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1. Sample ascertainment

1.1 Inflammatory bowel disease cases

Following ethical approval by Cambridge MREC (reference: 03/5/012), individuals

with inflammatory bowel disease (IBD) were consented into the study and donated

blood or saliva for DNA extraction at IBD clinics in and around clinical centres

that contribute samples to the United Kingdon Inflammatory Bowel Disease Ge-

netics Consortium (UKIBDGC) (Cambridge, Dundee, Edinburgh, Exeter, London,

Manchester, Newcastle, Norwich, Nottingham, Oxford, Sheffield, Torbay and the

Scottish early onset IBD project). Ascertainment was based on a confirmed diagno-

sis of Crohn’s disease (CD) or ulcerative colitis (UC) using conventional endoscopic,

radiological and histopathological criteria. We included all subtypes of CD and UC

and the collection was not specifically enriched for family history or early age of

onset.

1.2 Population controls

To maximise the number of cases we could sequence within our budget, and negate

the need to ascertain population controls as part of this experiment, we obtained

whole-genome sequence data from 3,910 UK population controls ascertained and

sequenced by the UK10K consortium. A full description of this cohort is provided in

the UK10K manuscript [1]. Briefly, this cohort consists of 6,557 samples from the

Avon Longitudinal Study of Parents and Children (http://www.bristol.ac.uk/alspac/)

and 2,575 from the Twins UK cohort (http://www.twinsuk.co.uk).
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2. Whole-genome sequencing and data processing

2.1 Sequence data generation

Low read-depth whole-genome sequencing (WGS) of 1,817 UC cases, 2,697 CD

cases and 3,910 controls was performed at the Wellcome Trust Sanger Institute

(WTSI), while 2,354 controls were sequenced by the Beijing Genomics Institute [1].

DNA (1-3 µg) extracted from the blood or saliva of IBD cases, or lymphoblastoid

cell lines (ALSPAC) or PBMCs (TwinsUK) from controls, was sheared to 100–1000

bp using a Covaris E210 or LE220 (Covaris, Woburn, MA, USA). Sheared DNA was

subjected to Illumina paired-end DNA library preparation. Following size selection

(300-500 bp insert size), DNA libraries were sequenced using the Illumina HiSeq

platform as paired-end 100 base reads according to manufacturer’s protocol.

2.2 Read mapping

Sequence data was aligned to the human reference by the sequence centre. Due to

changes in the informatics pipeline over the course of the sequencing, two different

versions of the GRCh37 human reference were used:

R.1 The reference used in Phase I of 1,000 Genomes [2] – the GRCh37 primary

assembly.

R.2 The reference used in Phase II of 1,000 Genomes Project [3] – the new

assembly integrates reference sequences from R.1, human herpesvirus and

the concatenated decoy sequences.

BWA (v0.5.9-r16) [4] was used for sequencing reads alignments. For each fasta file
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(<seq.fasta>) produced from per-lane level sequencing, the following steps were

employed for BAM file generation:

a) Align pair-end reads to target reference

bwa aln -q 15 -b1 <reference.fa> <seq.fasta> > seq.1.sai

bwa aln -q 15 -b2 <reference.fa> <seq.fasta> > seq.2.sai

b) Create SAM files

bwa sampe <reference.fa> <seq.1.sai> <seq.2.sai> <seq.fasta> <seq.fasta>

c) Create correct read pairing information using samtools-0.1.16 (r963:234)

[5] to resolve unusual flag information on SAM records

samtools fixmate <seq.sam> <seq_fixmate.bam>

d) Create coordinate sorted BAM files from name sort BAM

samtools sort <seq_fixmate.bam> <seq_sorted.bam>

The BAM files produced from the pipeline above were submitted to the European

Genome-phenome Archive (EGA):

https://www.ebi.ac.uk/ega/datasets/EGAD00001000409

https://www.ebi.ac.uk/ega/datasets/EGAD00001000401

2.2.1 Unifying BAM files to the same reference genome: BridgeBuilder

The computational cost for realignment of all sequence reads to the same reference

genome is high. Thus we developed the software BridgeBuilder (github.com/wtsi-

hgi/bridgebuilder) to efficiently realign all BAM files to the R.2 reference. This

method avoids the need to perform a computationally expensive realignment of

all reads to the new reference, and instead only requires alignment of reads to a
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subset defined by the differences between the two reference sequences. Any reads

that align to the differential reference are remapped.

BridgeBuilder has three components, executed in the following order:

baker

Generation of the "reference bridge", mapping the old reference to the new

reference. The result is metaphorically a collection of bridges representing

regions of the former reference and their new destination in the latter.

binnie

The alignment of every read against the reference bridge produced by baker

to determine whether remapping is required. For every input file, binnie

populates each original aligned read in to one of three bins:

a) Unchanged reads

Reads that do not align to the reference bridge and do not require

remapping.

b) Bridged reads

Reads which align to the reference bridge with a superior mapping score

and require remapping.

c) Newly mapped reads

Reads that did not have an alignment previously, but now align to the

reference bridge and thus can be mapped to the newer reference.

brunel

Takes the sorted binnie bins as "blueprints", interleaving reads to maintain

co-ordinate sort order and generate the final new alignment.
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2.2.2 BAM quality control

Automatic quality control of the BAM files was performed using pipelines developed

at the WTSI. For each sample a subset of metrics was compared to hard-coded

thresholds (that have typically been determined empirically from previous datasets)

to raise either a warning or generate a complete failure for that sample. The metrics

used during this autoQC process and thresholds are described in Supplementary

Table 1.

bamcheckR [6] was also used to generate BAM statistics supplementary to those

output from samtools stats and evaluate overall sample quality.

2.3 Variant calling

Next, we converted BAM files into genomic positions. For Single Nucleotide

Variants (SNVs) and small INsertions and DELetions (INDELs), we used samtools

and bcftools to first produce a BCF file that contained genomic locations, and

then used this information to call genotypes. We used GenomeSTRiP [7] for Copy

Number Variant (CNV) discovery. In the following sections, we briefly explain how

different types of genetic variants were called.

2.3.1 SNVs and INDELs

SNVs and INDELs were called using samtools-0.19 and bcftools-0.19 (version:

0.1.19-58-g3d123cd) [8] by pooling the alignments from 8,354 sample-level low

read-depth BAM files. Genotype likelihood files (bcf) for all-samples and all-sites

were created with the samtools mpileup command

samtools mpileup -EDVS -C50 -pm3 -F0.2 -d 10000 -g -f hs37d5.fa
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Variants were then called using the bcftools command to produce a VCF file

bcftools view -Ngvm0.99 <in.bcf>

Male samples were called as diploid in the Pseudo-Autosomal Region (PAR) on

chromosome X, and haploid otherwise. The non-PAR regions were defined as:

X: 1-60000

X: 2699521-154931043

The pipeline (run-mpileup) used to created the calls is available from:

https://github.com/VertebrateResequencing/vr-codebase/blob/develop/scripts/run-mpileup

2.3.2 Copy number variants

CNVs were called using GenomeSTRiP 2.0, which was designed to discover and

genotype shared deletions, duplications and multiallelic copy number variants

(mCNVs) across whole-genome sequences from multiple individuals. As this study

uses low coverage sequences, power to detect variation is limited to larger CNVs.

Thus GenomeSTRiP 1.0, which is more sensitive to smaller deletions and therefore

usually recommended as a complementary CNV analysis, was not used for this

project.

Default GenomeSTRiP configurations were used, as per the example config files

provided within the software releases. Window sizing parameters, which define

the size of CNVs that can be detected, matched those used for the 1,000 Genomes

Project’s low coverage (6-8x) dataset:

tilingWindowSize 5000

tilingWindowOverlap 2500
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maximumReferenceGapLength 2500

boundaryPrecision 200

minimumRefinedLength 2500

Because reads realigned from R.1 to R.2 using BridgeBuilder did not contain

appropriate metadata information for use by GenomeSTRiP 2.0, these reads were

excluded from discovery and genotyping.

2.4 Variant filtering

Following variant calling, a number of machine learning methods were used to

assess qualities of each called variant. We used this quality information to filter

the raw call set to produce a set of high quality variant sites.

2.4.1 SNVs

Support Vector Machines (SVMs) were used to identify poor quality SNP calls in

the sequence data. A SVM is a supervised learning model that trains on highly

confident known sites to determine the probability that sites outside of the training

set are true, based on various quality metrics generated with samtools-0.19 [8],

including:

• DP: Raw read depth

• MQ: Root-mean-square mapping quality of covering reads

• AN: Total number of alleles in called genotypes

• MDV: Maximum number of high-quality non-Ref reads in samples

• EDB: End Distance Bias
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• RPB: Read Position Bias

Five independent SVMs were run in parallel and only sites that passed at least

two out five SVM runs were considered high quality. The training set for each

SVM consisted of 1,000 ‘good sites’ that overlapped with HapMap3 [9] and 1,000

‘bad sites’ with quality score (QUAL) < 10 in the raw vcf file. To ensure we had a

balanced number of variants selected across the full minor allele frequency (MAF)

spectrum in both good and bad training sets (i.e. not all bad sites were rare and

not all good sites were common), we preserved the original MAF proportion in each

of the SVM training sets. The following MAF bins were used for preserving the

MAF range:

• 0∑ MAF < 0.5%

• 0.5%∑MAF< 5%

• MAF∏ 5%

The pipeline (run-filter) used to filter SNVs is available from:

https://github.com/VertebrateResequencing/vr-codebase/blob/develop/scripts/run-filter

2.4.2 INDELs

Variant Quality Score Recalibration (VQSR) was used to filter INDELs. For short

INDELs called with samtools-0.19, the GATK UnifiedGenotyper [10] (version

2.1-5-gf3daab0) was used for recall in order to generate the annotations needed for

recalibration. The GATK VariantRecalibrator was then used for INDEL filtering,

followed by GATK ApplyRecalibration to assign VQSLOD (variant quality score

log odds ratio) values to each INDEL. For INDEL filtering VQSR considers the

following annotations generated using UnifiedGenotyper:
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• DP: Approximate read depth (reads with MQ= 255 or with bad mates are

removed)

• FS: Phred-scaled p-value using Fisher’s exact test to detect strand bias

• ReadPosRankSum: Z-score from Wilcoxon rank sum test of Alt vs. Ref read

position bias

• MQRankSum: Z-score from Wilcoxon rank sum test of Alt vs. Ref read

mapping qualities

The Mills-Devine dataset [11], an INDEL call set that has been validated to a high

degree of confidence, and is recommended by the GATK workflow, was used as

the truth set for the VQSR model training. A truth sensitivity threshold of 97%,

which corresponded to a minimum VQSLOD score of 1.0659 was chosen for INDEL

filtering.

2.4.3 Copy number variants

Initial CNV filtering was performed in accordance with the default thresholds set

in the GenomeSTRiP 2.0 CNVDiscoveryPipeline workflow. These thresholds are

generous, and many poor-quality sites are expected to remain: nevertheless, this

process removed 86,379 variants (out of 179,774) variants from the discovery set,

and made manual quality control more manageable. The filters applied at this

step include:

Deletion or mixed CNV length > 1,000. Given the search windows used, this

still allows variants slightly smaller than those we expect to confidently detect to

be included.

Duplication length > 2,000. This follows the recommendations of Handsaker et

al, who note that small duplications appear to have a higher false discovery rate
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than equivalently sized deletions or mixed CNVs [12].

Call rate > 0.9, to remove those variants with excessive missingness.

Density > 0.5. Density is calculated by dividing GSELENGTH (the effective CNV

length) by GCLENGTH (the denominator of GC content).

Cluster separation > 5. This measure checks that appropriate cluster separation

was achieved by the Gaussian mixture model used in read depth genotyping.

GSVDJFRACTION > 0. Remove variants with any evidence of V(D)J recom-

bination, based on the vdjregions.bed file provided with the GenomeSTRiP meta-

data.

We then applied the following additional filters based on:

Missing sample data. We removed 1,103 copy number variants that were driven

by 95 control samples with a large stretch of missing data on chromosome 6.

GSELENGTH > 60,000. For shorter copy number variants, we observed consider-

able differences in sensitivity across different mean coverage depths (Supplemen-

tary Figure 4).

Biallelic sites. We only kept biallelic sites, for simplicity when association testing.

However, because GenomeStrip 2.0 is capable of calling multiallelic CNVs, we

noted an abundance of common sites where a small fraction of alt individuals

contain a CNV in the opposite direction to the majority call, possibly due in part to

our particularly low coverage. At sites where this fraction of inconsistent directions

is less than 10% of the alt calls made, we retain the site as biallelic.

2.5 Genotype refinement

Post SNV and INDEL quality control (Section 2.4.1 and 2.4.2), genotypes at all

passing sites were refined via imputation, as is standard in low-coverage sequenc-

ing studies. To increase computational efficiency, imputation was performed in
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batches of 3,000 sites, with a buffer region of 500 sites up- and down-stream, using

default parameters in BEAGLE [13] (version: v4.r1196):

java -jar b4.r1196.jar gl=<in.vcf.gz> out=<out.vcf.gz>

The pipeline (run-beagle) used for genotype refinement is available from:

https://github.com/VertebrateResequencing/vr-codebase/blob/develop/scripts/run-beagle

2.5.1 Sample quality control

The following sample quality control criteria were applied based on refined geno-

types (Section 2.5):

Excessive heterozygosity rate ±3.5 standard deviations from the mean. Het-

erozygosity rate was calculated using PLINK2 °°ibc (version: 1.9) [14], which

computes the method-of-moments F coefficient:

heterozygosity rate (F)= [observed homozygosity count]° [expected count]
[total observations]° [expected count]

(2.1)

Duplicated or related individuals with º̂ > 0.25 (second-degree relatives or

closer). To identify duplicate and related individuals, SNVs were first pruned such

that no two sites within 5,000kb had an r2 > 0.2. Identity-By-State (IBS) was then

calculated for each pair of individuals using only variants with MAF > 1%. The

degree of recent shared ancestry for each pair of individuals (Identity-By-Descent,

º̂) was then estimated using the following PLINK2 commands:

plink --bfile <plinkfile> --indep-pairwise 5000 1000 0.2

plink --bfile <plinkfile> --maf 0.01 --extract <file.prune.in> --genome

One individuals from each pair with º̂> 0.25 was then removed from this particular

analysis.
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Individuals of non-European ancestry were identified and removed based on

a principal component model built on genotype data from 11 different HapMap3

populations (Supplementary Figure 10). In total 1,343,150 sites were present in

both the HapMap3 data and our sequenced samples. These sites were then pruned

such so that no pair of SNPs had r2 > 0.2, and known regions of high LD were

excluded. Principal components were generated based on the HapMap3 samples

and the factor loading used to project the principal components for our sequenced

samples. All individuals with a second principal component score less than 0.08

were excluded. The following PLINK2 commands were used to identify individuals

of divergent ancestry:

plink --bfile <ibd-hm3> --exclude range high-LD-regions.txt

--indep-pairwise 5000 1000 0.2

plink --bfile <ibd-hm3> --extract <ibd-hm3.prune.in> --maf 0.05 --pca

2.5.2 Variant quality control

In order to improve the genotype refinement quality and reduce the false-positive

rate in the association study,the following variants were removed after initial

BEAGLE genotype refinement:

Hardy Weinberg exact test P-value in controls < 10°7;

Removal of sequencing centre batch effects in controls. The control data

were sequenced at two different centres (WTSI and BGI) (Section 1.). To investi-

gate the presence of batch effects, we fitted a logistic regression model to assess

differences in allele frequencies between two centres for each variant. Variants

with P-value ∑ 10°3 were removed from subsequent analysis;

Variants with > 10% missing genotypes following genotype refinement,
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where the minimum posterior probability required to call a genotype was 0.9;

SnpGap (3) filters SNPs within 3 base pairs of an indel;

IndelGap (2) filters clusters of INDELs separted by 2 or fewer base pairs allowing

only one to pass.

Following these exclusions, a second round of genotype refinement was undertaken

using BEAGLE. Supplementary Table 3 summarises the results from the above

variant quality control steps.

2.5.3 Data quality evaluation

We evaluated our data quality by comparing the variant overlap with the 1000

Genomes Project Phase 3 European data to assess the sensitivity and specificity

of our call set. We then evaluated the genotypic quality of our sequencing data

by means of genotypic concordance rate (r2) comparing to five genotyped datasets

with partially overlapping samples.

Sensitivity and specificity compared to 1000 Genome Project Phase 3 Eu-

ropean panel

To assess how well our data represents the variation in the European population,

we compared the biallelic SNVs in autosomal regions identified in our project to

that in the 1,000GP Phase 3 European panel (503 individuals). The left panel of

Supplementary Figure 3 shows the percentage of SNVs identified at different QC

stages in the IBD sequencing project that are also present in the 1000GP set. As the

QC criteria becomes more stringent, the sensitivity of our call set increases. 98%

of SNVs with MAF ∏ 1% overlap with 1000GP after the genotype refinement stage,

and this percentage increases to more than 99% for variants which are retained
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for association testing. 55 million variants at the post genotype-refinement stage

were not previously seen before, the majority of which were singletons (ª 53M),

doubletons (ª 0.5M) or rare (MAF ∑ 1%) variants (ª 10M) in our data. Details of

the number of sites are listed in Supplementary Table 5a

Overall, our data covers the majority of low frequency (91.0%) and common variants

(99.1%) discovered in 1000GP Phase 3 European panel (Supplementary Figure 3

left panel). This indicates that our variant filtering strategies have limited the

number of false-positive sites and provided good sensitivity when compared to

1000GP dataset.

Genotypic accuracy compared against GWAS and Immunochip datasets

To evaluate the sequencing accuracy after genotype refinement, we compared the

probability dosage yield from our sequencing data to existing genotype datasets

on the overlapping samples - including that from an IBD Immunochip project

[15], the Wellcome Trust Case Control Consortium (WTCCC) 1 Crohn’s disease

GWAS project [16] (Section 4.1.1) and the WTCCC2 UC GWAS project [17] (Section

4.1.2). Summary statistics of the overlapping samples and variants between the

sequencing cohort and the comparison cohorts are listed in Supplementary Table 4.

Across individuals present in a given microarray dataset and our sequenced cohort,

we calculated a Dosage r2 at each site present in both datasets. For the majority of

variants with MAF ∏ 1%, the sequencing genotypes were > 90% concordant with

other genotype data (Supplementary Figure 2). The Immunochip data has lower

mean r2 because it contains fewer shared low frequency variants, and it therefore

has a larger confidence interval. Overall, we conclude that our sequencing data is

comparable to genotyped data for common variations.
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3. Whole-genome sequence association studies

3.1 Single-variant association study

Single variant logistic regression association tests were performed using SNPTEST

v2.5 [18] based on the post refinement genotype likelihoods.

log
pi

1° pi
=Æ+ØGi j (3.2)

where Gi j denotes the genotype of the ith individual at the jth variant.

Three independent genome-wide single-locus based association studies were per-

formed conditional on the first 10 principal components for 2,513 CD cases, 1,767

UC cases and 4,280 IBD cases versus the same 3,652 controls post QC samples

(Section 2.5.1). In total, ª 12.7M variants with MAF ∏ 0.1% were tested for as-

sociation. Genomic inflation factors (∏1000) for an equivalent study of 1000 cases

and 1000 controls are ∏CD = 1.04, ∏UC = 1.05 and ∏IBD = 1.06 (Supplementary

Figure 5).

3.1.1 Additional variant quality control

Additional variant filtering was applied post single variant association testing, in

addition to that described in Section 2.5.2.

minSVM Score < 0.1. As described in Section 2.4.1, five SVM scores were avail-

able for each site. We removed those that had a SVM score less than 0.1 in any of

the 5 runs.

Imputation r2 ∏ 0.4. Variants with an imputation quality score less than 0.4 in

SNPTEST2 were removed.
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Hardy Weinberg equilibrium exact test P-value in controls < 10°6.

3.2 Rare variant burden association study

Rare variant burden tests were performed using the Robust Variance Score (RVS)

statistic developed by Derkach et al (2014) [19], as shown in Equation 3.3. This

method adjusts for differences in read depth between cases and controls by calcu-

lating the variance of the score separately for each group, as described in Equa-

tion 3.4.

S j =
nX

i=1

°
Yi ° Ȳ

¢
E

°
Gi j|Di j

¢
(3.3)

V ar
°
S j

¢
=

X

cases

°
1° Ȳ

¢2 V ar
°
E

°
Gi j|Di j

¢¢
+

X

controls

°
Ȳ

¢2 V ar
°
E

°
Gi j|Di j

¢¢
(3.4)

The corresponding test statistic for association at a single site, T j =
S j

2

V ar(S j) is

chi-squared distributed, with one degree of freedom. The test incorporates the

expected value of the genotype given the data, E(Gi j|Di j), which reflects the

dosage of the alternate allele at the given site, and is calculated using genotype

probabilities (Equation 3.5). By using a statistic based on genotype probabilities,

this method accounts for uncertainty in the genotype call, helping to adjust for the

poor individual genotype quality observed in low coverage data.

E
°
Gi j|Di j

¢
=

2X

g=0
gP(Gi j = g|Di j) (3.5)
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The basic statistic is then extended to perform a joint analysis of multiple rare

variants. The individual variant score statistics are summed together to give

an overall score, while the variance component is calculated by combining the

covariance matrices of the cases and controls, after estimating them separately.

Significance is then evaluated using bootstrap permutation.

This test was implemented as an extension to the software suite ANGSD [20]. Code

is available at https://github.com/katiedelange/angsd.

3.2.1 Generating genotype probabilities

Genotype refinement via imputation produces a set of ‘smoothed’ genotype proba-

bilities, making use of population-level information to remove noise and improve

confidence in genotype calls made (see Section 2.5). However, when the true sig-

nal is low, such as for sites of rare variation, this refinement step tends to be

overzealous, and generates poorly calibrated individual genotype probabilities

(Supplementary Figure 8).

Therefore for rare variant analyses, we used genotype probabilities generated

directly from the samtools Genotype Quality (GQ) field, without any genotype

refinement. The GQ value represents the phred-scaled genotype probability of the

most likely genotype. We assumed that, given the low MAF (∑ 0.5% in controls) of

the variants being considered here, the rare homozygote is not observed and thus

we defined the genotype probabilities as described below:

P(Genotype called in VCF)= 1°10
°GQ

10 ,

P(Alt)= 1°P(Genotype called in VCF),

where the possible (Call,Alt) pairs are (RR,RA), (RA,RR), and (AA,RA)

(3.6)
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3.2.2 Additional variant quality control

Additional site filtering was used, as rare sites are more susceptible to differences

in read depth between cases and controls (Supplementary Figure 11). As well as

the QC procedures described in Sections 2.4 and 2.5, the following filters were

used:

Missingness calculated from GQ-generated genotype probabilities ∑ 0.1,

as this rate differs slightly from that produced following genotype refinement.

High confidence observations > 99% of non-missing data, where a high con-

fidence observation is that with a genotype probability ∏ 0.9 for the most likely

genotype.

High confidence alternate allele observations ∏ 2 in the complete dataset.

This excluded singletons from the analyses, as they contained too many false

positives, particularly amongst the very low coverage ulcerative colitis samples

(Supplementary Figure 11a).

INFO score ∏ 0.6, calculated separately for all appropriate association cohorts

(CD, UC, IBD, controls). For association tests in IBD, variants had to pass this filter

within the CD and UC cohorts individually, as well as across the entire IBD subset.

The INFO score Æ (Equation 3.7) is the same as that implemented in SNPTEST

and IMPUTE2 [18], and can be interpreted as describing the amount of ‘missing’

information, such that the observed data in a sample of size N is equivalent to a

set of perfectly observed genotypes in a sample of size ÆN.

Æ=

2Ncase/control

µ̂(1° µ̂)
°

PNcase/control
i=1 E(Gi j|Di j)°E(G2

i j|Di j)

µ̂2(1° µ̂)2

2Ncase/control

µ̂(1° µ̂)

, where µ̂ =
PNtotal

i=1 E(Gi j|Di j)
2Ntotal

(3.7)
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3.2.3 Coding variation in genes

Burden tests were performed across sites with a MAF ∑ 0.5% in controls and falling

within a given gene as defined by annotation with an Ensembl ID. For each gene,

two sets of burden tests were performed to include all functional coding variants,

and all predicted damaging functional coding variants. The particular Variant

Effect Predictor [21] annotations used to define these variant groups are de-

tailed in Supplementary Table 8. Combined Annotation Dependent Depletion

(CADD) scores [22] were used to further subset annotated sites into those that

were predicted to have damaging consequences (CADD score ∏ 21).

Every test was repeated to independently check for association with CD, UC and

IBD at every gene containing one or more relevant variants. This resulted in a

total of 100,335 tests, with an average of 5.84 variants contributing to each test

(Supplementary Table 9). To reduce computational load, adaptive permutation was

used, whereby the significance of the test would be evaluated every 10x permu-

tations (starting from x = 5). Only tests with fewer than 100 permutations more

significant than the unpermuted sample were continued. Results from these tests

are summarised in Supplementary Figure 9, and Supplementary Table 10.

For NOD2, the only gene for which we observed a significant signal, we evaluated

the independence of this signal from the known common coding variants rs2066844,

rs2066845, and rs2066847. Individuals with a minor allele at any of these sites

were assigned to one group, and those with reference genotypes to another. Burden

testing for this new phenotype in both variant sets that contained a significant

CD vs controls signal produced Pf unctional = 0.0117 and Pdamaging = 0.7311. On

average, contributing rare variants were at an elevated frequency in non-NOD2

canonical mutation carriers, compared to those individuals with a minor allele at

any of these three sites.
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3.2.4 Gene set tests

To increase power to detect rare variant associations across coding regions, indi-

vidual gene results were combined into gene sets as defined in Supplementary

Table 11. The gene sets were analysed using a meta-analysis approach, rather than

performing a complete burden test on all constituent variants, to overcome any

differences in the direction of effect of rare variants in the genes included in the set.

The absolute scores for each gene in the set were summed, as were the variances,

across 100,000 permutations. Thus, while covariance was included for intra-gene

variant relationships, the inter-gene covariance was not accounted for, although

we expect this to be of minimal consequence. Individual set statistics were then

evaluated against the statistics from the set of all genes, in an approach based

on Purcell et al’s SMP method [23], to account for residual case-control coverage

bias.

Given the relative strength of the NOD2 signal, each gene set test was performed

both with and without NOD2 (where appropriate). Results from these tests can be

found in Supplementary Table 12.

3.2.5 Non-coding variation in enhancers

Using the same approach outlined above for individual genes, burden tests were per-

formed across enhancer regions as defined by the FANTOM5 project [24]. Within

each robustly defined enhancer, we tested all observed rare variation, as well

as the subset predicted to disrupt or create a transcription factor binding motif.

Disruption or creation of a transcription factor binding motif was determined using

the same approach employed by Huang et al [25], thus we considered all ENCODE

transcription factor ChIP-seq motifs [26] with an overall information content (IC)
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∏ 14 bits (equivalent to 7 perfectly conserved positions) and checked if a given

variant created or disrupted that motif at a high-information site (IC∏ 1.8).

We again repeated each test to independently check for association to UC, CD and

IBD at every enhancer with one or more relevant variants, resulting in 121,848

tests, with an average of 2.27 variants contributing to each test (Supplementary

Table 13).

3.2.6 Enhancer set tests

Individual enhancers were combined into enhancer sets based on cell and tissue-

specific expression. Using pre-defined tracks (http://enhancer.binf.ku.dk/presets/)

as described by Andersson et al, we tested all enhancers that were positively

differentially expressed in each of 69 cell types and 41 tissues (Supplementary

Table 17) [24]. Note that positive differential expression is not the same as exclusive

expression in a given cell/tissue.

Using the same SMP-based approach that was used to analyse gene sets, we tested

the cell and tissue enhancer sets against the background of all robustly defined

FANTOM5 enhancers, both for all observed rare variation and that predicted to

disrupt or create a transcription factor binding motif. Results from these tests are

summarised in Supplementary Table 14.
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4. GWAS cohort and imputation

4.1 GWAS cohort description

We collected a large GWAS cohort that consisted of three distinct studies: the

Wellcome Trust Case Control Consortium (WTCCC) 1 Crohn’s disease GWAS

[16], the WTCCC2 ulcerative colitis GWAS [17], and a new IBD GWAS collected

and genotyped at the Wellcome Trust Sanger Institute between 2014 and 2015.

Cumulatively these studies contain over 12,000 IBD cases and 15,000 controls,

genotyped on a combination of different chips.

4.1.1 WTCCC1

Post-QC, the WTCCC1 study contains 1,748 CD cases and 2,936 controls, geno-

typed on the Affymetrix 500K chip. As the genotypes were originally aligned to

reference build 35, the UCSC software tool liftOver [27] was used to update

the data to reference build 37. Successful conversion was achieved for a total of

458,817 sites.

4.1.2 WTCCC2

Similarly, post-QC the WTCCC2 study included 2,361 UC cases and 5,417 controls

(some of which overlapped with the WTCCC1 study), genotyped on the Affymetrix

6.0 array. The reference was updated to build 37 from build 36 using liftOver. As

strand alignment had not been performed on this dataset, misaligned SNPs were

detected using SHAPEIT -check (version: v2.r790) [28]. Ambiguous SNPs with a

MAF > 0.4 were removed, and a final pass to flip misaligned SNPs was performed

by comparing sample allele frequencies to the European allele frequencies in
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the 1000 Genomes Project. After lift over and strand alignment, 735,782 sites

remained.

4.1.3 Novel GWAS cohort

A novel GWAS cohort (GWAS3) was collected, consisting of 5,695 CD cases, 5,299

UC cases, 764 indeterminate IBD cases, and 10,484 controls. Both cases and

controls were genotyped at the Wellcome Trust Sanger Institute; controls on the

Human Core Exome v12.0 chip, and cases on the Human Core Exome v12.1 chip.

Genotypes were called using optiCall [29], and then strand aligned using files

provided by William Rayner (http://www.well.ox.ac.uk/ wrayner/strand/). Sites not

included on both versions of the chip were removed, leaving a total of 535,434

genotyped sites. Prior to sample quality control, these sites were then pruned

further to remove those with an excessive missingness rate > 5%. Per SNP

genotype missingness rate was calculated using PLINK2 –missing (version: 1.9)

[14].

Samples were filtered using the following quality control thresholds:

Excessive heterozygosity rate ±3 standard deviations from the mean. Het-

erozygosity rate was computed using PLINK2 –het (version: 1.9) [14], which calcu-

lates the method-of-moments F coefficient (see Equation 2.1).

Excessive missingness rate > 1%. Per sample missingness rate was calculated

using PLINK2 –missing (version: 1.9) [14].

Mismatching gender between that recorded at patient recruitment and that

determined genetically (unless a valid explanation for the mismatch was avail-

able). Genetic genders were obtained using PLINK2 –check-sex (version: 1.9) [14],

which imputes the inbreeding coefficient F (Equation 2.1) for the X chromosome.

Under Hardy-Weinberg Equilibrium, females should have an X-chromosome F
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coefficient close to 0, while for males it should be close to 1.

Duplicated or related individuals with kinship coefficient > 0.177 (first-degree

relatives or closer). Kinship coefficients were calculated for samples passing the

heterozygosity and missingness checks, using markers with a MAF > 0.05 and the

software KING [30]. The sample with the lowest call rate (or mismatching gender,

if applicable) of each related pair was removed.

Non-European samples as determined by Principal Component Analysis (PCA).

Principal components were calculated together with samples from the HapMap3

project [31], using SMARTPCA.perl [32]. Individuals with a PC2 score less that

0.067 were defined as non-European and removed from further analysis.

A final set of quality control filters were then used to remove markers still perform-

ing poorly on the high-quality samples:

Significant difference in call rate between cases and controls. Significance was

evaluated using PLINK2 –test-missing (version: 1.9) [14], and those sites with

p< 1e°5 were removed.

Hardy-Weinberg equilibrium (HWE) exact test P-value in controls < 1e°5.

Tests for HWE were performed with PLINK2 –hwe (version: 1.9) [14], using the

mid-p modifier.

Genotyping batch effect, affecting 429 markers. These sites were identified

by computing within-sample principal components (PCs) using common variants

(MAF > 1%), which highlighted a clear outlier group of case samples all belong-

ing to one genotyping batch. PC1 was then used to split cases into outliers and

non-outliers, and an association test between these groups was used to identify

significant sites (p< 1e°5). Once these sites were removed, the within-sample PCs

no longer produced any outlier groups.

This left a high-quality dataset consisting of 510,520 genotyped sites in 9,239
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cases (4,474 CD, 4,173 UC, 592 indeterminate IBD), and 9,500 controls. Before

imputation, these sites were further pruned to those with a MAF > 0.1%, leaving a

total of 296,203 markers.

4.2 Imputation

Whole genome sequences were imputed for the genotyped samples using a reference

panel containing the IBD-affected and control sequence data described in Section

1., together with the 1000 Genomes Project Phase 3 whole genomes. Given the size

of the resulting reference and genotype panels, imputation was performed using

PBWT [33] so results could be obtained in a tractable amount of time.

4.2.1 Novel sequencing reference panel

Re-phasing of IBD sequencing samples

Following the second round of genotype refinement on the sequencing data, SHAPEIT2

(version: v2.r790) [28] was used to increase the accuracy of the estimated haplo-

types. To maintain computational efficiency, batches of 100,000 sites were phased,

with 5,000 sites in buffer regions either side of these. The maximum chromosome

length was set to 249,250,621 base pairs. SHAPEIT2 was run with the following

parameters:

--input-map <1000GP_phase1interim_jun2011_genetic_map.txt>

--thread 16 --window 0.5 --states 200

bcftools convert (version: 1.1-82-g4f3a265) was used to combine the original

VCF with the new phase information. Batches were merged using bcftools

concat (version: 1.1-82-g4f3a265) and phase determined by matching overlapping

heterozygous sites. The pipeline (run-shapeit) used to perform haplotype estima-
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tion is available from:

https://github.com/VertebrateResequencing/vr-codebase/blob/develop/scripts/run-shapeit

Creation of a new IBD, 1000G Phase 3 and UK10K imputation reference

The haplotypes from 4,686 IBD samples (retaining those excluded from association

analyses due to non-European ancestry) are then combined with 3,781 UK10K and

2,504 1000 Genomes Phase 3 control sequences, to create a new reference panel en-

riched with low frequency and rare variants detected from our IBD whole-genome

sequences.

4.2.2 Preparation of GWAS data for imputation

Three separate imputation panels were created for input into PBWT:

A: All WTCCC1 cases and controls

B: All WTCCC2 cases, and controls not already included in panel A

C: All GWAS3 cases and controls not already included in panels A or B

Prior to imputation, we also removed any genotyped samples already included in

the sequencing study (as these would be present in the reference panel). After

imputation we had whole genome sequences for 11,987 cases and 15,191 controls

(Supplementary Table 6).

4.3 Variance explained

4.3.1 Heritability estimation

Using the imputed whole genome sequences, we applied the Restricted Maximum

Likelihood (REML) method implemented in GCTA [34, 35, 36] to estimate the vari-
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ance explained by all the autosomal SNVs. Individuals in three GWAS cohorts and

variants that passed quality controls post imputation (Section 4.2) were used to

estimate the genetic heritability (h2
g) explained for UC and CD, respectively.

Since heritability estimation represents the sum of association across all variants,

even small spurious associations due to imperfect quality control could accumulate

to greatly inflate estimates of h2
g. We thus applied a set of additional filtering

to eliminate spurious associations, only including variants with MAF∏ 0.1%, im-

putation r2 ∏ 0.6, missing rate ∑ 1% and Hardy-Weinberg equilibrium P-value

∏ 10°7 in controls for each GWAS cohort. After merging GWAS cohorts, we next

filtered samples such that no pair of samples had an IBD ∏ 0.025 using the

"–grm-cutoff" option in GCTA. Reassurringly, the heritability explained was con-

sistent regardless of whether or not an additional relatedness filter was used (e.g

for CD, h2
g_0.025 = 0.284 (SE=0.016) and h2

g = 0.272 (SE=0.013)).

To transform the h2
g estimate on the observed case-control risk scale to the liability

scale, as described in Yang et al (2011) [34], we used a population prevalence of

0.005 and 0.0025 for CD and UC respectively. This workflow is documented in

detail in Supplementary Figure 7.

We checked the reliability and robustness of our h2
g estimates by estimating each

genetic heritability in four ways:

i) Univariate estimation: using constrained REML in GCTA to estimate h2
g for all

SNPs with MAF ∏ 0.1% and individuals with relatedness < 0.025.

ii) Chromosome-partitioning: joint variant analysis across autosomes. GRM was

constructed for each autosome and genetic variance for each chromosome

was estimated in an analysis in which all chromosomal GRMs were fitted

jointly as described in Lee et al (2012) [37].
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iii) MAF-partitioning: similar to (ii), we estimated multiple genetic variance

components by grouping SNVs into three MAF bins: ∏ 5%, 0.5%°5% and

0.1%°0.5%.

iv) LD-adjusted GRMs were computed using LDAK [38].

The total SNP-heritabilities estimated based on univariate analysis, chromosome-

partitioning analyses, MAF-partioning and with LD-adjusted approaches were

consistent and similar to those from previously published studies, suggesting that

our estimates are robust and reliable (Supplementary Table 16.

4.3.2 Data generation and quality control

We tested each cohort separately for association to UC, CD and IBD using a missing

data likelihood score test as implemented in SNPTEST v2.5 [18], conditioning on

the first ten principal components as computed for each cohort when excluding

the MHC region (chromosome 6:28-34Mb). We filtered all output to sites with

MAF ∏ 0.1%, and INFO ∏ 0.4, and then used METAL to perform a standard error

weighted meta-analysis of all three GWAS cohorts with our sequencing cohort

(which was also pre-filtered to MAF ∏ 0.1% and INFO ∏ 0.4).

The output of the fixed-effects meta-analysis was further filtered, and sites with

high evidence for heterogeneity (I2> 0.90) or strong evidence for deviations from

HWE in controls (PHWE < 1£10°7) were discarded. Only sites at which all cohorts

passed our quality control filters were included in our analysis. In addition, we

discarded all variants for which the meta-analysis p-value was not lower than any

of the cohort-specific p-values. Any sites which were included in the Immunochip

or the IIBDGC datasets and were not at least nominally significantly associated

with IBD in these datasets were also excluded from our analyses. Finally, and
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in order to minimise the false positive associations due to bad imputation, sites

which did not have an info score of 0.8 or more in at least three of the four datasets

included in our meta-analysis were filtered out (two of the three for CD and UC, as

we only have data from three cohorts for each of these).

4.3.3 Locus definition

An LD window was calculated for every genome-wide significant variant in any of

the three traits (CD, UC, IBD), defined by the left-most and right-most variants

that had an r2 of 0.6 or more with the most associated SNP. LD was calculated

in 1000 Genomes phase 3, release v5 (based on 20130502 sequence freeze and

alignments), and only individuals of GBR and CEU ancestry were included in

the calculation. Overlapping LD windows were subsequently merged, as well as

windows with a distance of 500Kb or less between the lead variants of each locus,

and the variant with the strongest evidence of association was kept as the lead

variant for that respective locus. This process was conducted separately for each

trait. A locus was annotated as known when there was at least one variant in

it that was previously reported to be of genome-wide significance (irrespective

of the LD between that variant and the most associated variants in the locus in

our study). Otherwise, a locus was annotated as putatively novel. The PMIDs of

the previous studies we included in our search for known IBD associations are

described in Supplementary Table 15.
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Supplementary Table 2: Sequencing sample quality control summary

Criteria UC CD UK10K Total
Initial sample size 1,817 2,697 3,910 8,354
Average coverage 2.05x 3.84x 7x 4.39x

BAM QC -12 -107 -244 -363
heterozygosity rate (±3.5 s.d.) -2 -16 -13 -31

Relatedness (º̂> 0.25) -33 -50 -7 -90
Ancestry Outliers -3 -11 -1 -15

Post-QC sample size 1,767 2,513 3,652 7,932

Supplementary Table 3: Sequencing autosomal variants quality control sum-
mary

SNPs INDELs Total
Raw variant calling 87,456,881 7,683,401 95,140,282
Post SVM/VQSR filtering 72,166,448 4,522,487 76,688,935
Post genotype refinement filtering 70,344,218 3,205,131 73,549,349
Post UC-association filtering 56,430,118 1,776,521 58,206,639
Post CD-association filtering 59,985,208 1,922,610 61,907,818
Post IBD-association filtering 67,201,374 1,938,154 69,139,528

Supplementary Table 4: Summary of the datasets used to evaluate the genotype
accuracy of our sequencing data

UK10K GWAS IBD-ichip CD-GWAS UC-GWAS
Total samples 3,777 53,279 1,748 2,361

Total SNPs 919,415 177,367 458,858 757,728
Common samples 3,666 1,476 96 332

Common SNPs 895,421 152,158 446,140 739,631
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Supplementary Table 5: IBD sequencing autosomal variants compared
to 1000 Genomes Projects Phase 3 European panel.

(a) SNVs kept at different stages of our IBD sequencing project, and their overlap with
1000GP Phase 3 European panel (503 samples). The left-hand-side panel of Supplementary
Figure 3 is a graphical representation of these values.

Singleton Doubleton Tripleton-.5% .5-1% 1-5% >5%
Variant

discovery
in 1000GP 4,802,093 1,205,334 1,576,257 1,112,007 2,460,806 5,546,446

Total 71,555,627 1,800,559 2,189,422 2,030,079 3,772,684 6,108,510
SVM

filtering
in 1000GP 4,541,020 1,183,336 1,537,694 1,079,949 2,376,196 5,357,949

Total 58,820,369 1,731,931 1,891,848 1,472,594 2,729,738 5,519,968
Genotype

refinement
in 1000GP 4,484,552 1,166,126 1,509,623 1,056,948 2,313,001 5,173,738

Total 58,066,170 1,697,928 1,748,091 1,220,697 2,390,652 5,220,680
UC

association
in 1000GP 3,990,628 1,126,957 1,456,086 1,020,611 2,237,109 4,998,181

Total 44,828,935 1,627,078 1,628,445 1,046,432 2,266,573 5,032,655
CD

association
in 1000GP 4,197,863 1,127,572 1,456,346 1,020,716 2,237,151 4,998,181

Total 48,369,564 1,628,484 1,630,659 1,054,469 2,269,376 5,032,656
IBD

association
in 1000GP 4,295,649 1,126,036 1,454,470 1,019,630 2,235,317 4,993,282

Total 55,604,960 1,625,925 1,627,348 1,048,880 2,266,540 5,027,721

(b) Number of 1000GP SNVs overlap with different stages of IBD sequencing cohort. These
are the numerical values represented in the right-hand-side panel of Supplementary Fig. 3

Singleton Doubleton Tripleton-.5% .5-1% 1-5% >5%
Variant Discovery 3,987,923 1,448,809 1,699,915 1,131,041 2,421,432 5,876,796

SVM filtering 3,780,362 1,403,372 1,657,460 1,102,798 2,357,992 5,641,270
Genotype refinement 3,736,078 1,385,178 1,632,905 1,083,811 2,304,311 5,430,787

UC association 3,353,624 1,302,278 1,565,404 1,044,464 2,226,128 5,231,381
CD association 3,517,836 1,327,946 1,576,068 1,046,919 2,226,927 5,231,601

IBD association 3,597,609 1,337,451 1,578,194 1,046,634 2,225,203 5,226,318
Total 8,716,645 1,798,814 1,871,612 1,195,609 2,507,644 6,042,565
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Supplementary Table 6: Imputed GWAS cohort summary

Cohort Case Control Total
WTCCC1 1,206 2,918 4,124
WTCCC2 1,921 2,776 4,697

GWAS3_CD 4,264 9,495 13,759
GWAS3_UC 4,072 9,495 13,567

GWAS3_IBD 8,860 9,495 18,355
Total 11,987 15,189 27,176
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Supplementary Table 8: Variant annotations included in each of the gene-based
burden test subsets.

Annotation Functional coding Predicted damaging

frameshift_variant X X
stop_gained X CADD∏21

initiator_codon_variant X CADD∏21

splice_donor_variant X CADD∏21

splice_acceptor_variant X CADD∏21

missense_variant X CADD∏21

stop_lost X CADD∏21

inframe_deletion X X

inframe_insertion X X

Supplementary Table 9: The number of gene-based burden tests performed for
each combination of annotation set and phenotype, with the average number of
variants contributing to each of those tests given in parentheses.

Test Functional coding Predicted damaging Total

UC 18,149 (6.82500) 14,850 (4.24795) 32,999 (5.66529)

CD 18,670 (7.42341) 15,406 (4.56283) 34,076 (6.13012)

IBD 18,293 (6.88088) 14,967 (4.25991) 33,260 (5.70144)
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Supplementary Table 11: Genes used in the main gene-set burden tests: im-
plicated by a coding variant in the fine-mapping credible sets recently defined by
Huang et al [25], eQTL mapping, or by implication of causal coding variants in the
literature.

Gene ID Name Dis. Gene ID Name Dis.

ENSG00000085978 ATG16L1 CD ENSG00000164308 ERAP2 CD

ENSG00000187796 CARD9 IBD ENSG00000136634 IL10 IBD

ENSG00000013725 CD6 CD ENSG00000115607 IL18RAP IBD

ENSG00000143226 FCGR2A IBD ENSG00000134460 IL2RA CD

ENSG00000176920 FUT2 CD ENSG00000005844 ITGAL UC

ENSG00000115267 IFIH1 UC ENSG00000095110 NXPE1 UC

ENSG00000162594 IL23R IBD ENSG00000079263 SP140 CD

ENSG00000173531 MST1 IBD ENSG00000106952 TNFSF8 IBD

ENSG00000167207 NOD2 CD

ENSG00000134242 PTPN22 CD

ENSG00000166949 SMAD3 IBD

ENSG00000105397 TYK2 IBD
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Supplementary Table 12: P values for burden tests performed on gene set
described above. Results of the burden test excluding NOD2 are shown in paren-
theses.

Functional coding Predicted damaging Loss of function

UC 0.13 (0.128) 0.114 (0.246) 0.457 (0.457)

CD 0 (0.201) 0 (0.004) 0.222 (0.222)

IBD 0 (0.021) 0 (0.017) 0.24 (0.24)

Supplementary Table 13: The number of enhancer-based burden tests per-
formed for each combination of annotation set and phenotype, with the average
number of variants contributing to each of those tests given in parentheses.

Test All variants Variants affecting a TFBM Total

UC 28,292 (2.64099) 11,532 (1.29067) 39,824 (2.24997)

CD 29,628 (2.74679) 12,403 (1.30912) 42,031 (2.32255)

IBD 28,453 (2.62155) 11,540 (1.28631) 39,993 (2.23627)
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Supplementary Table 15: Publications used to determine known IBD loci.

Pubmed ID Citation
17554261 Parkes et al. 2007. Nature Genetics 39 (7): 830–32.
19915572 Barrett et al. 2009. Nature Genetics 41 (12): 1330–34.
20228798 Franke et al. 2010. Nature Genetics 42 (4): 292–94.
20228799 McGovern et al. 2010. Nature Genetics 42 (4): 332–37.
21102463 Franke et al. 2010. Nature Genetics 42 (12). 1118–25.
21297633 Anderson et al. 2011. Nature Genetics 43 (3): 246–52.
22412388 Kenny et al. 2012. PLoS Genetics 8 (3).
23128233 Jostins et al. 2012. Nature 491 (7422). 119–24.
23266558 Yamazaki et al. 2013. Gastroenterology 144 (4): 781–88.
23850713 Yang et al. 2014. Gut 63 (1): 80–87.
25082827 Julià et al. 2014. Human Molecular Genetics 23 (25): 6927–34.
26192919 Liu et al. 2015. Nature Genetics 47 (9): 979–89.
26974007 Ellinghaus et al. 2016. Nature Genetics 48 (5): 510-8.

NA Huang et al. 2015. bioRxiv. doi:10.1101/028688.

Supplementary Table 16: Estimate of heritability using four different ap-
proaches. All analyses were carried out after excluding one individual from every
pair with relatedness > 0.025, estimated from markers with MAF ∏ 0.1%. The
prevalences of CD and UC were assumed to be 0.005 and 0.0025, respectively.

Method h2
gCD (SE) h2

gUC (SE)
Univariant 0.284 (0.016) 0.211 (0.012)

Chr-partitioning 0.270 (0.012) 0.233 (0.056)
MAF partitioning 0.293 (0.014) 0.226 (0.020)

LD-adjusted 0.268 (0.013) 0.215 (0.012)
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Supplementary Table 17: Cell and tissue types for which FANTOM5 defines
preferentially expressed enhancer sets.

Cell types Tissue types

neuronal stem cell lymph node

myoblast large intestine

osteoblast blood

ciliated epithelial cell throat

blood vessel endothelial cell testis

mesothelial cell stomach

T cell heart

mast cell brain

sensory epithelial cell eye

astrocyte penis

mesenchymal cell female gonad

fat cell uterus

chondrocyte vagina

melanocyte adipose tissue

hepatocyte esophagus

skeletal muscle cell salivary gland

macrophage skeletal muscle tissue

keratinocyte smooth muscle tissue

vascular associated smooth muscle cell urinary bladder

tendon cell pancreas

dendritic cell tongue

stromal cell submandibular gland

Continued on next page
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Table 17 – Continued from previous page

Cell types Tissue types

neuron parotid gland

reticulocyte blood vessel

corneal epithelial cell placenta

monocyte thyroid gland

acinar cell lung

natural killer cell skin of body

hepatic stellate cell spleen

pericyte cell liver

urothelial cell small intestine

cardiac myocyte gallbladder

basophil kidney

neutrophil spinal cord

lymphocyte of B lineage umbilical cord

endothelial cell of lymphatic vessel meninx

epithelial cell of Malassez prostate gland

lens epithelial cell thymus

epithelial cell of prostate tonsil

epithelial cell of esophagus olfactory region

mammary epithelial cell internal male genitalia

preadipocyte

keratocyte

trabecular meshwork cell

respiratory epithelial cell

enteric smooth muscle cell

Continued on next page
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Table 17 – Continued from previous page

Cell types Tissue types

kidney epithelial cell

amniotic epithelial cell

cardiac fibroblast

fibroblast of choroid plexus

fibroblast of the conjuctiva

fibroblast of gingiva

fibroblast of lymphatic vessel

fibroblast of periodontium

fibroblast of pulmonary artery

hair follicle cell

intestinal epithelial cell

iris pigment epithelial cell

placental epithelial cell

retinal pigment epithelial cell

bronchial smooth muscle cell

smooth muscle cell of the esophagus

smooth muscle cell of trachea

uterine smooth muscle cell

skin fibroblast

gingival epithelial cell

fibroblast of tunica adventitia of artery

endothelial cell of hepatic sinusoid

smooth muscle cell of prostate

50


