SUPPLEMENTAL FIGURES AND TABLES

Cardiolipins are biomarkers of mitochondria-rich thyroid oncocytic tumors

Jialing Zhang¹, Wendong Yu², Seung Ryu³, John Lin¹, Gerardo Buentello⁴, Robert Tibshirani⁵,

James Suliburk^{4*}, and Livia S. Eberlin^{1*}

¹ Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712

² Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030

³ Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712

⁴ Department of Surgery, Baylor College of Medicine, Houston, TX, 77030

⁵ Departments of Health Research and Policy and of Statistics, Stanford University, Stanford, CA 94305

This supplemental file contains data that supports the claims and results described in the main manuscript. Figures include full mass spectra data acquired for the representative thyroid samples, examples of fragmentation patterns obtained for all the main molecular classes identified, mass spectra results obtained for confirmatory experiments using lipid standards, examples of 2D DESI-MS ion images and mass spectra for several additional samples, optical images of immunohistochemistry results, mass spectra results for isolated mitochondria experiments, and a table with detailed identification results for all molecules described in the main manuscript.

Supporting Figure 1. Comparison of DESI-MS results for oncocytic thyroid tumor, non-oncocytic thyroid tumor, and normal thyroid tissues from m/z 100-1500. Representative negative ion mode DESI mass spectra of A) oncocytic tumor, B) non-oncocytic tumor, and D) normal thyroid tissue.

Supporting Figure 2. Comparison of HCD fragmentation patterns of the standard CL(18:1/18:1/18:1/18:1) obtained from its lithium adduct $[CL-2H+Li]^{-}$ at m/z 1462.037 and the doubly-charged $[CL-2H]^{2-}$ at m/z 727.5101 in the negative ion mode. Lithium adducts were obtained by adding LiCl to the DESI spray.

Supporting Figure 3. Tandem MS of three cardiolipins, **A)** ox-CL(18:2/18:2/18:2/9:1(OOH)), **B)** CL(20:2/18:2/18:1/16:2 or 18:2/18:2/18:1), and **C)** CL+PC (106:12).

Supporting Figure 4. Analysis of mixture of CL (18:1/18:1/18:1:18:1) and PC (18:2/16:0) standards using DESI-MS. The inset shows the MS/MS of the ion at *m*/*z* 1106.2892 which was formed after mixing CL and PC together.

Supporting Figure 5. Two distinct mass spectra region in which ox-CL are observed, **A**) m/z 669 – 671, and **B**) m/z 690 to 692. Peaks corresponding to ox-CL were labeled in red while other peaks corresponding to GP or noise are labeled in black. Note that while the total ion abundance of the mass spectra is the same for oncocytic, non-oncocytic, and normal tissues, the relative abundance of ox-CL is drastically high in oncocytic tumors.

Supporting Figure 6. DESI-MSI analysis of an oncocytic tumor, non-oncocytic tumor and normal thyroid tissues. The images on the left are from H&E stained tissues which were analyzed by non-destructive DESI-MSI. Scale bar=4 mm. Six representative images from different lipid ions, including PI (20:4/18:0) (m/z 885.548), PS (18:1/18:0) (m/z 788.544), PE (20:4/18:0) (m/z 766.538), CL (20:4/20:2/18:1/16:0 or 20:3/18:2/18:1/18:1 or 20:2/18:2/18:2/18:1) (m/z 738.502), CL (18:2/18:2/18:2/18:2/18:2 or 20:4/18:2/18:2/16:0) (m/z 723.479) and FA (20:4) (m/z 303.233) are presented.

Supporting Figure 7. IHC staining images of Oncocytic tumor, Non-oncocytic tumor, and Normal thyroid

tissues. Scale bar=4 mm.

Supporting Figure 8. DESI-MS analysis of isolated mitochondria from A) oncocytic tumor, B) non-oncocytic tumor, and C) normal thyroid tissue.

Supporting Figure 9. DESI mass spectra obtained from a second, independent set of samples (n=15) including 10 non-oncocytic thyroid tumors (5 papillary and 5 follicular) and 5 oncocytic thyroid tumors (3 hurthle cell carcinomas and 2 hurthle cell adenomas).

Supporting Table 1. Full list of MLCL, ox-CL, CL, CL+DG and CL+PC species identified using high mass resolution/high mass accuracy and tandem mass spectrometry analyses.

Measured	Lipid	Tentative	Exact	Mass	Proposed
m/z	Class ^[a]	Attribution	m/z	Error (ppm) ^[c]	Formula
592.3641	MLCL	CL(54:5)	592.3640	0.2	$C_{63}H_{112}O_{16}P_2$
593.3722	MLCL	CL(54:4)	593.3718	0.7	$C_{63}H_{114}O_{16}P_2$
669.4135	ox-CL ^[b]	20:4/18:2/16:0/9:1(OH)	669.4137	-0.2	$C_{72}H_{126}O_{18}P_2$
670.4215	ox-CL	18:2/18:2/18:1/9:1(OH)	670.4215	-0.1	C ₇₂ H ₁₂₈ O ₁₈ P ₂
677.4108	ox-CL	18:2/18:2/18:2/9:1(OOH)	677.4112	-0.1	$C_{72}H_{126}O_{19}P_2$
678.4187	ox-CL	18:2/18:2/18:1/9:1(OOH)	678.4190	-0.3	C ₇₂ H ₁₂₈ O ₁₉ P ₂
689.4292	ox-CL	18:2/18:2/18:2/12:2(OH)	689.4293	-0.2	$C_{75}H_{130}O_{18}P_2$
690.4352	ox-CL	18:2/18:2/18:1/12:2(OH) 20:4/18:1/16:0/12:2(OH)	690.4372	-2.8	$C_{75}H_{132}O_{18}P_2$
691.4261	ox-CL	20:2/18:2/16:0/12:2(OOH)	691.4268	-1.0	$C_{74}H_{130}O_{19}P_2$
697.4279	ox-CL	CL(OO-65:8)	697.4268	1.1	C ₇₅ H ₁₃₀ O ₁₉ P ₂
697.4635	CL	18:2/18:2/18:2/14:0 20:2/18:2/16:2/14:0	697.4632	0.5	C77H138O17P2
698.4355	ox-CL	CL(OO-65:7)	698.4346	0.9	C ₇₅ H ₁₃₂ O ₁₉ P ₂
698.4709	CL	18:2/18:2/18:1/14:0	698.4710	-0.2	C77H140O17P2
699.4437	ox-CL	CL(OO-65:6)	699.4425	1.2	C ₇₅ H ₁₃₄ O ₁₉ P ₂
699.4774	CL	18:2/18:2/18:0/14:0	699.4788	-2.0	C77H142O17P2
700.4866	CL	18:1/18:1/18:1/14:0	700.4867	-0.1	C77H144O17P2
701.4929	CL	18:1/18:1/18:0/14:0	701.4945	-0.5	C ₇₇ H ₁₄₆ O ₁₇ P ₂
706.4869	CL	18:2/18:1/18:1/15:0	706.4867	0.3	C ₇₈ H ₁₄₄ O ₁₇ P ₂
710.4709	CL	18:2/18:2/18:2/16:1	710.4710	0.1	C ₇₉ H ₁₄₀ O ₁₇ P ₂
711.4767	CL	18:2/18:2/18:1/16:1 18:2/18:2/18:2/16:0	711.4788	0.4	$C_{79}H_{142}O_{17}P_2$
712.4849	CL	18:2/18:2/18:1/16:0 18:2/18:1/18:1/16:1	712.4867	0.5	C ₇₉ H ₁₄₄ O ₁₇ P ₂
713.4927	CL	18:2/18:1/18:1/16:0	713.4945	0.6	C ₇₉ H ₁₄₆ O ₁₇ P ₂
714.5012	CL	18:1/18:1/18:1/16:0	714.5023	0.4	C ₇₉ H ₁₄₈ O ₁₇ P ₂
722.4711	CL	20:4/18:3/18:1/16:1	722.4710	0.1	$C_{81}H_{140}O_{17}P_2$
723.4789	CL	18:2/18:2/18:2/18:2 20:4/18:2/18:2/16:0	723.4788	0.1	$C_{81}H_{142}O_{17}P_2$
724.4851	CL	18:2/18:2/18:2/18:1 20:2/18:2/18:1/16:2	724.4867	-1.7	C ₈₁ H ₁₄₄ O ₁₇ P ₂
725.4936	CL	20:3/18:2/18:1/16:0 20:2/18:2/18:1/16:1	725.4945	-0.9	$C_{81}H_{146}O_{17}P_2$
726.5015	CL	20:2/18:2/18:1/16:0	726.5023	-0.8	$C_{81}H_{148}O_{17}P_2$
727.5097	CL	20:2/18:2/18:0/16:0 20:2/18:1/18:1/16:0	727.5101	-0.5	$C_{81}H_{150}O_{17}P_2$
730.4684	ox-CL	CL(072:9)	730.4685	-0.2	$C_{81}H_{138}O_{18}P_2$
731.4768	ox-CL	CL(072:8)	730.4763	0.8	$C_{81}H_{140}O_{18}P_2$
732.4821	ox-CL	18:2/18:1/19:1/17:3(OH) 18:4(OH)/18:2/18:1/16:0	730.4841	-2.8	$C_{81}H_{142}O_{18}P_2$
735.4783	CL	20:4/18:2/18:2/18:2	735.4788	-0.7	$C_{83}H_{142}O_{17}P_2$

736.4866	CL	20:4/18:2/18:2/18:1 20:3/18:2/18:2/18:2	736.4867	-0.1	C ₈₃ H ₁₄₄ O ₁₇ P ₂
737.4944	CL	20:4/18:2/18:1/18:1 20:3/18:2/18:2/18:1 20:2/18:2/18:2/18:2	737.4945	-0.1	C ₈₃ H ₁₄₆ O ₁₇ P ₂
738.5022	CL	20:4/20:2/18:1/16:0 20:3/18:2/18:1/18:1 20:2/18:2/18:2/18:1	738.5023	-0.2	C ₈₃ H ₁₄₈ O ₁₇ P ₂
739.4740	ox-CL	CL(0072:8)	739.4738	0.2	C ₈₁ H ₁₄₂ O ₁₉ P ₂
740.4803	ox-CL	CL(0072:7)	740.4810	-1.3	C ₈₁ H ₁₄₄ O ₁₉ P ₂
745.4914	ox-CL	CL(074:8)	745.4910	-0.7	C ₈₃ H ₁₄₄ O ₁₈ P ₂
746.4982	ox-CL	CL(074:7)	746.4998	-2.1	C ₈₃ H ₁₄₆ O ₁₈ P ₂
747.4780	CL	22:6/20:4/18:2/16:0	747.4788	-0.8	C ₈₅ H ₁₄₂ O ₁₇ P ₂
748.4836	CL	22:6/20:4/18:1/16:0	748.4867	0.1	C ₈₅ H ₁₄₄ O ₁₇ P ₂
749.4942	CL	22:5/20:4/18:1/16:0	749.4945	-0.4	C ₈₅ H ₁₄₆ O ₁₇ P ₂
750.5024	CL	22:4/20:4/18:1/16:0	750.5023	-1.1	C ₈₅ H ₁₄₈ O ₁₇ P ₂
751.5101	CL	22:4/20:4/18:0/16:0	751.5101	0.1	$C_{85}H_{150}O_{17}P_2$
752.5172	CL	22:4/20:4/18:0/16:0	752.5180	-0.9	$C_{85}H_{152}O_{17}P_2$
753.5263		22:4/20:3/18:0/16:0	/52.5258	0.7	$C_{85}H_{154}O_{17}P_2$
1019.7316	CL+DG	CL+DG(106:10)	1019.7322	-0.6	$C_{118}H_{210}O_{22}P_2$
1020.7387		CL+DG(106:9)	1020.7400	-1.3	$C_{118}H_{212}O_{22}P_2$
1021.7440		CL+DG(106:8)	1021.7478	-3.7	$C_{118}H_{214}O_{22}P_2$
1022.7525		CL+DG(1067)	1022.7556	-3.0	$C_{118}\Pi_{216}O_{22}P_2$
1031.7322		CL+DG(108:12)	1031.7322	<0.1	$C_{120}\Pi_{210}O_{22}P_2$
1032.7390		CL + DG(108.11)	1032.7410	-1.9	$C_{120} \Box_{212} O_{22} C_{22}$
1033.7401		CL + DG(108.10)	1033.7476	-1.0	
1034.7520		CL+DG(108.9)	1034.7550	-2.9	
1036.7675		CL + DG(108.3)	1035.7033	-3.0	C1201 1218 O22F 2
1044 7405		CL + DG(100.7)	1044 7465	-5.7	C12011220O2212
1045 7477		CL + DG(110.12)	1045 7478	-0.1	C12211214O221 2
1046 7529		CL + DG(110.11)	1046 7556	-2.6	C12211216O2212
1047 7614	CL+DG	CL + DG(110.10)	1047 7635	-2.0	C122H218C22F2
1048,7702	CL+DG	CI + DG(110.9)	1048,7713	-1.0	C122H220O22F2
1049.7748	CL+DG	CL+DG(110:8)	1049.7791	-4.1	C122H224O22P2
1057.7463	CL+DG	CL+DG(112:14)	1057.7478	-1.4	C124H214O22P2
1058.7523	CL+DG	CL+DG(112:13)	1058.7556	-3.1	C ₁₂₄ H ₂₁₆ O ₂₂ P ₂
1059.7627	CL+DG	CL+DG(112:12)	1059.7635	-0.8	C ₁₂₄ H ₂₁₈ O ₂₂ P ₂
1060.7675	CL+DG	CL+DG(112:11)	1060.7713	-3.6	C ₁₂₄ H ₂₂₀ O ₂₂ P ₂
1061.7766	CL+DG	CL+DG(112:10)	1061.7791	-2.4	C ₁₂₄ H ₂₂₂ O ₂₂ P ₂
1062.7833	CL+DG	CL+DG(112:9)	1062.7869	-3.4	C ₁₂₄ H ₂₂₄ O ₂₂ P ₂
1071.7613	CL+DG	CL+DG(114:14)	1071.7635	-2.1	C ₁₂₆ H ₂₁₈ O ₂₂ P ₂
1072.7684	CL+DG	CL+DG(114:13)	1072.7713	-2.7	$C_{126}H_{220}O_{22}P_2$
1073.7771	CL+DG	CL+DG(114:12)	1073.7863	-8.6	$C_{126}H_{222}O_{22}P_2$
1074.7843	CL+DG	CL+DG(114:11)	1074.7869	-2.4	$C_{126}H_{224}O_{22}P_2$
1075.7928	CL+DG	CL+DG(114:10)	1075.7948	-1.9	$C_{126}H_{226}O_{22}P_2$
1089.2522	CL+PC	CL+PC(104:11)	1089.2521	0.1	$C_{121}H_{220}O_{25}NP_3$
1090.2583	CL+PC	CL+PC(104:10)	1090.2599	-1.5	$C_{121}H_{222}O_{25}NP_3$
1091.2647	CL+PC	CL+PC(104:9)	1091.2677	-2.7	$C_{121}H_{224}O_{25}NP_3$

			1		
1092.2732	CL+PC	CL+PC(104:8)	1092.2756	-2.2	C ₁₂₁ H ₂₂₆ O ₂₅ NP ₃
1093.2802	CL+PC	CL+PC(104:7)	1093.2834	-2.9	$C_{121}H_{228}O_{25}NP_3$
1094.2873	CL+PC	CL+PC(104:8)	1094.2912	-3.6	$C_{121}H_{230}O_{25}NP_3$
1102.2593	CL+PC	CL+PC(106:12)	1102.2599	-0.5	$C_{123}H_{222}O_{25}NP_3$
1103.2670	CL+PC	CL+PC(106:11)	1103.2677	-0.6	$C_{125}H_{224}O_{25}NP_3$
1104.2745	CL+PC	CL+PC(106:10)	1104.2756	-1.0	$C_{125}H_{224}O_{25}NP_3$
1105.2811	CL+PC	CL+PC(106:9)	1105.2834	-2.1	$C_{125}H_{224}O_{25}NP_3$
1115.2657	CL+PC	CL+PC(108:11)	1115.2677	-1.8	$C_{125}H_{224}O_{25}NP_3$
1116.2740	CL+PC	CL+PC(108:10)	1116.2756	-1.4	$C_{125}H_{226}O_{25}NP_3$
1117.2816	CL+PC	CL+PC(108:9)	1117.2834	-1.6	$C_{125}H_{228}O_{25}NP_3$
1118.2878	CL+PC	CL+PC(108:8)	1118.2912	-3.0	$C_{125}H_{230}O_{25}NP_3$
1119.2960	CL+PC	CL+PC(108:7)	1119.2990	-2.7	$C_{125}H_{232}O_{25}NP_3$
1128.2744	CL+PC	CL+PC(110:14)	1128.2756	-1.1	$C_{127}H_{226}O_{25}NP_3$
1129.2818	CL+PC	CL+PC(110:13)	1129.2834	-1.4	C ₁₂₇ H ₂₂₈ O ₂₅ NP ₃
1130.2880	CL+PC	CL+PC(110:12)	1130.2912	-2.8	$C_{127}H_{230}O_{25}NP_3$
1131.2939	CL+PC	CL+PC(110:11)	1131.2990	-4.5	$C_{127}H_{232}O_{25}NP_3$
1132.3024	CL+PC	CL+PC(110:10)	1132.3069	-4.0	$C_{127}H_{234}O_{25}NP_3$
1133.3098	CL+PC	CL+PC(110:9)	1133.3147	-4.3	$C_{127}H_{236}O_{25}NP_3$
1141.2814	CL+PC	CL+PC(112:13)	1141.2834	-1.8	$C_{129}H_{228}O_{25}NP_3$
1142.2887	CL+PC	CL+PC(112:12)	1142.2912	-2.2	$C_{129}H_{230}O_{25}NP_3$
1143.2960	CL+PC	CL+PC(112:11)	1143.2990	-2.6	$C_{129}H_{232}O_{25}NP_3$
1144.3048	CL+PC	CL+PC(112:10)	1144.3069	-1.8	$C_{129}H_{234}O_{25}NP_3$
1145.3104	CL+PC	CL+PC(112:9)	1145.3147	-3.8	$C_{129}H_{236}O_{25}NP_3$
1146.3199	CL+PC	CL+PC(112:8)	1146.3225	-2.3	$C_{129}H_{238}O_{25}NP_3$

^[a] CL = cardiolipin (X:Y) denotes the total number of carbons and double bonds in the fatty acid chains.

^[b] ox-CL =oxidized cardiolipin

^[c] Mass errors were calculated based on the exact monoisotopic m/z of the deprotonated form of the

assigned molecules.