
Page 1 of 9

Appendix
This appendix provides details of the methods used for intrinsic dimensionality

estimation, nonlinear dimensionality reduction, and comparing the effectiveness of

the dimension reduction methods.

Intrinsic Dimensionality Measures

Correlation Dimension

Let µ be a Borel probability measure on a metric space Y and for q ≥ 0 and ε > 0

define the quantity

Cq(µ, ε) =

∫
[µ(B̄ε(y))]q−1dµ(y) (1)

where B̄ε(y) is the closed ball of radius ε centered at y. For q ≥ 0, q 6= 1 , the lower

and upper q-dimensions of µ are defined as:

D−q (µ) = lim inf
ε→0

logCq(µ, ε)

(q − 1) log ε
(2)

D+
q (µ) = lim sup

ε→0

logCq(µ, ε)

(q − 1) log ε
. (3)

When the lower and upper dimensions are equal, their value, Dq(µ), is the q-

dimension of µ [46]. The correlation dimension is the special case of q = 2 [25].

If this dimension estimator is applied to a countable set of points, Y =

{y1, y2, · · · }, (1) becomes

C2(ε) = lim
N→∞

1

N(N − 1)

N∑
i=1,i<j

H(ε− ‖yi − yj‖2)

= P (‖yi − yj‖2 ≤ ε),

where H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0. When it exists the correlation

dimension has the form

dCOR = D2(µ) = lim
ε→0

logC2(ε)

log ε
.

Maximum Likelihood estimator

This estimator assumes that the points are Y = {y1, y2, · · · , yN} independently

identically distributed samples from some probability density f(y). f(y) is assumed

to be approximately constant near any point yi. It is also assumed that the number

of points in B̄t(y) follow a inhomogeneous spatial Poisson process, P (t, y) with rate

λ(t) = f(y)V (dML)dMLt
dML−1

where

V (dML) = πdML/2[Γ(dML/2 + 1)]−1



Page 2 of 9

is the volume of the unit sphere in RdML and Γ(z) is the Gamma function. The

log-likelihood of the process P (t, y) is

L(dML, θ) =

∫ R

0

log λ(t)dP (t, y)−
∫ R

0

λ(t)dt,

where θ = log f(y) and R is the radius of the ball around y on which f is approxi-

mately constant [47]. The dimension, as a function of R and y, at which L(d , θML )

is maximized is

d̂ML(R, y) =

 1

P (R, y)

P (R,y)∑
j=1

log
R

Tj(y)


−1

(4)

Levina and Bickel [27] suggest that, in practice, it is more convenient to fix the

number of neighbors, k, rather than the radius and replace (4) with

d̂ML(k, y) = [
1

k − 1

k−1∑
j=1

log
Tk(y)

Tj(y)
]

−1

,

where Tk(y) is the distance between point y and k-th nearest point to y. Rather

than choosing a single yi from the set, the mean

d̄ML(k) =
1

N

n∑
i=1

d̂ML(k, yi).

is considered for a range of k values. The interval [k1, k2] is chosen so that the profile

of d̄ML(k) is close to flat and the estimate of the dimension is defined as

dML =
1

k2 − k1 + 1

k2∑
k=k1

d̄ML(k).

Nearest Neighbor estimator

This estimator assumes that the points are Y = {y1, y2, · · · , yN} independently

identically distributed samples from some probability density f(y). Pettis et al. [28]

derive the approximation

f(y) ≈ f̂(y) =
k

NV (dNN )
[Tk(y)]−dNN

where V (d) and Tk(y) are defined as in the Maximum Likelihood estimator. This

yields

log k = dNN log T̄k(y) + dNN log(Gk,dNN
)− dNN log(Cn),

where T̄k(y) = (1/N)
∑N
i=1 Ti(y), Gk,dNN

= k1/dΓ(k)/Γ(k + 1/d) and CN =

(1/N)
∑N
i=1 [Nf(yi)VdNN

]
−1/d

. Pettis et al. [28] show that Cn is independent of



Page 3 of 9

k and log(Gk,d) is close to 0. So the relation between log k and log T̄k(y) is close to

a linear function with slope dNN .

A nearest neighbor estimator can therefore be computed using the algorithm:

1. compute T̄k = 1
N

∑N
i=1 Tk(yi), for k = 1, 2, · · ·

2. plot the figure with log k versus T̄k

3. estimate the slope, and the slope is dNN

Visual Inspection

Lee and Verleysen [12] suggested estimating the dimension by examining the profile

of the final value of the NLDR cost function as a function of the dimension to which

the data is reduced. The dimension estimate is taken to be an integer value in the

interval where the profile is relatively flat.

Nonlinear Dimensionality Reduction Methods

In this section, we present the basic definitions of the stress functions and opti-

mization algorithms. Difficulties or important optimizations for particular pairs are

discussed briefly.

In the discussions below, we assume that we are given N points, Y =

{y1, y2, · · · , yN}, in a space, S, not necessarily Euclidean, and an associated dis-

tance function, dist(yi, yj). NLDR produces N points in Rs, X = {x1,x2, · · · ,xN}
that are represented by the n = Ns components of X = [x1, x2, · · · , xn]. We

assume that successive groups of s components of X define projected vector xi,

i.e., X = vec(x1,x2, · · · ,xN ). In the following formulas, d̂ij = dist(yi, yj) and

dij(X) = ‖xi − xj‖ for some norm on Rs.

Stress Functions

We consider four stress functions: Normalized stress [29], Kruskal-1 stress [30], Sam-

mon’s stress, also known as the nonlinear mapping (NLM) stress [31], and Curvi-

linear Components Analysis (CCA) stress [32].

The Normalized stress function is defined as

σn(X) =

∑
i<j(dij(X)− d̂ij)2∑

i<j d̂
2
ij

.

This stress function is normalized by a single weight that is related to the data in

S and is therefore a constant, i.e., independent of the projection onto Rs.
The Kruskal-1 stress function is defined as

σ2
1(X) =

∑
i<j(dij(X)− d̂ij)2∑

i<j d
2
ij(X)

.

It is normalized by a single weight but this weight is determined by the projected

data in Rs. However, the minimizers of Kruskal-1 stress function are the same as

Normalized Stress function after a rescaling of X, i.e., σn(X) = σ2
1(γ(X)X) where

γ(X) ∈ R.



Page 4 of 9

Sammon’s stress function or the NLM stress function is defined as

σs =
1

c

∑
i<j

(dij(X)− d̂ij)2

d̂ij
,

where c =
∑
i<j d̂ij . Note that this stress function has a weight, dist(yi, yj), for each

term in the sum of squares of the distance differences. Sammon’s stress function aims

to preserve distances between points that are close in S when assigning positions

in Rs.
Like Sammon’s stress function, the CCA stress function also has local weights.

However, CCA’s weights are related to the points in Rs. The CCA stress function

is defined as

σc =
1

2

∑
ij

(dij(X)− d̂ij)2Hλ(dij(X)),

where the weight function Hλ(z) is a decreasing positive function dependent on

a parameter λ. Demartines and Herault [32] discuss two choices for this function.

They are Hλ(z) = exp(−z/λ) and Hλ(z) = 1(λ−z), where 1(u) = 1, if u > 0 and

1(u) = 0, if u <= 0. The value of λ decreases on each iteration. Initially, it is

large and the function Hλ is close to 1 and σc(X), like σn(X), considers all points

similarly. As the iteration proceeds, λ decreases and the importance of a term in

the stress function depends on the proximity of the associated pair of points in Rs.
Therefore, the number of points involved in updating the positions in X generally

decreases as the iteration progresses.

The manner in which λ is updated is very important to the applicability of this cost

function and depends on the algorithm used to optimize σcca(X). In particular, the

influence of the update of λ on the relationship of the convergence behavior and the

complexity of an iteration of the optimization algorithm is a crucial consideration.

The details of this consideration for each algorithm below are omitted but the

interested reader is directed to [Section 4.2.4, 12] for a discussion of this issue for

simple gradient descent and the Stochastic Gradient Descent algorithms.

Optimization Algorithms

We have considered four algorithms to optimize the stress functions. They are ma-

jorization , Gauss-Seidel-Newton, stochastic gradient descent, and MCMC simu-

lated annealing. The first two are classical descent methods while the latter two are

based on stochastic ideas that allow occasional ascent steps.

Majorization

The majorization algorithm is a classical approach to minimizing a function F (X)

that has been applied in the NLDR context by [48]. A function G(X,Z) which

satisfies G(X,X) = F (X) and G(X,X) < G(X,Z) is called a majorizing function.

Minimizing F (X) directly means searching for minimum along line Z = X. The

majorization algorithm exploits Z to search along another path. Given a majorizing

function, we have

F (X) = G(X,X) ≤ G(X,Z).



Page 5 of 9

and the algorithm is

0. Given Z0 = X0, k = 1

1. Xk = argminXG(X,Zk−1)

2. Zk = Xk

3. if stopping condition not satisfied then k = k + 1 and go to step 1 .

According to the properties of majorizing function and taking Xk as a minimizer

we have

F (Xk) = G(Xk, Xk)

≤ G(Xk, Xk−1)

≤ G(Xk−1, Xk−1)

≤ F (Xk−1)

and a sequence Xi such that F (Xi) is a nonincreasing sequence is produced. This

method usually converges to a local minimum. The main limitation of majorization

is, of course, the need for a majorizing function. However, even when G(X,Z) exists,

finding the minimizer over X may be more difficult than the original problem. The

lack of a suitable majorizing function is the reason, in practice, why majorization

is not used for NLDR based on σcca(X). For σn(X), σ1(X), and σs(X), analytical

expressions for the minimizer of G(X,Z) over x given a value of Z are known for

the respective majorizing functions.

Gauss-Seidel-Newton

Coordinate descent methods are another classical approach to minimization that

adapts standard methods for solving nonlinear equations to optimization [49]. Their

advantage is their simplicity and while their convergence, in general, may be unac-

ceptably slow they can be effective for particular problems.

The basic idea is to find a root of the gradient of F (X), i.e., ∇F (X∗) = 0 by

allowing only a subset of the variables to change. The simplest approach is to fix all

components of X except one that is updated in a manner that reduces F (X) and

moves towards a root of ∇F (X). Each of the components of X are updated based

on some schedule that defines the method and each update requires taking one of

more steps of a scalar nonlinear equation solver such as Newton’s method. The one-

step Gauss-Seidel-Newton method is so-called because a Gauss-Seidel relaxation

schedule is used to order the updates of the components of X, i.e., when updating a

component of X the most recent value of all other components are used to compute

a single scalar Newton’s method update. Specifically, we have

∇F (X) =


∇1F (x1, x2, ..., xn)

∇2F (x1, x2, ..., xn)

...

∇nF (x1, x2, ..., xn)





Page 6 of 9

and the one-step nonlinear Gauss-Seidel-Newton algorithm updates the scalar x
(k)
i

with ∆
(k+1)
i = x

(k+1)
i − x(k)i where

∆
(k+1)
i = −α

∇iF (x
(k+1)
1 , x

(k+1)
2 , ..., x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1, . . . , x

(k)
n )

|∇2
iF (x

(k+1)
1 , x

(k+1)
2 , ..., x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1, . . . , x

(k)
n )|

,

1 ≤ i ≤ n, k = 0, 1, ... where α > 0 is stepsize. Note the algorithm takes a single

step of scalar Newton’s method to update each component of X. The absolute value

guarantees that the method is a descent method for infinitesimal α. Sammon applied

one-step Jacobi-Newton to the NLDR problem using σs(X), i.e., each component

was updated using the old values of all other components, and a fixed stepsize but

did nothing to guarantee a descent step [31]. The one-step Jacobi-Newton method

can also be viewed as an inexact Newton method to update X where the Hessian

is approximated by its diagonal elements only. In order to guarantee a descent step

with a nontrivial α we use a line search and impose the strong Wolfe conditions to

determine α on each step. Note that the algorithm is easily extended to the block

case where, rather than updating a single component of X, the s components that

define the projected vector xi are updated using one step of Newton’s method for

a system of s nonlinear equations. In that case, the notion of the absolute value

is, of course, no longer a valid method of guaranteeing descent for the s × s local

Hessians.

One-step Gauss-Seidel-Newton is easily applied to σn(X), σ1(X), and σs(X). For

σcca(X) the update of λ and its relationship to convergence yields a noticeable

increase in the complexity of a single iteration compared to the other algorithms

applied to σcca(X).

Stochastic Gradient Descent

The majorization and Gauss-Seidel-Newton algorithms discussed above are clas-

sical descent techniques. The remaining two algorithms we have considered have

a statistical approach that allows the occasional ascent step, particularly early in

the iteration, in order to provide a more global view of the cost function and con-

vergence. The Stochastic Gradient Descent method (SGD) modifies the classical

deterministic descent method, see [Appendix C, 12] for a description. Note that the

uses of the name Stochastic Gradient vary considerably in the numerical literature.

We adopt it here due to its use for this algorithm for NLDR by [12]. It is used

also to describe algorithms based on various forms of probabilistic perturbations

to a deterministic gradient used for example in the MCMC Simulated Annealing

algorithm discussed in the next section.

It is assumed that the cost function F (X) has the form

F (X) =

N∑
i=1

gi(X)

where each term gi(X) is associated with the distances from one of the projected

vectors, xi, to all of the others. The deterministic gradient descent algorithm up-



Page 7 of 9

dates the s components of X corresponding to each projected vector xj ∈ Rs using

x
(k+1)
j ← x

(k)
j − α∇xj

N∑
i=1

gi(X) = x
(k)
j − α

N∑
i=1

∇xjgi(X).

where α > 0 is set based on optimization considerations. SGD updates each com-

ponent of X using, gi(X), a single randomly selected term in the F (X). Given the

choice of i, the update is

x
(k+1)
j ← x

(k)
j − α∇xjgi(X)

for j = 1, 2, · · · , n. To ensure convergence, the step size α is set based on a Robbins-

Monro condition [12].

Demartines and Herault [32] applied a version of SGD to σcca(X). It is easily

applied to the other cost functions since all can be written in the assumed form

of F (X). When applied to σn(X), σs(X), and σcca(X), ∇xj
gi(X) depends only on

xj and xi. However, when applied to σ1(X) the update of each xj is significantly

more complex, by a factor of O(N), than the updates for the This is due to the

dependence on all of the xi in the weight (
∑
i<j d

2
ij(X))−1.

MCMC Simulated Annealing algorithm

The final optimization algorithm used is the MCMC Simulated Annealing algorithm

which is discussed in detail in [45]. The method combines a discrete MCMC itera-

tion that samples a distribution related to a cost function F (X) and determinstic

simulated annealing to transform the sampling into an efficient optimization algo-

rithm for F (X). The natural form of the algorithm to find a maximum of a function

F (X) is used here. It is easily modified for minimization by applying it to −F (X).

The MCMC aspect of the algorithm is derived by combining a diffusion process

with a Metropolis-Hastings-type acceptance-rejection test. Consider the probability

density p(X) = eF (X)/G, where G is a normalized constant which makes the inte-

gration of p(X) equal to 1. Note that the peaks of p(X) occur at local maxima of

F (X). Therefore, a brute force method of determining the location of a maximum is

to repeatedly sample X using the density p(X). After a large number of samples, the

frequency of the X observed would indicate a peak in the density and a maximum

of F (X). The sampling is accomplished using a proposal density q(Z|X) and the

acceptance-rejection function ρ(X,Z) = min{ p(Z)q(X|Z)
p(X)q(Z|X) , 1}. For MCMC Simulated

Annealing, the proposal density q(Z|X) is taken as the normal density with mean

X + ∇F (X)δ and variance δ. This implies that the acceptance-rejection function

is ρ(X,Z) = eF (Z)−F (X). Note that repeatedly sampling from the proposal density

function, i.e., Xt+1 ∼ q(Z|Xt), corresponds to following the deterministic gradient

with a random perturbation on each step. This is a diffusion process also referred to

as a stochastic gradient flow. The addition of the Metropolis-Hastings acceptance-

rejection step yields a discrete MCMC algorithm, the Metropolis-adjusted Langevin

algorithm, that samples p(X).

This sampling algorithm is a very inefficient method of optimization. This is

fixed by applying simulated annealing and adding a temperature T to the density



Page 8 of 9

function p(X) that becomes pT (X) = eF (X)/T

GT
. When T is large, pT is close to a

uniform distribution and when T is small, pT has sharp peaks. Starting with a

large T and reducing it according to a certain schedule yields a globally convergent

maximization algorithm. When T is large, the samples are generated from an almost

uniform distribution, i.e, the samples are free to roam globally. As T decreases, the

samples range reduces to concentrate on neighborhoods of peaks and eventually

converging to one of them.

The resulting algorithm that can be efficiently applied to all of the NLDR cost

functions described earlier is given by

MCMC Simulated Annealing algorithm:

0. Initialize T > 0 and large. Initialize 0 < c < 1 and X1. Let t = 1;

1. Generate a candidate Z ∼ N(x+∇F (x)δ, δT ).

2. Update the iterate to Xt+1 according to:

Xt+1 =

{
Z, with probability ρ(Xt, Z);

Xt, with probability 1− ρ(Xt, Z).

where ρ(X,Z) = min{e(F (Z)−F (X))/T , 1}.
3. update T = cT , t = t+ 1, go to Step 1. (We have used c = 0.96.)

Goodness of Fit

The measures of goodness of fit used in this study are 1 Nearest Neighbor (1NN) [33],

Continuity [34], and Trustworthiness [34].

1NN assumes that the original data Y = {y1, y2, · · · , yN} in S have been

assigned to clusters or classes. The projected Euclidean representations X =

{x1,x2, · · · ,xN} inherit the cluster/class of the corresponding yi. 1NN computes

the percentage of the points whose nearest neighbors in the projected space Rs

belong to a same cluster. This can be computed by:

0. k = 1; T = 0;

1. compute xik which is closest to xk.

2. if yik and yk belong to a same cluster, then T = T + 1;

3. k = k + 1. if k <= n, then goto step 1.

4. output T/n

Note that the measure is simple to extend to examine the r closest neighbors of xk.

Continuity is based on the notion that if the two points yi, yj ∈ S are close to

each other measured by dist(yi, yj), the corresponding points xi, xj ∈ Rs should

be close to each other measured by ‖xi−xj‖. It punishes the points that are in the

neighborhood of yi ∈ S but not in the neighborhood xi ∈ Rs.
Given a positive integer k, the neighborhood of point with index i comprises

the k-nearest points. Let Vk(i) denote the set of indices of points that are in the

neighborhood of size k of the point yi ∈ S but are not in the neighborhood of size

k of the point xi ∈ Rs. Also let s(i, j) represent the rank of the xj in the list of the

elements of X ordered by distance from xi. The measure of continuity is then given

by

Con = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈Vk(i)

(s(i, j)− k). (5)



Page 9 of 9

The weight is the worst case value of the sum and therefore normalizes Con.

Trustworthiness reverses the roles of S and Rs as used in Continuity. It punishes

the points that are in the neighborhood xi ∈ Rs but not in the neighborhood of

yi ∈ S. Let Uk(i) denote the set of indices of points that are in the neighborhood

of size k of the point xi ∈ Rs but are not in the neighborhood of size k of the point

yi ∈ S. Also let r(i, j) represent the rank of the yj in the list of the elements of Y

ordered by distance from yi. The measure of trustworthiness is then given by

Tru = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈Uk(i)

(r(i, j)− k). (6)

The weight is the worst case value of the sum and therefore normalizes Tru.


