  links	  should	  be	  provided.	  When	  possible,	  standardized	  
format	  (SBML,	  CellML)	  should	  be	  used	  instead	  of	  scripts	  (e.g.	  MATLAB).	  Authors	  are	  strongly	  encouraged	  to	  follow	  the	  
MIRIAM	  guidelines	  (see	  link	  list	  at	  top	  right)	  and	  deposit	  their	  model	  in	  a	  public	  database	  such	  as	  Biomodels	  (see	  link	  list	  
at	  top	  right)	  or	  JWS	  Online	  (see	  link	  list	  at	  top	  right).	  If	  computer	  source	  code	  is	  provided	  with	  the	  paper,	  it	  should	  be	  
deposited	  in	  a	  public	  repository	  or	  included	  in	  supplementary	  information.

23.	  Could	  your	  study	  fall	  under	  dual	  use	  research	  restrictions?	  Please	  check	  biosecurity	  documents	  (see	  link	  list	  at	  top	  
right)	  and	  list	  of	  select	  agents	  and	  toxins	  (APHIS/CDC)	  (see	  link	  list	  at	  top	  right).	  According	  to	  our	  biosecurity	  guidelines,	  
provide	  a	  statement	  only	  if	  it	  could.
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G-‐	  Dual	  use	  research	  of	  concern

D-‐	  Animal	  Models

E-‐	  Human	  Subjects
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Yes	  we	  have	  a	  data	  availability	  section	  and	  source	  data	  are	  attached	  as	  supplementary	  data	  sets

We	  have	  attached	  the	  software	  code	  as	  supplementary	  information.	  We	  have	  also	  made	  the	  code	  
and	  data	  sets	  available	  at	  Synapse,	  the	  online	  repository	  for	  bioinformatics	  data

NA

NA

NA

NA

NA

NA

We	  have	  attached	  the	  software	  code	  as	  supplementary	  information.	  We	  have	  also	  made	  the	  code	  
and	  data	  sets	  available	  at	  Synapse,	  the	  online	  repository	  for	  bioinformatics	  data


