Supplementary Figures

Supplemental Figure S1 Phenotype of Tam3 temporarily inactive *Antirrhinum* Line at 15°C. A, Structure of the *pal* allele from *Antirrhinum majus* line HAM22 and its flower phenotype at 15°C. The transposition of Tam3 happened under low temperature in some *Antirrhinum* petal cells. In this case, Tam3 was removed from the promoter of *pal*. The expression of *pal* was recovered. Hence, the flower showed red spots in the petal. B, The subcellular localization of Tam3 TPase at 15°C in the protoplast of HAM22. Some of Tam3 TPase can go into the nuclei under low temperatures.

Supplemental Figure S2 Subcellular localization of Tam3 TPase in tobacco BY2 cells and onion epidermis cells. Plasmid DNA was introduced into tobacco BY2 cells and onion epidermal tissues by the PEG-mediated way or the bombardment method, respectively. Then, the tissues were incubated at 25°C for 20 h. In these two plants, most of cells showed GFP signal at both cell membrane and nuclei.

Supplementary Tables

Supplemental Table S1 Measurements of the rate of plasma membrane-located GFP signal of intact- and truncated-Tam3 TPase in protoplasts and petal cells of HAM22.

	repeat 1	repeat 2	repeat 3
T3TPase	196/200	97/99	77/78
T3TPase∆54	56/56	47/48	57/59
T3TPase∆169	77/78	66/67	99/101
T3TPase∆179	63/66	54/56	76/78
T3TPase∆200	1/71	1/89	1/81
T3TPase∆230	0/58	2/97	2/76
T3TPase∆243	1/46	2/58	3/50
(numerator: number of cells showing	g only plasma membrane GFP loc repeat 1	calization; denominator: total nu repeat 2	mber of cells with G repeat 3
T3TPase	89/89	52/52	105/105
T3TPase∆54	62/62	58/58	69/69
T3TPase∆169	51/51	54/54	68/68
T3TPase∆179	39/39	38/38	42/42
	10/42	2/51	5/26
T3TPase∆200	10/43	2/31	3/20
T3TPase∆200 T3TPase∆230	8/49	0/36	3/20

Supplemental Table S2 Measurements of the rate of plasma membrane-located GFP signal of pA7-(Znf-AmCSBL) and pA7-(Znf-DnaJh1) in protoplasts of HAM22.

Subcellular localization of pA7-(Znf-AmCSBL) and pA7-(Znf-DnaJh1) using protoplasts of HAM22 (25°C)					
(numerator: number of cells showing only plasma membrane GFP localization; denominator: total number of cells with GFP)					
	repeat 1	repeat 2	repeat 3		
pA7-(Znf_BED&AmCSBL)	92/97	120/123	79/82		
pA7-(Znf_BED&AmDnaJh1)	48/49	49/51	31/32		

Supplemental Table S3 Measurements of the rate of plasma membrane-located GFP signal of intact- and mutated-Tam3 TPase in protoplasts HAM22.

Subcellular localization of Tam3 TPase and its mutant constructs using protoplasts of HAM22 (25°C) (numerator: number of cells showing only plasma membrane GFP localization; denominator: total number of cells with GFP)				
TPase(wt)	97/100	48/49	38/39	
TPase(m1)	36/48	29/43	21/34	
TPase(m2)	29/34	56/62	30/33	
TPase(m3)	44/54	55/72	48/61	
TPase(m4)	84/119	91/128	74/108	
TPase(m5)	4/60	5/55	21/80	
TPase(m6)	36/42	34/39	33/40	
TPase(m7)	19/96	28/112	8/38	
TPase(m8)	0/58	3/65	3/75	
TPase(m9)	19/98	21/106	19/105	
TPase(m10)	1/71	2/82	2/90	

Supplemental Table S4 Primers list of plasmid constructions.

primers for subcellular localization of Tam3 TPases				
T3TPase(XhoI)-F	CCGCTCGAGCGGATGGCAAACGAAGAAAACTCAAATC			
T3TPase∆55(XhoI)-F	CCGCTCGAGCGGATGGACACGAGCAATATTCA			
T3TPase△170(XhoI)-F	CCGCTCGAGCGGATGGCCTCTACATCAAGACC			
T3TPase△179(XhoI)-F	CCGCTCGAGCGGATGACGAAGAAAGCGACGGTA			
T3TPase△200(XhoI)-F	CCGCTCGAGCGGATGTTACTTTGTCCTACAAG			
T3TPase△231(XhoI)-F	CCGCTCGAGCGGATGGACGCTCCGGATATGCA			
T3TPase△244(XhoI)-F	CCGCTCGAGCGGATGGCACCGTGGAGGTATGACCAAAAT			
T3TPase(SpeI)-R	GGACTAGTCCGTGGATGTTTGTAAAATCATATGGC			
primers for subcellular localiz	zation of AmCSBL and AmDnaJh1			
AmDnaJh1(XhoI)-F	CCGCTCGAGCGGATGGCCATCATTCCTTGTGGA			
AmDnaJh1(SpeI)-R	GGACTAGTCCCCTACTACTGGGAGCCTTC			
AmCSBL(XhoI)-F	CCGCTCGAGCGGATGGGTAGTGCTTCATCAATG			
AmCSBL(SpeI)-R	GGACTAGTCCGTCAATGGGGACTTCCATC			
primers for inserting BED-zin	c finger motif into N-terminals of AmCSBL and AmDnaJh1			
T3TPase△170(XhoI)-F	CCGCTCGAGCGGATGGCCTCTACATCAAGACC			
Znf_BED&AmDnaJh1-F	GACAACCAGACGGTACAATGGCCATCATTCCTTG			
Znf_BED&AmDnaJh1-R	CAAGGAATGATGGCCATTGTACCGTCTGGTTGTC			
Znf_BED&AmCSBL-F	GACAACCAGACGGTACAATGGGTAGTGCTTCATC			
Znf_BED&AmCSBL-R	GATGAAGCACTACCCATTGTACCGTCTGGTTGTC			
primers for point mutations				
T3TPase(XhoI)-F	CCGCTCGAGCGGATGGCAAACGAAGAAAACTCAAATC			
T3TPase(SpeI)-R	GGACTAGTCCGTGGATGTTTGTAAAATCATATGGC			
T3TPase(m1)-F	CTGGGCTCAGCGTTTACTTTGTCCTACAAG			
T3TPase(m1)-R	CTTGTAGGACAAAGTAAACGCTGAGCCCAG			
T3TPase(m2)-F	CTGGGCTCAGTGTTTACTTCGTCCTACAAG			
T3TPase(m2)-R	CTTGTAGGACGAAGTAAACACTGAGCCCAG			
T3TPase(m3)-F	GAACACTTACAAGAAATTTGACGGCAAAG			
T3TPase(m3)-R	CTTTGCCGTCAAATTTCTTGTAAGTGTTC			
T3TPase(m4)-F	CATTTGACGGCAAAGAATAAGAATCGCGAC			
T3TPase(m4)-R	GTCGCGATTCTTATTCTTTGCCGTCAAATG			
T3TPase(m5)-F	CTGGGCTCAGCGTTTACTTCGTCCTACAAG			
T3TPase(m5)-R	CTTGTAGGACGAAGTAAACGCTGAGCCCAG			
T3TPase(m6)-F	GAACACTTACAAGAAATTCGACGGCAAAG			
T3TPase(m6)-R	CTTTGCCGTCGAATTTCTTGTAAGTGTTC			
T3TPase(m7)-F	GAAAGCGACGGTATCGAAATGGTTTTC			
T3TPase(m7)-R	GAAAACCATTTCGATACCGTCGCTTTC			
T3TPase(m8)-F	TATGGAAATGGTCTTCAAAGGTGAC			
T3TPase(m8)-R	GTCACCTTTGAAGACCATTTCCATA			
T3TPase(m9)-F	TGAAAGCGACGGCATGGAAATGG			
T3TPase(m9)-R	CCATTTCCATGCCGTCGCTTTCA			