

Supplementary information

Sulfur-oxidizing bacteria mediate microbial community succession and element cycling in launched marine sediment

Hideyuki Ihara¹, Tomoyuki Hori^{2*}, Tomo Aoyagi², Mitsuru Takasaki³, Yoko Katayama^{4*}

- 1 United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- 2 Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- 3 Department of Food and Environmental Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, Ishinomaki, Japan
- 4 Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan

* Correspondence:

Yoko Katayama: e-mail: katayama@cc.tuat.ac.jp.

Tomoyuki Hori: e-mail: hori-tomo@aist.go.jp.

Details of prior analysis.

The launched marine sediments were collected six times (December 2011; March, July and November 2012; May and October 2013). Microbial community structures in the uppermost (0-2 mm depth) and deep (20-40 mm depth) layers of the sediments were analyzed in singlicate. Deep sequencing based on 16S rRNA genes and further analyses (i.e., phylogenetic analysis and principal coordinate analysis [PCoA]) were carried out as described in the main text. Microbial communities in the uppermost layer changed with time (Figure S3A). PCoA plot suggested that microbial communities in the uppermost layers in December 2011 and October 2013 were considerably different from those in the other dates (Figure S3B). Based on the phylogenetic information and PCoA plot, we chose the sediment samples collected in December 2011, March 2012 and October 2013 for the main triplicate analyses.

Details of metal analysis.

The on-site sediment was dried at 60 °C until the weight becomes constant, and then ground with a mortar and pestle. The resultant sediment (0.4–0.6 g) was weighed in a polytetrafluoroethylene (PTFE) beaker, added 10 mL of concentrated nitric acid and 2.5 mL of 60% perchloric acid, and then heated in the beaker covered with a PTFE watch glass at around 200 °C. As soon as white smoke was observed, the watch glass was removed and the heating was continued until the solution became syrupy. The solution was allowed to cool at room temperature and then 3.5 mL of 60% perchloric acid and 10 mL of 46% hydrofluoric acid were added. The mixture was heated without seething for around 15 min. After the solution was cooled, 10 mL of 46% hydrofluoric acid and 1 mL of concentrated until it became syrupy. After adding 5 mL of 20% hydrochloric acid and 1 mL of concentrated nitric acid, the extract was heated by covering with a watch glass for 1 h. Then, the extract was added 30 mL distilled water and heated more 1–2 h covered with the watch glass. The solution was subjected to inductively coupled plasma mass spectrometry (7500a; Agilent Technologies Inc., Tokyo, Japan) after dilution of the sample within the sensitivity range of the equipment.

Figure S1. Location of sampling site. The launched marine sediment was collected from the area where had been used as paddy field in Higashi-matsushima city, Miyagi Prefecture, Japan. Distance of sampling site shown by the star symbol was approximately 3 km far from the shore and 1 m above the sea level. Jougawa river flows near the site. Shaded portion in inset shows the flooded area by tsunami accompanied with the Great East Japan Earthquake.

Figure S2. Photographs of the on-site sediment. (A) The sediment deposited on the paddy field in December 2011. Depth of the sediment was more than 30 cm. (B) Close-up picture of the sediment after the sampling with the core sampler. The uppermost (0-2 mm depth) layer was reddish brown while the deeper layer was black.

Figure S3. Prior analysis data of the on-site microbial community structures in the uppermost (0–2 mm depth) and deep (20–40 mm depth) layers by deep sequencing of 16S rRNA genes (n = 1). Sediment samples were collected in December 2011, March, July and November 2012, May and October 2013. (A) Microbial communities are categorized by phylum except for Proteobacteria that is shown by class. (B) Comparison of microbial community structures in the uppermost (0-2 mm depth, red) and deep (20-40 mm depth, blue) layers based on principal coordinate analysis (PCoA) (n=1). These plots were calculated from an equal number of sequences (15,034) by weighted UniFrac analysis. Symbols; \circ , December 2011; Δ , March 2012; \times , July 2012; +, November 2012; –, May 2013; \Box , October 2013.

Figure S4. Comparison of the on-site microbial community structures in the uppermost (0-2 mm depth, red) and deep (20-40 mm depth, blue) layers based on principal coordinate analysis (PCoA) (n=3). These plots were calculated from an equal number of sequences (30,789) by weighted UniFrac analysis. Symbols; \circ , December 2011; Δ , March 2012; \Box , October 2013.

Figure S5. Time-course changes of (A) IL, (B) TC, (C) TN, (D) DOC and (E) DN in the sediments incubated in laboratory (n=3). Open and filled circles indicate the uppermost (0-2 mm depth) and deep (12-16 mm depth) layers, respectively. Error bars indicate standard deviations of quadruplicate samples.

Sampling date	pH^{a}	SO_4^{2-} (mg / kg dry sediment) ^b
Dec. 2011	4.3 ± 0.6	3317 ± 317
Mar. 2012	7.1 ± 0.2	3025 ± 95
Oct. 2013	4.4 ± 0.0	15,165

Table S1 Changes of pH and sulfate concentration in the uppermost layer of on-site sediment

^a The pH values were analyzed in triplicate. The symbol "±" means the standard deviation of three replications.

^b The sulfate concentrations except for that in October 2013 were analyzed in duplicate. The symbol "±" means the variation between two replications. Due to the small quantity of obtained sample, sulfate concentration in October 2013 was measured in singlicate.

Layer	Sampling		N. AOTU-	α-diversity indices ^b			
	date	No. of sequences	No. of UTUS	Chao1	Shannon	1/Simpson	
Uppermost	Dec. 2011	$38,069 \pm 3753$	2055 ± 82	$7430~\pm~773$	7.4 ± 0.9	36 ± 26	
	Mar. 2012	$47,\!449 \pm 4701$	1838 ± 304	$5546~\pm~1322$	8.2 ± 0.2	61 ± 13	
	Oct. 2013	$39,880 \pm 5718$	743 ± 41	$2279~\pm~78$	6.6 ± 0.2	24 ± 5	
Deep	Dec. 2011	$34{,}808\pm2432$	2832 ± 53	$14,081 \pm 308$	10.5 ± 0.0	310 ± 20	
	Mar. 2012	$40,886 \pm 2216$	2818 ± 30	$14,036 \pm 400$	10.4 ± 0.1	277 ± 14	
	Oct. 2013	$37,556 \pm 1446$	2663 ± 22	$13,000 \pm 514$	10.4 ± 0.0	289 ± 18	

 Table S2 Summary of Illumina sequencing of the on-site sediment^a (n=3)

 ^a The symbol "±" means the standard deviation of three replications.
 ^b Diversity indices were calculated by using an equal number of sequences (30,789) subsampled 10 times from original libraries. $\mathbf{5}$

Layer	Sampling date	OTU No.	Closely related species ^a	Similarity (%)	Accession No.	Phylum/Class ^b	Relative abundance (%) ^c	<i>p</i> -value ^d	Putative function ^e
		1598	Pandoraea thiooxydans	98	EF397578	Betaproteobacteria	12.4 ± 5.5	0.02^{*}	SO
	D	11292	Sulfurimonas denitrificans	94	L40808	Epsilonproteobacteria	8.7 ± 4.1	0.03*	Unknown
	Dec.	11288	Sulfurimonas sp.	95	AB930173	Epsilonproteobacteria	6.5 ± 2.3	0.01^{**}	SO
	2011	3053	Thiomicrospira frisia	96	AF013974	Gammaproteobacteria	6.1 ± 2.8	0.02^{*}	SO
		10262	Sulfurimonas denitrificans	98	L40808	Epsilonproteobacteria	3.5 ± 0.6	0.001**	SO, NR
		6337	Gaetbulibacter lutimaris	100	JF739861	Bacteroidetes	10 ± 3.0	0.005^{**}	CO
	M	17127	Cyanobacterium sp.	98	FJ460075	Cyanobacteria	3.6 ± 1.2	0.008^{**}	PS
Uppermost	Mar.	17093	Luteolibacter algae	98	AB331894	Verrucomicrobia	3.1 ± 0.9	0.004^{**}	ChemO
	2012	20040	Roseovarius tolerans	100	KP723471	Alphaproteobacteria	2.6 ± 0.2	$< 0.001^{**}$	ChemO
		7510	Sagittula stellata	100	HG315014	Alphaproteobacteria	2.3 ± 0.5	0.002^{**}	ChemO
		17626	Oleiagrimonas soli	98	KM400682	Gammaproteobacteria	13.4 ± 1.4	< 0.001**	ChemO, NR
	0-4	8977	Luteibacter yeojuensis	99	KM019785	Gammaproteobacteria	13.1 ± 3.0	0.002^{**}	ChemO
	Oct. 2013	25201	Dyella ginsengisoli	99	KC129050	Gammaproteobacteria	6.1 ± 0.9	< 0.001**	ChemO
	2015	11118	Dyella japonica	96	KP634993	Gammaproteobacteria	4.5 ± 0.2	< 0.001**	ChemO, NR
		17622	Streptmyces hoynatensis	96	JQ582693	Actinobacteria	2.5 ± 0.2	< 0.001**	ChemO
		21210	Desulfobulbus elongatus	92	X95180	Deltaproteobacteria	3.7 ± 0.5	-	Unknown
	D	14208	Pelobacter sp.	100	AJ271656	Deltaproteobacteria	1.8 ± 0.2	-	ChemO
	2011	11211	Desulfofaba fastidiosa	95	AY268891	Deltaproteobacteria	1.5 ± 0.2	-	SR
		7299	Thermomarinilinea lacunofontalis	88	AB669272	Chloroflexi	1.3 ± 0.1	-	Unknown
		28763	Desulfobulbus sp.	96	EF442993	Deltaproteobacteria	1.3 ± 0.2	-	SR
		21210	Desulfobulbus elongatus	92	X95180	Deltaproteobacteria	3 ± 0.2	-	Unknown
	Man	14208	Pelobacter sp.	100	AJ271656	Deltaproteobacteria	2.6 ± 0.1	-	ChemO
Deep	Mar. 2012	7299	Thermomarinilinea lacunofontalis	88	AB669272	Chloroflexi	1.9 ± 0.2	-	Unknown
	2012	7679	Pelobacter sp.	96	AJ271656	Deltaproteobacteria	1.8 ± 0.3	-	ChemO
-		25698	Lutimonas saemankumensis	100	JQ661174	Bacteroidetes	1.4 ± 0.1	-	ChemO, NR
		21210	Desulfobulbus elongatus	92	X95180	Deltaproteobacteria	3.6 ± 0.5	-	Unknown
	0-4	7299	Thermomarinilinea lacunofontalis	88	AB669272	Chloroflexi	1.9 ± 0.4	-	Unknown
	Oct.	30145	Thermomarinilinea lacunofontalis	88	AB669272	Chloroflexi	1.6 ± 0.3	-	Unknown
	2013	6911	Ornatilinea apprima	90	JQ292916	Chloroflexi	1.5 ± 0.1	-	Unknown
		11211	Desulfofaba fastidiosa	95	AY268891	Deltaproteobacteria	1.4 ± 0.4	-	SR

Table S3 Most abundant OTUs and their closely related species found in the uppermost and deep layers of the on-site sediment

^a The closely related species were assigned on BLAST in the DDBJ. ^b The OTUs were characterized phylogenetically by using the QIIME software.

^c The symbol "±" means the standard deviation of three replications. 25

^d p-values indicate whether the relative abundance of OTU was significantly high comparing with that in the deep layer: (*) p < 0.05, (**) p < 0.01.

^e The putative function of closely related species (only sequence similarities >95%). SO, sulfur oxidation; SR, sulfate reduction; FeO, Fe(II) oxidation; ChemO, chemoorganotrophy; NR, nitrate reduction; PS, photosynthesis.

30

35

45

40

P	۲	ļ	5
٩	,	٩	4

	Incubation day	No. of copies (n=2) ^b	No. of sequences (n=3)	$N_{2} = fOTU_{2}(n-2)$		α -diversity indices (n=3) ^c	
Layer				No. of $OTUS (n=3)$	Chao1	Shannon	1/Simpson
Initial ^d	-	$1.4{ imes}10^{10}\pm0.2{ imes}10^{10}$	$50,580 \pm 4858$	3196 ± 61	$14,524 \pm 618$	10.2 ± 0.2	230 ± 57
	1	$1.8{ imes}10^{10}\pm0.4{ imes}10^{10}$	$54,031 \pm 9851$	3016 ± 150	$11,601 \pm 38$	8.4 ± 0.1	29 ± 0.4
	3	$2.5 \times 10^{10} \pm 0.2 \times 10^{10}$	$60,909 \pm 2682$	2343 ± 221	7616 ± 536	5.9 ± 0.5	9.6 ± 2.6
Uppermost	7	$1.7{\times}10^{10}\pm0.2{\times}10^{10}$	$59,971 \pm 8183$	2610 ± 355	8862 ± 1178	7.1 ± 0.5	25 ± 4.8
	14	$1.9{\times}10^{10}\pm0.3{\times}10^{10}$	$61,900 \pm 6612$	2667 ± 278	8832 ± 577	7.4 ± 0.3	24 ± 3.9
	28	$2.1{\times}10^{10}\pm0.3{\times}10^{10}$	$59,643 \pm 5397$	2855 ± 123	9693 ± 415	8.0 ± 0.3	29 ± 5.6
	57	$4.7{\times}10^9$ $\pm 0.9{\times}10^9$	$64,432 \pm 3402$	2286 ± 388	7049 ± 1238	7.5 ± 0.5	40 ± 7.4
Deep	1	$7.4 \times 10^9 \pm 5.0 \times 10^9$	$55,234 \pm 1467$	3368 ± 49	$15,068 \pm 323$	10.6 ± 0.0	346 ± 14
	3	$1.2{ imes}10^{10}\pm0.3{ imes}10^{10}$	$52,991 \pm 4773$	3277 ± 42	$14,553 \pm 358$	10.4 ± 0.1	297 ± 35
	7	$1.9{\times}10^{10}\pm0.2{\times}10^{10}$	$55,281 \pm 8200$	3355 ± 57	$14,\!649 \pm 197$	10.5 ± 0.1	319 ± 21
	14	$1.4{\times}10^{10}\pm0.1{\times}10^{10}$	$49,383 \pm 1844$	3236 ± 48	$14,642 \pm 369$	10.3 ± 0.4	231 ± 150
	28	$1.7{\times}10^{10}\pm0.2{\times}10^{10}$	$47,263 \pm 14,664$	3246 ± 234	$14,665 \pm 137$	10.6 ± 0.1	354 ± 23
	57	$1.9{\times}10^{10}\pm0.7{\times}10^{10}$	$61,624 \pm 13,336$	3243 ± 190	$14,338 \pm 402$	10.5 ± 0.0	304 ± 12

Table S4 Number of 16S rRNA gene copies and summary of Illumina sequencing of the sediment incubated in laboratory^a

^a The symbol "±" in the column of "No. of copies" means variation between two replications and the symbol in the other column means ^b 16S rRNA genes per gram sediment.
 ^c Diversity indexes were calculated by using an equal number of sequences (31,950) subsampled 10 times from original libraries.
 ^d Sediment sample before incubation (day 0).

60

65

70

Incubation day	OTU No.	Closely related species ^a	Similarity (%)	Accession No.	Phylum/Class ^b	Relative abundance (%) ^c	<i>p</i> -value ^d	Putative function ^e
	45161	Thioalkalispira microaerophila	98	AF481118	Gammaproteobacteria	12.1 ± 1.6	< 0.001***	SO, NR
	32337	Mariprofundus ferrooxydans	96	EF493244	Zetaproteobacteria	10.7 ± 1.8	0.001**	FeO
	42344	Sulfurimonas autotrophica	92	CP002505	Epsilonproteobacteria	9.2 ± 0.6	< 0.001***	Unknown
7	25387	Sulfurovum aggregans	96	AB889689	Epsilonproteobacteria	5.0 ± 1.4	0.004**	SO, NR
	46057	Sulfurimonas sp.	92	LC029406	Epsilonproteobacteria	4.5 ± 1.2	0.004**	Unknown
	30483	Sulfurimonas denitrificans	98	L40808	Epsilonproteobacteria	4.5 ± 1.9	0.02^{*}	SO, NR
	49085	Sulfurimonas sp.	90	AB304903	Epsilonproteobacteria	4.3 ± 0.7	0.001**	Unknown
	45161	Thioalkalispira microaerophila	98	AF481118	Gammaproteobacteria	17.7 ± 1.9	< 0.001***	SO, NR
	6816	Gallionella sp.	97	HQ117915	Betaproteobacteria	3.9 ± 1.1	0.004**	FeO
28	16111	Thiohalophilus thiocyanatoxydans	96	DQ469584	Gammaproteobacteria	3.3 ± 0.0	< 0.001***	SO, NR
	35447	Marinobacter guineae	100	KX161417	Gammaproteobacteria	2.7 ± 0.3	< 0.001***	ChemO, NR
	23047	Oleiagrimonas soli	98	JQ658406	Gammaproteobacteria	2.7 ± 0.8	0.005**	ChemO, NR
	32337	Mariprofundus ferrooxydans	96	EF493244	Zetaproteobacteria	2.6 ± 0.8	0.004**	FeO
	25387	Sulfurovum aggregans	96	AB889689	Epsilonproteobacteria	2.2 ± 0.5	0.002**	SO, NR

Table S5 Most abundant OTUs and their closely related species found in the uppermost layer of the sediment incubated in laboratory

^a The closely related species were assigned on BLAST in the DDBJ.
 ^b The OTUs were characterized phylogenetically by using the QIIME software.

^c The symbol " \pm " means standard deviation of three replications.

75

^d *p*-values indicate whether the relative abundance of OTU was significantly high comparing with that in the deep layer: (*) p < 0.05, (**) p < 0.01.

^e The putative function of closely related species (only sequence similarities >95%). SO, sulfur oxidation; SR, sulfate reduction; FeO, Fe (II) oxidation; ChemO, chemoorganotrophy; NR, nitrate reduction.