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Supplementary Figure 1: Targeted sequencing data of ten samples from pancreatic cancer
patient Pam031,2. a | Violin plots depicting VAF distribution in each sample. Numbers at the top
denote the by Treeomics estimated neoplastic cell content in each sample. b | Violin plots depicting the
sequencing depth distribution across variants in each sample. Numbers at the top denote the median
sequencing depth in each sample. Pancreatic ductal adenocarcinoma: LiM 1-5 (liver metastases), LuM 1-
3 (lung metastases), PT 10 and 11 (primary tumor). Sequencing data are provided in Supplementary
Data 1.
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Supplementary Figure 2: Illustrative reconstruction of the evolutionary history from noisy DNA
sequencing data. a | DNA sequencing is performed on samples from three spatially-distinct metastases.
Variants α and β are detected in sample of Met 1 (blue), α and γ in sample of Met 2 (red), and γ
and δ in sample of Met 3 (green). b | Analyzing samples of Met 1 and Met 2 together suggests that α
was acquired before γ. Analyzing samples of Met 2 and Met 3 together suggests that γ was acquired
before α. c | If all three samples are analyzed together, α and γ create an evolutionary contradiciton.
d | Variants α and γ constitute evolutionarily incompatible mutation patterns since there are samples
where both variants are present and samples where either of the two variants are present and the other
one is absent. No perfect and persistent phylogeny exists for the given data.
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Supplementary Figure 3: Evolutionary conflict graph of the sequencing data of patient Pam03.
Evolutionary incompatibilities are demarcated by red lines (edges) in the center of the circle and connect
each pair of evolutionarily incompatible nodes (mutation patterns). Each sample is depicted by a circular
line. Black dotes denote the presence of variants in the corresponding sample. Numbers denote the
reliability score of each mutation pattern. Blue colored nodes were identified as evolutionarily compatible
and red colored nodes were identified as evolutionarily incompatible by Treeomics. Nodes with a reliability
score below 0.01 are not shown. Pancreatic ductal adenocarcinoma: LiM 1-5 (liver metastases), LuM 1-3
(lung metastases), PT 10 and 11 (primary tumor).
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Supplementary Figure 4: Reconstructed evolution of patient Pam03’s pancreatic cancer from
whole genome sequencing data. a | Evolutionary conflict graph. Evolutionary incompatibilities are
demarcated by red lines (edges) in the center of the circle and connect each pair of incompatible nodes
(mutation patterns). Each sample is depicted by a circular line. Black dotes denote the presence of
variants in the corresponding sample. Numbers denote the reliability score of each mutation pattern.
Blue colored nodes were identified as evolutionarily compatible and red colored nodes were identified
as evolutionarily incompatible by Treeomics. Nodes with a reliability score below 0.01 are not shown.
b | Based on the identified evolutionarily compatible mutation patterns in panel a, a unique evolutionary
tree exists. Treeomics reconstructed the same evolutionarily related group of samples as from targeted
sequencing data (Fig. 2c). SC indicate predicted subclones. Note that Treeomics could not use its
full statistical power because the VCF-files only provided the sequencing data of the called variants in
each particular sample. Therefore, the divergence of the low-purity sample LuM 1 remained inconclusive
despite the high bootstrapping values from 1000 samples (significantly fewer variants were identified by
the variant caller in LuM 1). Lung metastases (LuM 1-3) are depicted in red; Liver metastases (LiM 1-5)
are depicted in green; Primary tumor samples (PT 10-11) are depicted in black.
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Supplementary Figure 5: Reconstructed evolutionary history of patient Pam01’s pancreatic
cancer1,2. a | Presence likelihoods of variants across six samples. Dark blue rectangles correspond to
likely present variants, dark red to likely absent variants, and white to unknown presence or absence. The
Bayesian classification is based on the number of supporting variant reads, the coverage, the estimated
sample purity and the sequencing error rate e = 0.5%. b | Evolutionary conflict graph. Evolutionary
incompatibilities are demarcated by red lines (edges) in the center of the circle and connect each pair
of incompatible nodes (mutation patterns). Each sample is depicted by a circular line. Black dotes
denote the presence of variants in the corresponding sample. Numbers denote the reliability score of
each mutation pattern. Blue colored nodes were identified as evolutionarily compatible and red colored
nodes were identified as evolutionarily incompatible by Treeomics. Nodes with a reliability score below
0.01 are not shown. c | Evolutionary tree was reconstructed based on the identified evolutionarily
compatible mutation patterns in panel b. Blue gene names correspond to acquired mutations in driver
genes. Percentages (gray) denote bootstrap values (1,000 samples). Pancreatic ductal adenocarcinoma:
liver metastases (depicted in green: LiM 1 and LiM 2), lymph node metastases (depicted in magenta:
NoM 1 and NoM 2), primary tumor (depicted in black: PT 1 and PT 2). Targeted sequencing data are
provided in Supplementary Data 2.
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Supplementary Figure 6: Reconstructed evolutionary history of patient Pam02’s pancreatic
cancer1,2. a | Presence likelihoods of variants across eleven samples. Dark blue rectangles correspond to
likely present variants, dark red to likely absent variants, and white to unknown presence or absence. The
Bayesian classification is based on the number of supporting variant reads, the coverage, the estimated
sample purity and the sequencing error rate e = 0.5% (Online Methods). b | Evolutionary conflict
graph. Evolutionary incompatibilities are demarcated by red lines (edges) in the center of the circle and
connect each pair of incompatible nodes (mutation patterns). Each sample is depicted by a circular line.
Black dotes denote the presence of variants in the corresponding sample. Numbers denote the reliability
score of each mutation pattern. Blue colored nodes were identified as evolutionarily compatible and red
colored nodes were identified as evolutionarily incompatible by Treeomics. Nodes with a reliability score
below 0.01 are not shown. c | Evolutionary tree was reconstructed based on the identified evolutionarily
compatible mutation patterns in panel b. Blue gene names correspond to acquired mutations in driver
genes. Percentages (gray) denote bootstrap values (1,000 samples). Pancreatic ductal adenocarcinoma:
liver metastases (depicted in green: LiM 1-8), primary tumor (depicted in black: PT 4, 9 and 18).
Targeted sequencing data are provided in Supplementary Data 3.
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Supplementary Figure 7: Reconstructed evolution of the high-grade serous ovarian cancer of
Case 5 in Bashashati et al.3. a | Presence likelihoods of deeply sequenced variants across eight
samples provided in Bashashati et al. (2013, Supplementary Table 2). Dark blue rectangles correspond
to likely present variants, dark red to likely absent variants, and white to unknown presence or absence.
b | Evolutionary conflict graph. Evolutionary incompatibilities are demarcated by red lines (edges) in
the center of the circle and connect each pair of incompatible nodes (mutation patterns). Black dotes
denote the presence of variants in the corresponding sample. Numbers denote the reliability score of each
mutation pattern. Blue colored nodes were identified as evolutionarily compatible and red colored nodes
were identified as evolutionarily incompatible by Treeomics. Nodes with a reliability score below 0.01
are not shown. c | Evolutionary tree was reconstructed based on the identified evolutionarily compatible
mutation patterns in panel b. In contrast to Bashashati et al. who suggested an early divergence
of sample c, Treeomics clustered sample c together with sample a (other clusters are similar to their
results, e.g. samples b, f, and h). Careful analysis of the sequencing data revealed that samples a and c
should be clustered together as otherwise multiple validated variants would have occurred independently
twice (Fig. 1D in Bashashati et al., 2013). Numbers in blue correspond to the acquired variants in the
branches. Blue gene names correspond to acquired mutations in driver genes. Percentages (gray) denote
bootstrap values (1,000 samples). Sample origin: right ovary (a), left ovary (b-e), left para-aortic lymph
node (f), left iliac lymph node (g), left fallopian tube lesion (h). Median coverage: 12,297.5. Parameter
values: error rate e = 1%.
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Supplementary Figure 8: Reconstructed evolution of the high-grade serous ovarian cancers in
Bashashati et al.3. Percentages (gray) denote bootstrap values (1,000 samples). Inferred trees were
identical to the ones in the original publication, except of Case 1. The low bootstrap values for Case
1 indicate the uncertainty of the by Treeomics inferred phylogyeny. Popic et al.4 inferred yet another
phylogeny for Case 1 from ours and the one reported in Bashashati et al.3. The different phylogenies
inferred for Case 1 highlight that phylogenies without confidence measures can be very hard to interpret.
Parameter values: error rate e = 1%.
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Supplementary Figure 9: Detecting putative subclones from evolutionarily incompatible muta-
tion patterns and the evolution of the prostate cancer of case 6 in Cooper et al.5. a | Evolutionary
conflict graph. Genome-wide DNA sequencing data was extracted from Cooper et al. (2015, Supple-
mentary Tables 3 and 4). Each sample is depicted by a circular line. Black dotes denote the presence of
variants in the corresponding sample. Evolutionary incompatibilities are demarcated by red lines (edges)
in the center of the circle and connect each pair of incompatible nodes (mutation patterns). Numbers
denote the reliability score of each mutation pattern. Blue colored nodes were identified as evolutionarily
compatible and red colored nodes were identified as evolutionarily incompatible by Treeomics. Observe
the high reliability score (0.2) of the evolutionarily incompatible mutation pattern to the right. Reliability
scores of remaining incompatible patterns are 10-fold lower. Nodes with a reliability score below 0.01
are not shown. b | Treeomics correctly identified a subclone in sample T1 and inferred the identical
evolutionary tree as in Cooper et al. (2015, Fig. 2a). SC indicate predicted subclones. Low VAFs
(median: 17.3%) of all variants present only in sample T1 provide additional evidence for mixed sub-
clones in this sample. Variants detected only in sample T1 can not be assigned to one of the putative
subclones by Treeomics. Existing methods to reconstruct the subclonal composition would assign these
private mutation also to the inferred subclones6–11. Sample origin: spatially-distinct prostate regions.
Cancerous samples are depicted in black and the normal sample is depicted in gray (dashed box).
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Treeomics Maximum parsimony Neighbor joining

Supplementary Figure 10: Average branching error comparison between Treeomics, maximum
parsimony and neighbor joining without conditioning on at least one acquired mutation per
branch. Note that the branching error of ≈ 15% is due to no exonic mutations on the inner branches and
therefore no tool can correctly reconstruct these branching patterns based on whole exome sequencing
data alone. In the case of an elevated mutation rate, this lower bound on the branching error can further
decrease. For each combination of sample purity and mean coverage, 500 independently simulated
phylogenies were considered. See Online Methods for branching error calculation. Necessary binary
present/absent classification for maximum parsimony and neighbor joining was based on Treeomics
Bayesian inference model (variant was present if p > 50%). Simulation parameter values: number of
monophyletic metastases m = 6, sequencing error e = 0.5%, point mutation rate u = 5 · 10−10, CNV
rate 0.1%.
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Supplementary Figure 11: Average mutation matrix error score comparison between Treeomics
and LICHeE4. For each combination of sample purity and mean coverage, 500 independently simulated
phylogenies were considered. See Online Methods for mutation matrix error score calculation. We were
unable to run PhyloWGS10 on these datasets as its runtime increased significantly with the higher number
of detected variants (despite only providing founder and parsimony-informative variants). a | Point
mutation rate of u = 5 · 10−1012. b | Elevated point mutation rate of u = 10−9. c | Elevated point
mutation rate of u = 5·10−9. Simulation parameter values: number of monophyletic metastases m = 6,
sequencing error e = 0.5%, CNV rate 0.1%.
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Supplementary Figure 12: Average mutation matrix error score comparison for highly chromo-
somally unstable cancers between Treeomics, LICHeE4 and PhyloWGS10. The performance of
all tools decreased with an increasing CNV accumulation rate. However, even for highly chromosomally
unstable cancers Treeomics performs well across most scenarios13,14. For each combination of sam-
ple purity and mean coverage, 500 independently simulated phylogenies were considered. See Online
Methods for mutation matrix error score calculation. We explored a similar parameter range for the per
division rate for chromosomal alterations as by Gao et al.15. In the orange-framed scenarios, LICHeE
was unable to infer a valid folution for more than 50% of the cases. a | Per division CNV rate of 0.1%.
b | Elevated CNV rate of 1%. c | Elevated CNV rate of 10%. Simulation parameter values: number of
monophyletic metastases m = 6, sequencing error e = 0.5%, point mutation rate u = 5 · 10−10.
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Supplementary Figure 13: Inferred subclonal sample compositions for Pam03 by AncesTree8.
AncesTree similarily identified the evolutionarily related group of samples (LiM 2-5 and PT 11). 70%
(63/90) of the variants had to be ignored such that ancestral relationships could be inferred. Used
default parameter values of AncesTree: α = 0.3, β = 0.8, γ = 0.01.
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Gene name Position
CRGalign36

within 500b LiM 1 LiM 2 LiM 3 LiM 4 LiM 5 LuM 1 LuM 2 LuM 3 PT 10 PT 11
within 50b

ANKRD30A chr10:37438758 Low 0.202 0.223 0.146 0.151 0.180 0.000 0.000 0.000 0.157 0.137
ATM chr11:108192148 Normal Low 0.224 0.272 0.197 0.241 0.157 0.104 0.188 0.179 0.229 0.281
AVEN chr15:34331031 Normal Normal 0.000 0.261 0.000 0.000 0.231 0.000 0.000 0.000 0.000 0.131

CALCRL chr2:188293620 Nearby low 0.167 0.000 0.308 0.000 0.109 0.000 0.000 0.000 0.000 0.244
CDKAL1 chr6:21089124 Low 0.209 0.156 0.217 0.250 0.281 0.000 0.000 0.000 0.293 0.351
CENPQ chr6:49456158 Normal Low edge 0.121 0.187 0.238 0.000 0.147 0.000 0.000 0.113 0.194 0.182
DNHD1 chr11:6567175 Normal Normal 0.113 0.273 0.273 0.244 0.217 0.167 0.000 0.123 0.200 0.233
DOCK2 chr5:169135251 Normal Low edge 0.110 0.281 0.351 0.170 0.303 0.120 0.130 0.134 0.273 0.270
ELAVL4 chr1:50610767 Normal Normal 0.152 0.269 0.220 0.200 0.204 0.000 0.000 0.000 0.192 0.200
FAM59A chr18:29992995 Low 0.000 0.000 0.000 0.154 0.000 0.000 0.000 0.000 0.000 0.000
HOXD1 chr2:176972815 Normal Normal 0.000 0.000 0.000 0.000 0.195 0.000 0.231 0.109 0.000 0.355
HTT chr4:3156068 Normal Low 0.216 0.291 0.214 0.173 0.260 0.124 0.200 0.136 0.310 0.189

KCTD16 chr5:143853421 Normal Normal 0.154 0.298 0.178 0.167 0.143 0.000 0.000 0.121 0.164 0.211
KIAA1804 chr1:233497916 Normal Normal 0.000 0.224 0.149 0.000 0.217 0.000 0.000 0.000 0.118 0.160
KRAS chr12:25380275 Low 0.330 0.458 0.363 0.370 0.375 0.175 0.189 0.187 0.462 0.297
MNAT1 chr14:61285437 Normal Normal 0.144 0.250 0.269 0.194 0.222 0.000 0.138 0.157 0.257 0.233
NBEAL1 chr2:203927006 Normal Normal 0.200 0.213 0.259 0.175 0.167 0.113 0.182 0.127 0.238 0.306
NEK chr14:75563830 Normal Low 0.158 0.254 0.268 0.130 0.234 0.065 0.083 0.156 0.300 0.247
NRP chr10:33559603 Normal Low 0.000 0.000 0.000 0.000 0.000 0.000 0.106 0.011 0.000 0.000
PAIP1 chr5:43536951 Low 0.139 0.279 0.189 0.125 0.195 0.000 0.125 0.000 0.274 0.256
PIWIL4 chr11:94310464 Normal Low edge 0.129 0.295 0.311 0.185 0.171 0.000 0.000 0.000 0.198 0.158
PRPF39 chr14:45579854 Normal Normal 0.153 0.231 0.238 0.000 0.147 0.121 0.129 0.000 0.257 0.244
RGPD1 chr2:88124772 Low 0.000 0.000 0.000 0.101 0.000 0.000 0.000 0.000 0.000 0.000
SF3B3 chr16:70604043 Normal Low 0.182 0.281 0.241 0.120 0.170 0.182 0.130 0.000 0.244 0.214
SNX14 chr6:86282022 Normal Low edge 0.171 0.259 0.215 0.250 0.282 0.147 0.115 0.167 0.241 0.267
SP140 chr2:231115733 Low 0.243 0.316 0.319 0.000 0.000 0.136 0.115 0.117 0.130 0.278
WDR19 chr4:39219674 Normal Low edge 0.160 0.337 0.280 0.310 0.316 0.000 0.129 0.000 0.182 0.169
ZNF285 chr19:44892228 Low dbSNP site 0.108 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ZNF700 chr19:12059902 Low 0.176 0.261 0.292 0.101 0.278 0.000 0.000 0.000 0.148 0.229

Supplementary Table 1: Under-powered false-negatives: 89% (49/55) of the predicted under-powered false-negatives were
either present in the whole-genome sequencing data or their genome region possesses a low alignability score. Numbers greater
than zero denote the variant allele frequencies in the whole-genome sequencing data of the variants classified as present. Variants marked
in red are predicted under-powered false-negatives (Fig. 2b). 69% (38/55) of the predicted under-powered false-negatives were indeed
present in the whole-genome sequencing data. 51% (28/55) of the predicted under-powered false-negatives possess a low alignability
score16 in the UCSC genome browser17 in the region around the variant.

13



Gene name Position
CRGalign36

within 500b LiM 1 LiM 2 LiM 3 LiM 4 LiM 5 LuM 1 LuM 2 LuM 3 PT 10 PT 11
within 50b

SUV39H1 chrX:48564780 Normal Normal 0.000 0.000 0.000 0.000 0.000 0.000 0.261 0.290 0.000 0.000
WBSCR17 chr7:70597468 Normal Normal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.186 0.000

Supplementary Table 2: Powered false-negatives: 0% (0/13) of the predicted powered false-negatives were present in the
whole-genome sequencing data. Numbers greater than zero denote the variant allele frequencies in the whole-genome sequencing
data of the variants classified as present. Variants marked in red are predicted powered false-negatives (Fig. 2b).

Gene name Position
CRGalign36

within 500b LiM 1 LiM 2 LiM 3 LiM 4 LiM 5 LuM 1 LuM 2 LuM 3 PT 10 PT 11
within 50b

abParts chr22:23243367 Low 0.000 0.000 0.000 0.000 0.000 0.000 0.242 0.000 0.000 0.000
GGT1 chr22:25016911 Low 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.177 0.000 0.000
MTUS chr8:17581311 Normal Low edge 0.000 0.000 0.000 0.000 0.000 0.060 0.058 0.139 0.000 0.000

PRAMEF1 chr1:12853509 Low 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.149 0.000 0.000
PTPRT chr20:40979337 Low 0.110 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010
UBE2E2 chr3:22423529 Low 0.000 0.000 0.118 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Supplementary Table 3: False-positives: 92% (12/13) of the predicted false-positives were also absent in the whole-genome
sequencing data. Numbers greater than zero denote the variant allele frequencies in the whole-genome sequencing data of the variants
classified as present. Variants marked in red are predicted false-positives (Fig. 2b).
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Supplementary Methods: Bayesian Inference Model

We design the reliability score function such that the optimization problem specified by the

weighted minimum vertex cover results in the maximum likelihood evolutionarily compatible

mutation patterns.

Observation Likelihoods

The likelihood of a variant being present or absent is given by the number of reads reporting

the variant K and the sequencing coverage N . We denote the posterior probability of a

variant µ occurring in sample s as pµ,s. A mutation pattern ν is a vector where νs = 1 if

the mutation is present in sample s and 0 otherwise. There are 2|S| such vectors (patterns)

where S is the set of all samples.

We proceed with a binomial likelihood sampling approach, but any likelihood approach

will work. A prior probability distribution of allele frequencies denoted by π and a sequencing

error rate denoted by e are required. This error rate can be sample and/or mutation-specific

and might be higher than the actual errors of the sequencing machine due to multi-sample

filtering and variant calling. Given K variant reads and N total reads at a locus, the posterior

distribution of the true fraction of variant reads f is

P (f |N ,K) =
1

Z
·
(
N

K

)
· [f(1− e) + (1− f)e]K · [f · e+ (1− f)(1− e)]N−K · π(f) . (1)

where Z is a normalizing constant. A priori, there is a nonzero probability c0 of a variant to

be absent (f = 0) in a particular sample. The prior π is then of the form

π(f) = c0 ·δ(f)+(1−c0)·
Γ(α + β)

Γ(α)Γ(β)
·[f(1− e) + (1− f)e)]α−1 ·[(1− f)(1− e) + f · e]β−1 (2)

where δ(f) denotes the Dirac delta function and Γ denotes the gamma function (used to

express the beta function with the shape parameters α and β). Since the posterior probability

that a given variant is absent in a sample s also depends on the sample’s neoplastic cell

content, we set the default values of the hyperparameters to α = 1.0 and to β = 1.0/γs

where γs is the estimated sample purity. The sample-specific prior enables us to account for

the varying neoplastic cell content in the different samples (Fig. 14).

The posterior probability that a variant µ in sample s is present with a true fraction of
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Supplementary Figure 14: Posterior probability that a variant is absent in samples with varying
neoplastic cell contents. Panels a-c show the posterior probability that a variant reported in K
sequencing reads and covered by N sequencing reads in total is absent in a sample with a given neoplastic
cell content (100%, 50%, 20%). By construction of our Bayesian model, a variant with low coverage
in some samples will have rather low mutation pattern likelihoods L even if the coverage is high in
the remaining samples. Note that for a sample with low neoplastic cell content (e.g., panel c) the
posterior probability that a variant is absent is lower for the same K and N than as in a sample with
high neoplastic cell content (e.g., panel a). Parameter values: sequencing error rate e = 1%, nonzero
probability c0 = 0.5, maximal absent frequency fabsent = 0.05.

variant reads f is

pµ,s = 1− P (f ≤ fabsent · γs|Nµ,s,Kµ,s) (3)

where fabsent is the maximal frequency threshold for an absent SNV. To ensure a smooth

solution space exploration we introduce a lower and an upper bound of pµ,s. We assume an

upper bound of one minus the probability that a variant is independently acquired twice and

detected in the bulk sequencing data. We approximate the probability to acquire the same

variant twice as the number of detected mutations divided by the number of sequenced base

pairs (≈ 1−2·10−6; assuming ≈ 1 exonic mutation per megabase18 and 45 megabases covered

by Illumina exome sequencing). The lower bound for pµ,s is assumed to be ≈ 10−2 − 10−4

(default: 10−4) to account for the possibility of loss of heterozygosity19.

We assume a priori that mutations occur independently between samples, and that vari-

ants exhibit mutation patterns independently of other variants. The joint likelihood of a

particular mutation µ having mutation pattern ν is

Lµ(ν) =
∏
s∈S

(pµ,s)
νs · (1− pµ,s)1−νs . (4)
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If we sum over all mutation patterns ν for a particular variant µ, we obtain

∑
ν

Lµ(ν) = 1 . (5)

If we fix the mutation pattern ν, then we obtain the probability that all variants exhibit ν

L(ν) =
∏
µ

Lµ(ν) = Pr(all mutations have pattern ν) . (6)

Finally, we observe that the likelihood that no mutation (assuming that mutations are inde-

pendent of each other and across samples) has pattern ν is

Eν =
∏
µ

(1− Lµ(ν)) . (7)

Purity estimation. We developed a simplistic method to estimate the purity γs of

a sample s by taking two times the median VAF of all founding (present in all samples)

and parsimony-informative mutations (present in more than one but not in all samples;

preferably those present in the majority of samples) in a given sample. However, a variety of

more sophisticated purity estimation methods can be used here. Despite possible aneuploidy

of cancer cells, we find that the median mean absolute error of our estimator is 2% across

purities from 15% to 95% and mean coverages from 25 to 800 in our simulated data sets

(Supplementary Table 4). We could also use cancer cell fractions (CCFs) in the model

which may further increase the accuracy of Treeomics. Multiple other tools are available to

infer CCFs20–22. For some cancers (e.g., low-cellularity cancers) and some data types (e.g.

targeted sequencing data23), CCF esimation is challenging. For generality, we therefore chose

to directly use VAFs (possibly of SNVs in copy-number-neutral regions).

Reliability Scores

We define the reliability score (weight function) ων of a particular mutation pattern ν (node

in the evolutionary conflict graph) as

wν =
− log(Eν)

m
. (8)

With this weight function normalized by the number of considered variants m, the mini-
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Coverage

Purity 25 50 100 200 400 800

15% 10.0% 5.0% 2.3% 1.5% 1.1% 0.9%

35% 6.3% 3.3% 2.0% 1.5% 1.1% 0.9%

55% 5.8% 3.6% 2.4% 1.8% 1.3% 0.9%

75% 5.7% 3.9% 2.7% 1.8% 1.4% 0.9%

95% 4.4% 3.4% 2.5% 1.8% 1.5% 1.0%

Supplementary Table 4: Mean absolute error of the Treeomics purity estimation across a
wide range of mean sequencing depths and neoplastic cell contents. Data were simulated by a
stochastic continuous-time multi-type branching process (see Online Methods for details). 500 instances
per considered scenario. Parameter values: point mutation rate u = 5 · 10−10, CNV accumulation rate
0.1%.

mum weight vertex cover corresponds to the set of mutation patterns which are most likely

to jointly be exhibited by no variant. This score captures the uncertainty in the sequencing

data supporting a particular node. Mutation patterns supported by high quality sequencing

data and multiple variants will naturally have high reliability scores wν . How these reliability

scores are used to find the most reliable and evolutionarily compatible mutation patterns is

described in Section .
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TCGA code Cancer type Tumor samples Mean purity 25% quantile

BLCA
Bladder Urothelial

101 59.5% 44%
Carcinoma

BRCA Breast Invasive Carcinoma 838 59.1% 46%

COAD Colon Adenocarcinoma 400 63.8% 52%

GBM Glioblastoma Multiforme 548 73.4% 63%

HNSC
Head and Neck

299 50.1% 37%
Squamous Cell Carcinoma

KIRC
Kidney Renal Clear

416 54.7% 44%
Cell Carcinoma

LUAD Lung Adenocarcinoma 354 46.5% 33%

LUSC
Lung Squamous

332 50.0% 34%
Cell Carcinoma

OV Ovarian Carcinoma 555 76.8% 68%

READ Rectum Adenocarcinoma 159 65.4% 55%

UCEC
Uterine Corpus

396 72.5% 63%
Endometrial Carcinoma

4398 63.3% 44%

Supplementary Table 5: Reanalyzed estimated purity in 4398 published samples across 11
cancer types. According to ABSOLUTE the mean purity across these 4398 samples from The Cancer
Genome Atlas (TCGA) is 62.3%20,24, despite the TCGA rule to only accept samples with a cellularity
above 60% and therefore excluding low-cellularity cancers as pancreatic. 28% (1221) of all samples
have a cellularity below 50%24,25.
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Supplementary Methods: Subclone Detection Algorithm

In this section we describe how Treeomics detects subclones with evolutionarily conflicting

trajectories based on the identified mutation patterns and their reliability scores. If an

identified evolutionarily incompatible mutation pattern has a reliability score higher than

expected just by false-positives and false-negatives, we hypothesize that a metastasis might

have been co-seeded by multiple sites. Treeomics evaluates these different scenarios. If there

is sufficient evidence, Treeomics generates additional subclones to better explain the given

data and reconstructs the evolutionary history of a subject by separating the evolutionary

trajectories of the identified subclones. The following pseudocode explains the subclone

detection procedure in detail:

1. Calculate the minimum number of variant reads kmin such that p > 50% (Equation (3))

at the median coverage Nmedian and estimated purity fpur in each sample s (see purity

estimation in Section ).

2. False-positives: Calculate the probability to observe ksmin
or more variant reads due to

a sequencing error rate e in each sample s:

Psfp(X ≥ ksmin
) = 1−

ksmin−1∑
i=0

(
Nmedian

i

)
· ei · (1− e)Nmedian−i . (9)

3. False-negatives: Calculate the probability to observe fewer than ksmin
variant reads of

a clonal variant in a sample s with purity fpur assuming diploid cancer cells:

Psfn(X < ksmin
) =

ksmin−1∑
i=0

(
Nmedian

i

)
·
(
fpur

2

)i
· (1− fpur

2
)Nmedian−i . (10)

4. The likelihood of a mutation pattern ν induced by at least one wrong variant call is

then given by Lν = 1−∏s(1− Psfp − Psfn − pLOH) where pLOH denotes the probability

that a previously acquired SNV is lost due to LOH19. In the case of SNVs in copy-

number-neutral regions of the genome, pLOH can be set to zero.

5. Run through all incompatible mutation patterns ν with a reliability score (Equa-

tion (8))

ων > −
log [(1− Lν)m]

m
= − log(1− Lν) (11)
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where m is the number of provided variants.

If all evolutionarily incompatible mutation patterns have a reliability score lower than

just expected by noise, the data do not indicate the presence of a notable subclone. End

procedure. Note that samples with low coverage or low purity increase this threshold

and hence influence the subclone detection ability significantly (similarly as in existing

tools; Fig. 4).

If some evolutionarily incompatible mutation patterns pass the threshold, we investi-

gate each of these patterns ν in decreasing order of their reliability score:

(a) Find highest ranked conflicting mutation pattern ξ (neighbor of ν in the conflict

graph; see Online Methods) that was part of the inferred solution.

(b) Take intersection ∆ of ξ and ν. Mutations that caused the evolutionary incom-

patiblity possibly exist in distinct subclones in the samples in ∆. These mutations

were acquired on different evolutionary trajectories and thereby create the incom-

patiblity.

(c) If the set size of ∆ is exactly one, a subclone φ in the sample in ∆ is created. If

|∆| > 1, ν might be reconsidered later - we continue with the next incompatible

mutation pattern ν in step (a). Note that |∆| is at least one since ξ is a neighbor of

ν in the conflict graph and hence these patterns are evolutionarily incompatible.

(d) Edit ν to ν ′ such that all mutations assumed to be present in the sample in ∆ are

assigned to the new subclone φ. Hence, ν and ξ become compatible. Repeat this

step for all incompatible mutation patterns that are supersets or subsets of ν.

(e) Edit all compatible mutation patterns (part of the current solution) that are

supersets of ν such that all mutations are assumed to be present both in the

sample in ∆ and in its new subclone φ.

(f) Update conflict graph, rerun MILP solver and go back to step 5.

We used the above described procedure in all our benchmarkings and in case 6 (see Fig. 9)

to successfully identify subclones and separate their evolutionary trajectories (Fig. 4). The

benchmarking results confirm the high accuracy of Treeomics compared to existing methods.
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Supplementary Methods: Mathematical Proofs

We prove that the decision variant of finding the most reliable and evolutionarily compati-

ble set of variants in the perfect and persistent phylogeny problem with a known ancestral

sequence is NP-complete26–28. In fact, we show equivalence to fundamental results in com-

puter science. Once this set of compatible variants has been identified, the evolutionary tree

can be inferred in polynomial time29. First, we show a linear time reduction of the weighted

minimum vertex cover problem (WMVC) to the binary most reliable compatible variants

problem (MRCV). Second, we show a linear time reduction from the MRCV problem to the

WMVC problem. Since both our reductions are approximation preserving, the two problems

are computationally equivalent.

The WMVC problem is defined as follows: Given an undirected graph G = (V ,E) and

a positive weight function w: V → R+, find a subset of nodes σ ⊆ V (called vertex cover)

such that for all edges (u, v) ∈ E at least one endpoint (u or v) is in the vertex cover σ and

the sum ω =
∑

v∈σ w(v) is minimized (Fig. 15). The decision variant of the optimization

problem asks: Does G have a vertex cover of weight at most Ω? The decision variant of the

WMVC problem is NP-complete26,27. A δ-approximation algorithm (δ > 1) guarantees that

the weight ω of the produced solution σ for any input graph G and weight function w is at

most δ times larger than the weight ω∗ of the optimal solution σ∗, therefore, the following

inequality must hold ω ≤ δ · ω∗.
The MRCV problem is defined as follows: Given an m by n binary variant matrix A

describing N = {1, . . . n} samples with M = {1, . . .m} variants (mutations) and a reliability

vector B ∈ R+m, find a subset of variants S ⊆ M such that the sum of their reliabilities∑
i∈S Bi is maximized and all variants i ∈ S are evolutionarily compatible. Two variants k1 ∈

M and k2 ∈M are evolutionary incompatible iff (if and only if) four samples l1, l2, l3, l4 ∈ N
with the following mutation patterns exist: (i) both variants are absent (Ak1,l1 = Ak2,l1 = 0;

germline sample), (ii) mutation k1 is present and k2 is absent (Ak1,l2 = 1, Ak2,l2 = 0),

mutation k1 is absent and k2 is present (Ak1,l3 = 0, Ak2,l3 = 1), and both variants are present

(Ak1,l4 = 1, Ak2,l4 = 1). The decision variant of the MRCV problem asks: Does A have a

subset of compatible variants of reliability at least Ω?

1. Reduction from the WMVC problem to the MRCV problem. The input

graph G = (V ,E) of the weighted minimum vertex cover problem can be directly

interpreted as the conflict graph in a phylogeny problem (see Online Methods for

more details). Each node v ∈ V corresponds to exactly one variant kv with a unique
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Supplementary Figure 15: Red nodes represent the minimum weight vertex cover of an undi-
rected graph. The optimal solution {2, 3, 6, 7, 8} covers all edges and is of weight 13.9. The com-
plement set of the solution {1, 4, 5} corresponds to the most reliable and compatible nodes (mutation
patterns) and would form the solution in the perfect and persistent phylogeny problem with a weight of
18.2 (see Supplementary Table 6 for a reduction to an instance of the phylogeny problem).

mutation pattern. The reliability score of the variant kv and thereby its mutation

pattern is set to Bv = w(v). The mutation patterns (i.e., the set of samples where a

variant is present) are generated as follows. For each node v ∈ V we generate a sample

sv where only variant kv is present. For each edge (v,u) ∈ E we generate a sample

svu where both variants kv and ku are present (see Fig. 15 and Supplementary Table 6

for an example). Additionally, we generate a germline sample sg where no variants are

present.

By construction of the compatibility instance of the perfect and persistent phylogeny

problem, two mutation patterns are evolutionary incompatible iff their corresponding

nodes in the vertex cover problem are adjacent. Two variants kv and ku are evolutionary

incompatible iff samples with the following patterns exist: only mutation kv is present

(sample sv), only variant ku is present (sample su), both variants are absent (germline

sample sg), and both variants are present (sample svu). Note that in each individual

sample at most two variants (nodes) are present. A sample with two present variants

kv and ku exists iff there was an edge e = (v,u) in the original instance of the vertex

cover problem. The number of required samples is in O(| V | + | E |). Each generated
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mutation pattern represents precisely one node in the input graph.

Given an arbitrary weighted graph G = (V ,E), suppose that σ∗ ⊆ V is its minimal-

weight vertex cover. By the definition of a vertex cover, at least one endpoint of each

edge has to be in σ∗. Therefore, if we remove σ∗ from V and the edges adjacent to

the nodes in σ∗, no edges remain and the corresponding phylogeny has no evolutionary

incompatibilities. Since σ∗ is the minimal-weight vertex cover, the set {kv | v ∈ V \σ∗}
corresponds exactly to the most reliable and evolutionarily compatible set of variants.

On the contrary, if σ∗ is not the minimal-weight vertex cover, either an edge is not

covered by σ∗ and hence there will be a sample suv leading to incompatible mutation

patterns of the variants kv and ku; or σ∗ is not of minimal-weight and hence there will

be another set of mutation patterns with a higher sum of their reliability scores. The

solution of the WMVC problem represents the complement set of the solution of the

MRCV problem. Note that the reduction maintains the exact value of the solution

and hence is approximation-preserving (Lemma 1).

2. Reduction from the MRCV problem to the WMVC problem. Given an

arbitrary binary phylogeny problem with an m by n variant matrix A and a reliability

vector B. We construct the conflict graph G = (V ,E) exactly as described in the

Online Methods. Each node v ∈ V represents a particular mutation pattern of a

unique subset of variants Rv ⊆ M (where
⋃
v∈V Rv = M). The weight of each node

v is set to w(v) =
∑

k∈Rv
Bk. For each pair of incompatible mutation patterns v ∈ V

and u ∈ V , there exists an edge (v,u) ∈ E.

Suppose that Ŝ ⊆M is the most reliable and evolutionarily compatible set of variants

in this phylogeny problem with m variants and n samples. Since the evolutionary

compatibility of variants is determined by their mutation patterns, we can directly

focus on the patterns R̂ ⊆ V of Ŝ. Because R̂ consists of all mutation patterns of the

most reliable and compatible set of variants Ŝ, all evolutionary incompatibilities must

be caused by the patterns R∗ of the variants in the complement set S∗ = M \ Ŝ. It

follows that R∗ = V \ R̂ must cover all edges in the conflict graph and therefore R∗ is

the minimal vertex cover of G.

In contrast, suppose that Ŝ is not the most reliable and evolutionarily compatible set of

variants. The construction of the conflict graph guarantees that either R∗ = V \R̂ does

not cover all edges (resulting from evolutionarily incompatible patterns) or
∑

v∈R∗ w(v)

is not minimal (resulting from not most reliable) and hence there must exist a different

24



Mut. pat. Samples

(reliability) s1 s2 s3 s4 s5 s6 s7 s8 s12 s16 s18 s23 s24 s28 s34 s35 s37 s46 s47 s48 s56 s57 s67 s78 sg

1 (9.2) 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 (0.9) 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

3 (4.1) 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0

4 (3.9) 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0

5 (5.1) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0

6 (1.8) 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0

7 (5.8) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0

8 (1.3) 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0

Supplementary Table 6: Instance of the binary, most reliable phylogeny problem reduced from
the graph depicted in Fig. 15. The compatible and most reliable mutation patterns are depicted in
green. Only samples with two present variants can cause evolutionary incompatibility among mutation
patterns. Each of these samples encodes an edge in the original vertex cover problem.

set R̃ ⊆ V which covers all edges and is minimal. Note that the reduction maintains

the exact value of the solution and hence is approximation-preserving (Lemma 1).

Lemma 1. The reduction from the WMVC problem to the MRCV problem (1.) and the

reduction from the MRCV problem to the WMVC problem (2.) are approximation-preserving.

Hence, finding the most reliable and compatible set of variants in the perfect and persis-

tent phylogeny problem is computationally as hard as finding the minimal weighted vertex

cover in a given graph and vice versa. A number of fundamental results have been established

for the weighted vertex cover problem in computer science, and they are as follows. The

decision problem is NP-complete26,27, and the optimization problem can be solved via MILP

(mixed integer linear programming) which is efficient for a large class of practical instance

of the weighted vertex cover problem30. A related question of the optimization problem is

whether any approximation can be obtained more efficiently. Bar-Yehuda and Even31 and

Gonzalez32 demonstrated that the weighted vertex cover problem can be approximated very

efficiently (in linear time) for a factor two approximation. However, lower bound results

show that unless the complexity class P = NP (which is very unlikely), no factor 1.3606

approximation is possible33. Moreover, under the widely believed Unique Games Conjecture

(UGC), unless P = NP , no (2 − ε)-approximation is possible34. As a consequence of the

equivalence that we establish between the MRCV problem and the widely studied weighted

vertex cover problem, we obtain all these results for the MRCV problem. On one hand our
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results include positive results (such as a practical algorithm via MILP, an efficient algo-

rithm for 2-approximation), optimal complexity results (such as NP-completeness), as well

as negative results (inefficiency of small factor approximation). Our results also imply that

all previous approaches based on heuristics either in the worst case take exponential time, or

they do not even achieve a factor 2-approximation. We conclude the section with a formal

statement of our result.

Theorem 1. The following assertions hold in a perfect and persistent phylogeny:

1. The decision version of the MRCV problem is NP-complete.

2. The optimization version of the MRCV problem can be solved by MILP (mixed integer

linear programming).

3. A 2-approximation of the optimization version of the MRCV problem can be solved in

linear time.

4. A 1.3606-approximation of the optimization version of the MRCV problem is not pos-

sible unless P = NP.

5. Under the widely believed Unique Games Conjecture (UGC), for any ε > 0, an (2− ε)-
approximation of the optimization version of the MRCV problem is not possible unless

P = NP.
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Treeomics Manual

A detailed manual is provided at https://github.com/johannesreiter/treeomics. To

run Treeomics, open a terminal and go to the src directory of the downloaded repository.

If you face any problems setting up Treeomics or identify potential errors in the tool, please

contact us over github or at http://www.people.fas.harvard.edu/∼reiter. Detailed

installation instruction are provided in the README.md-file. If circos is installed35, Treeomics

automatically creates the evolutionary conflict graph and adds it to the HTML report (see

repository for an example). The usage of Treeomics is python treeomics -r <var-reads

table> -s <coverage table> | -v <vcf file> -O with the following parameters:

-r <var-reads table> Path to a tab-delimited text file with the number of reads re-

porting a variant in each sample (for example see Pam03 1-10 mutant reads.txt in

src/input/Makohon2016).

-s <coverage table> Path to a tab-delimited text file with the coverage at the posi-

tion of a variant in each sample (for example see Pam03 1-10 phredcoverage.txt

in src/input/Makohon2016).

-v <VCF file> Path to a Variant Call Format file reporting all called variants across all

samples.

-d <VCF file directory> Path to a directory with separate VCF files for each sample.

-n <normal sample name> If the name of the matched normal sample is provided, variants

significantly present in this sample will be excluded. Generally the normal sample is

excluded in the evolutionary reconstruction.

-b <no bootstrapping samples> Number of bootstrapping samples to obtain confidence

values in the branching.

-u Enables subclone detection (default False).

-e <sequencing error rate> Error rate in the Bayesian inference model. Default value

is e = 1%.

-a <max absent VAF> : Maximum VAF for an absent variant fabsent before considering the

estimated purity (default 5%)
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-z <prior absent probability>: Prior probability for a variant being absent. Default

value is c0 = 0.5.

-p <false positive rate>: False-positive rate for conventional binary classification. De-

fault value is e = 0.5% (only relevant for artifact comparison).

-i <false discovery rate>: Targeted false-discovery rate for conventional binary classi-

fication (only relevant for artifact comparison).

-y <min absent coverage>: Minimum coverage for a powered absent variant (only rele-

vant for artifact comparison).

-o <output directory>: Configure output directory for the results of Treeomics.

-t <time limit>: Maximum running time for CPLEX to solve the MILP (in seconds,

default None). If not None, the obtained solution is no longer guaranteed to be optimal.

-l <max No MPS>: Maximum number of considered mutation patterns per variant (default

None). If not None, the obtained solution is no longer guaranteed to be optimal.

--no plots Disables generation of plots (useful for benchmarking; default True).

Default parameter values as well as output directory can be changed in src\settings.py.

Moreover, the settings.py provides more options on annotating driver genes and configur-

ing the plot output names. All plots, analysis and logging files, and the HTML report will

be in a user-defined output directory. We provide an example HTML report (saved as PDF)

generated by Treeomics in the root directory of the repository.
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