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Note S1. Main ideas of GEMSTAT, a thermodynamics-based model of 
transcriptional regulation 

Here, we briefly review the main ideas of GEMSTAT and formulate the key 
modification to its architecture that allows it to utilize DNA shape information. As 
delineated in Figure S3, transcriptional regulation can be modelled as the 
interaction of three components: DNA sequence, TFs, and the basal 
transcriptional machinery (BTM). A TF can bind on any site of the DNA sequence 
with a site-specific probability or affinity. The BTM can bind on the core promoter 
and initiate transcription. Presumably, the interactions of TF-DNA, BTM-DNA, 
and TF-BTM occur in thermodynamic equilibrium. Following Shea and Ackers 
(1), GEMSTAT assumes the gene expression level is proportional to the 
fractional BTM occupancy at the promoter.  

GEMSTAT computes the fractional occupancy of the BTM by considering an 
ensemble of molecular configurations, each of which is denoted by σ and 
specifies which sites are bound and which are free. All configurations assume 
two states: one where the BTM is bound or another where the BTM is unbound. 
The statistical weights of the two states are W σ Q(σ) and W σ  respectively. 
W σ  represents the contribution of TF-DNA interactions, calculated based on TF 
concentrations and binding affinities of bound sites; Q σ , conversely, represents 
the contribution of TF-BTM interactions, modelled as a α, a vector of free 
parameters with one scalar for each TF, as indicated in Figure S3. Given this, the 
relative probability of bound BTM is the following, where the gene expression 
level is proportional to E:  

E =
W σ Q(σ)!

W σ Q(σ)! + W σ!
 

In this next section, we detail the derivation of the statistical weight W σ . The 
sub components of the statistical weight are the contributions of each binding site 
in a configuration σ. As shown in Figure S3, 𝑞(𝑆) represents the contribution of a 
binding site S to W σ  and is given by the following equation: 

𝑞 𝑆 = 𝐾 𝑆max 𝑣[TF]relexp[LLR(𝑆)-­‐LLR(𝑆max)]  

In this formulation, [TF]rel represents the relative TF concentration to some 
constant 𝑣. LLR(𝑆)-­‐LLR(𝑆max)  represents the difference in the log likelihood ratio 
between the site S and the consensus binding site 𝑆max, and 𝐾 𝑆max  represents 
the association constant of TF-DNA binding. Since both 𝐾 𝑆max  and 𝑣 are 
unknown constants, GEMSTAT treats the product of the two as a free parameter. 
The statistical weight W σ  is then given by the following equation, in the 
absence of cooperativity: 

W σ =    𝑞(𝑆!)!!
!

 

 



, where σ! is an indicating variable (values 0 or 1) for site S! being bound by its TF 
in configuration σ.  
  



Note S2. Biophysical view of TF-DNA binding 

Consider a bimolecular reversible reaction of the TF binding to a short piece of 
DNA to be represented as 

TF+ DNA  
!
  TF ∙ DNA 

where 𝐾 is relative binding affinity based on DNA sequence 𝑆 and can be 
calculated from the concentration of TF and the concentration of bound complex 
TF ∙ DNA 

𝐾   =   
[TF ∙ DNA]
TF [DNA]   

Note that the equilibrium probability of a site 𝑆 being bound is 

Pr 𝑆  bound =   
[TF ∙ DNA]

TF ∙ DNA + [DNA] =   
𝐾[TF]

𝐾 TF + 1 

Let Shape(𝑆) be the score assigned by the Random Forest classifier to binding 
site 𝑆. Assume that the score is normalized to be in the range 0 (minimum) to 1 
(maximum). We have tested the following two approaches in combining the 
shape score into sequence to expression models.  

Approach 1. 

Assume that Shape(!)
!

 is the probability of site 𝑆 being bound at conditions where 

TF = !
! !max

, where  𝑆max   is the consensus binding site. The relative binding 
affinity can be represented 𝑆 as 

𝐾 =   𝐾 𝑆max 𝑒!∆!(!) 

where ∆𝐸(𝑆) is 𝐸 𝑆 −   𝐸(𝑆max), with 𝐸 𝑆 ≥   𝐸(𝑆max) and 𝐸 𝑆  is the binding 
energy of the TF to binding site. Therefore, the equilibrium probability of a site 𝑆 
being bound is  

Pr 𝑆  bound =   
[TF]𝐾 𝑆max 𝑒!∆!(!)

TF 𝐾 𝑆max 𝑒!∆! ! + 1
 

Note that since TF = !
! !max

 at the condition assumed above, we have  

Pr 𝑆  bound =   
𝑒!∆!(!)

𝑒!∆! ! + 1
 

and therefore 

Shape(𝑆)
2 =   

1
1  +   𝑒∆! !  



Note that for 𝑆 =   𝑆max we have ∆𝐸 𝑆 =   0. Therefore, Shape(!max)
!

=    !
!!!

  = !
!
, i.e. 

Shape 𝑆max =   1, as it should be.  

In general,  

∆𝐸 𝑆 = ln(
2−   Shape(𝑆)  
Shape(𝑆) ) 

Use the above formula of ∆𝐸 𝑆  in calculating the statistical weight of a site as 

𝑞 𝑆 = 𝐾 𝑆max TF 𝑒!∆! ! = 𝐾 𝑆max 𝑇𝐹
Shape(𝑆)  

2  –   Shape(𝑆)	
  

Approach 2. 

Following Pujato et al. (2), the relative binding affinity is defined as 

𝐾 =   𝑒!  
!

!!!
(!!Shape(!)) 

where 𝐴 is a proportionality constant in units of Kcal/mol, 𝐾! is the Boltzman 
constant in Kcal/(mol� K) and 𝑇 is the temperature in Kelvin. In Pujato et al., the 
best results were observed when 𝐴 = 4.74 Kcal/mol at 298 K, we therefore 
treated !

!!!
 as one parameter 𝑘 and set 𝑘 = 8.0 as the default starting value 

when training the sequence to expression model. 

The equilibrium probability of a site S being bound becomes 

Pr 𝑆  bound =   
[TF]𝑒!  !(!!Shape(!))

TF 𝑒!  !(!!Shape(!)) + 1
 

and the statistical weight of a site is 

𝑞 𝑆 =    [TF]𝑒!  !(!!Shape(!)) 
  



Note S3. DNA shape model outperform PWM model under the same 
sequence length 

To make a fair comparison and investigate the extent DNA shape would improve 
sequence to expression modeling, we used trimmed PWMs in all the 
aforementioned PWM-based models. We first applied MEME (3) to discover 
motifs and trimmed off less informative positions on either ends. In general, for 
each of the nine TFs, about zero to three positions were removed from the 
recommend PWMs. Trimming out less informative positions was ideally 
acceptable because we resisted to deteriorate the performance of PWM-based 
model so that the DNA shape-based model would look better. However, one may 
claim that DNA shape obtained more information from positions where its PWM 
counterpart ignored and therefore fit enhancers more accurately. Here, we 
applied a thorough analysis on the original untrimmed PWMs whose lengths 
were identical to the DNA shape-based putative binding sites.  

Our intension was first to see how the length of PWMs would affect the modeling. 
Generally speaking, trimmed PWMs were more suitable for modeling. Figure 
S2A plots the wPGP scores for each enhancer in models using either trimmed or 
original long PWMs. The average wPGP score was 0.755 for trimmed PWMs 
model, outperforming the regular PWMs model whose score was 0.734. Detailed 
fitting of each enhancer can be seen in Table S4. At this point, we were confident 
that trimmed PWMs played a better role in the PWM-based model.  

On the other direction, we tried to answer the question: given the same binding 
site length as DNA shape did, would the PWM-based model be able to gather 
more information and thus make better predictions? Figure S2B and Table S4 
reports the comparison of the DNA shape-based model and untrimmed PWM-
based model over 37 enhancers. In the majority of cases, DNA shape-based 
model had considerably better fits than untrimmed PWM-based model. There 
were 15 out of 37 enhancers having measurable improvements in DNA shape-
based model while only three declined. The average wPGP score was 0.784 for 
the DNA shape-based model compared to 0.734 for untrimmed PWMs model. 
  



Note S4. Artificially perturbing the LLR scores of binding sites show DNA 
shape carry information complementary to LLR scores 

We considered the possibility that the improvement of the shape-based model 
over the PWM-based model (average wPGP of 0.784 for the shape-based model 
compared to 0.755 for the PWM-based model) is an artifact of our procedure. 
Specifically, it was possible that our modeling is fundamentally incapable of 
discerning an accurate TF-DNA binding model from a noisy version thereof, 
either due to noise in the data or over-parameterization, or for an unknown 
reason. To test this possibility, we repeated the PWM-based model-fitting 
exercise after artificially perturbing the LLR scores of binding sites, and found the 
PWM model to perform worse with these slightly perturbed LLR scores of sites, 
ruling out the concern raised above. For each binding site in each enhancer, an 
artificial LLR score was assigned at random, sampling from a normal distribution 
with mean equal to the site’s true LLR score and a fixed variance. This added 
‘noise’ was tuned to be such that the Pearson correlation between true and 
perturbed LLR scores was ~0.5, which we noted above to be the overall 
correlation between shape scores and LLR scores (Figure 4C, ‘All’). As shown in 
Table 1, this PWM-based model performed substantially worse than with true 
LLR scores: the average wPGP score over 37 enhancers dramatically decreased 
to 0.643 (compared to 0.755) and the 10-fold cross-validation wPGP score 
(averaged over ten repeats) dropped from 0.677 to 0.603. This exercise strongly 
suggested to us that the better fits predicted by the DNA shape-based model 
compared to the PWM-based model cannot be reproduced merely by a good 
approximation to LLR scores of sites, and that the shape scores carry information 
that is complementary to LLR scores and useful for sequence-to-expression 
modeling.	
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Figure S1. Fits between model and data. Predicted expression profiles of 
DNA shape-based model (orange lines) and PWM-based model (purple lines) 
are compared to experimentally determined expression profiles (black lines), 
for all 37 Drosophila enhancers in this study. Each expression profile is on a 
relative scale of 0 to 1 (y-axis), and shown for the regions between 20% and 
80% of the A/P axis of the embryo. Title in each panel is in the format of 
“enhancer name, wPGP by DNA shape-based model (‘S’), wPGP by PWM-
based model (‘P’).” The order of enhancers is the same as in Table S1. 



A 

Figure S2. Performance of long PWM models compared to (A) trimmed 
PWM model and (B) DNA shape model on 37 Drosophila enhancers assessed 
by wPGP scores.  

B 



   
  

Figure S3. Transcriptional regulation is modelled on major components: TF 
(orange), BTM (purple), and DNA (brown tube). The interactions of TF-DNA, 
BTM-DNA, TF-BTM are assumed to occur in thermodynamic equilibrium. 
Presumably, gene expression level is proportional to the fractional BTM 
occupancy at the promoter. 
 



Table S1. Lengths of trimmed PWMs and positions being trimmed from 
MEME predicted PWMs. 
 

TF MEME PWM length Positions trimmed Trimmed PWM length 
bcd 6 None 6 
cad 8 Last 1 position 7 
vfl 11 First 3 positions 8 

Dstat 11 None 11 
gt 14 First 3 positions 11 
hb 10 First 3 positions 7 
kni 13 Last 2 positions 11 
Kr 10 Last 1 positions 9 
slp 11 None 11 

 
  



Table S2. Evaluations of expression predictions from DNA shape-based 
model and PWM-based model. The “goodness of fit” between predicted and 
real expression for each enhancer was assessed by wPGP score. The wPGP 
scores from DNA shape-based model and PWM-based model over all 37 
enhancers are shown, and changes of wPGP scores greater than 0.05 are 
identified.  

Enhancer DNA shape-based model PWM-based model  
Change 
> 0.05 

Kr_CD1_ru 0.76 0.50 + 
ftz_+3 0.80 0.57 + 
hb_centr_&_post 0.56 0.38 + 
run_stripe1 0.93 0.76 + 
eve_37ext_ru 0.96 0.80 + 
slp2_(-3) 0.88 0.76 + 
kni_83_ru 0.88 0.78 + 
eve_1_ru 0.85 0.75 + 
nub_(-2) 0.88 0.77 + 
eve_stripe2 0.60 0.50 + 
kni_(+1) 0.86 0.76 + 
eve_stripe5 0.91 0.82 + 
gt_(-10) 0.91 0.84 + 
odd_(-5) 0.60 0.53 + 
h_15_ru 0.63 0.59  
hb_anterior_actv 0.80 0.76  
h_stripe34_rev 0.70 0.68  
prd_+4 0.85 0.84  
run_stripe3 0.90 0.89  
odd_(-3) 0.69 0.69  
eve_stripe4_6 0.86 0.86  
knrl_(+8) 0.68 0.69  
btd_head 0.91 0.93  
run_-17 0.90 0.92  
run_-9 0.92 0.94  
gt_(-1) 0.77 0.80  
pdm2_(+1) 0.76 0.80  
h_6_ru 0.92 0.96  
run_stripe5 0.74 0.79  
Kr_CD2_ru 0.68 0.74 - 
Kr_AD2_ru 0.30 0.35 - 
cnc_(+5) 0.68 0.75 - 
oc_otd_early 0.85 0.92 - 
oc_(+7) 0.87 0.95 - 
kni_(-5) 0.79 0.87 - 
D_(+4) 0.66 0.77 - 
gt_(-3) 0.77 0.89 - 



Table S3. Evaluations of various models in this study. For each model, 
shown are the number of free parameters used (“#Pars”), the average wPGP 
scores from parameter optimization over all 37 enhancers (“Avg. wPGP 
(Training)”), and the wPGP scores from cross-validation (“Avg. wPGP (CV)”), 
averaged over ten repeats of cross validation with different (random) definitions 
of the ten folds. Standard deviations over the ten repeats are also shown.  
 

Model #Pars Avg. wPGP 
(Training) 

Avg. wPGP 
(CV) 

Sequence Model 
PWM-based 21 0.755 0.677 ± 0.004 
RF-1-mer 22 0.756 0.673 ± 0.014 
RF-1-mer+2-mer 22 0.770 0.696 ± 0.012 
RF-1-mer+2-mer+3-mer 22 0.765 0.705 ± 0.017 
Shape Model 
Shape-based 22 0.784 0.727 ± 0.020 
Sequence+Shape Model 
Integrative PWM 22 0.752 0.676 ± 0.011 
Integrative Shape 22 0.776 0.727 ± 0.005 
RF-Shape+1-mer 22 0.777 0.724 ± 0.013 
RF-Shape+1-mer+2-mer 22 0.762 0.696 ± 0.012 
RF-Shape+1-mer+2-mer+3-mer 22 0.767 0.708 ± 0.016 

 

  



Table S4. Comparisons between models in this study. For each pair of 
models, shown is the p-value of Wilcoxon signed-rank test over ten pairs of 
average wPGP scores from ten repeats of 10-fold cross-validation. S: shape; m: 
mer; Inte: integrative. 
 

 1m 1+2m 1+2+3m Shape Inte 
PWM 

Inte 
Shape 

S+ 
1m 

S+ 
1+2m 

S+ 
1+2+3m 

PWM 0.421 0.003 0.003 0.003 0.288 0.005 0.003 0.003 0.003 

1m  0.003 0.006 0.003 0.341 0.003 0.003 0.003 0.003 

1+2m   0.121 0.006 0.003 0.005 0.018 0.003 0.192 

1+2+3m    0.008 0.003 0.003 0.006 0.018 0.192 

Shape      0.323 0.084 0.003 0.005 

Inte 
PWM 

     0.003 0.003 0.003 0.003 

Inte 
Shape 

      0.192 0.003 0.006 

S+ 
1m 

       0.003 0.006 

S+ 
1+2m 

        0.003 

 
  



Table S5. Evaluations of expression predictions from long PWM, trimmed 
PWM, and DNA shape models. The “goodness of fit” between predicted and 
real expression for each enhancer was assessed by wPGP score. The wPGP 
scores from PWM-based models and DNA shape-based model over all 37 
enhancers are shown.  

Enhancer 
Long PWM 

model 
Trimmed PWM 

model 
DNA shape 

model 
btd_head 0.83 0.93 0.91 
cnc_(+5) 0.31 0.75 0.68 
D_(+4) 0.57 0.77 0.66 
eve_1_ru 0.76 0.75 0.85 
eve_37ext_ru 0.95 0.80 0.96 
eve_stripe2 0.67 0.50 0.60 
eve_stripe4_6 0.88 0.86 0.86 
eve_stripe5 0.84 0.82 0.91 
ftz_+3 0.72 0.57 0.80 
gt_(-10) 0.83 0.84 0.91 
gt_(-1) 0.72 0.80 0.77 
gt_(-3) 0.75 0.89 0.77 
h_15_ru 0.60 0.59 0.63 
h_6_ru 0.90 0.96 0.92 
hb_anterior_actv 0.78 0.76 0.80 
hb_centr_&_post 0.42 0.38 0.56 
h_stripe34_rev 0.67 0.68 0.70 
kni_(+1) 0.67 0.76 0.86 
kni_(-5) 0.83 0.87 0.79 
kni_83_ru 0.77 0.78 0.88 
knrl_(+8) 0.53 0.69 0.68 
Kr_AD2_ru 0.30 0.35 0.30 
Kr_CD1_ru 0.77 0.50 0.76 
Kr_CD2_ru 0.68 0.74 0.68 
nub_(-2) 0.83 0.77 0.88 
oc_(+7) 0.75 0.95 0.87 
oc_otd_early 0.90 0.92 0.85 
odd_(-3) 0.75 0.69 0.69 
odd_(-5) 0.55 0.53 0.60 
pdm2_(+1) 0.84 0.80 0.76 
prd_+4 0.80 0.84 0.85 
run_-17 0.91 0.92 0.90 
run_-9 0.92 0.94 0.92 
run_stripe1 0.82 0.76 0.93 
run_stripe3 0.91 0.89 0.90 
run_stripe5 0.78 0.79 0.74 
slp2_(-3) 0.66 0.76 0.88 

 



Table S6. Evaluations of expression predictions from higher order k-mer 
models. The “goodness of fit” between predicted and real expression for each 
enhancer was assessed by wPGP score. The wPGP scores from integrative 
PWM-based model and integrative DNA shape-based model over all 37 
enhancers are shown.  

Enhancer RF-1-mer 
RF-1-mer+ 

2-mer 
RF-1-mer+ 

2-mer+3-mer 
btd_head 0.89 0.85 0.87 
cnc_(+5) 0.37 0.66 0.64 
D_(+4) 0.74 0.66 0.71 
eve_1_ru 0.77 0.78 0.86 
eve_37ext_ru 0.83 0.90 0.94 
eve_stripe2 0.64 0.67 0.73 
eve_stripe4_6 0.86 0.83 0.80 
eve_stripe5 0.85 0.91 0.82 
ftz_+3 0.76 0.78 0.69 
gt_(-10) 0.80 0.85 0.82 
gt_(-1) 0.75 0.74 0.66 
gt_(-3) 0.65 0.79 0.76 
h_15_ru 0.67 0.72 0.65 
h_6_ru 0.93 0.94 0.85 
hb_anterior_actv 0.65 0.72 0.75 
hb_centr_&_post 0.43 0.33 0.40 
h_stripe34_rev 0.66 0.69 0.65 
kni_(+1) 0.78 0.80 0.62 
kni_(-5) 0.84 0.85 0.95 
kni_83_ru 0.72 0.78 0.81 
knrl_(+8) 0.65 0.57 0.59 
Kr_AD2_ru 0.34 0.34 0.35 
Kr_CD1_ru 0.82 0.74 0.75 
Kr_CD2_ru 0.88 0.75 0.77 
nub_(-2) 0.81 0.83 0.87 
oc_(+7) 0.82 0.84 0.87 
oc_otd_early 0.91 0.85 0.90 
odd_(-3) 0.61 0.74 0.80 
odd_(-5) 0.81 0.73 0.71 
pdm2_(+1) 0.66 0.68 0.77 
prd_+4 0.85 0.87 0.87 
run_-17 0.93 0.94 0.92 
run_-9 0.91 0.94 0.88 
run_stripe1 0.86 0.83 0.83 
run_stripe3 0.87 0.88 0.91 
run_stripe5 0.82 0.89 0.73 
slp2_(-3) 0.84 0.85 0.83 



Table S7. Evaluations of expression predictions from integrative models. 
The “goodness of fit” between predicted and real expression for each enhancer 
was assessed by wPGP score. The wPGP scores from integrative PWM-based 
model and integrative DNA shape-based model over all 37 enhancers are 
shown.  

Enhancer 
Integrative PWM-

based  
Integrative shape-

based 
btd_head 0.91 0.90 
cnc_(+5) 0.29 0.71 
D_(+4) 0.66 0.73 
eve_1_ru 0.83 0.83 
eve_37ext_ru 0.89 0.94 
eve_stripe2 0.59 0.82 
eve_stripe4_6 0.87 0.87 
eve_stripe5 0.86 0.71 
ftz_+3 0.60 0.46 
gt_(-10) 0.81 0.92 
gt_(-1) 0.74 0.79 
gt_(-3) 0.87 0.76 
h_15_ru 0.68 0.67 
h_6_ru 0.96 0.93 
hb_anterior_actv 0.73 0.80 
hb_centr_&_post 0.41 0.38 
h_stripe34_rev 0.70 0.71 
kni_(+1) 0.69 0.79 
kni_(-5) 0.88 0.84 
kni_83_ru 0.74 0.84 
knrl_(+8) 0.61 0.72 
Kr_AD2_ru 0.35 0.34 
Kr_CD1_ru 0.50 0.79 
Kr_CD2_ru 0.73 0.71 
nub_(-2) 0.79 0.83 
oc_(+7) 0.91 0.89 
oc_otd_early 0.91 0.91 
odd_(-3) 0.65 0.74 
odd_(-5) 0.72 0.46 
pdm2_(+1) 0.89 0.75 
prd_+4 0.85 0.79 
run_-17 0.92 0.95 
run_-9 0.95 0.90 
run_stripe1 0.81 0.91 
run_stripe3 0.91 0.93 
run_stripe5 0.80 0.87 
slp2_(-3) 0.81 0.85 

 



Enhancer 
Integrative 

shape+1-mer 

Integrative 
shape+1-mer+ 

2-mer 

Integrative 
shape+1-mer+ 
2-mer+3-mer 

btd_head 0.85 0.80 0.83 
cnc_(+5) 0.57 0.64 0.67 
D_(+4) 0.60 0.46 0.74 
eve_1_ru 0.84 0.79 0.82 
eve_37ext_ru 0.95 0.96 0.93 
eve_stripe2 0.58 0.67 0.72 
eve_stripe4_6 0.85 0.82 0.84 
eve_stripe5 0.72 0.82 0.89 
ftz_+3 0.78 0.74 0.64 
gt_(-10) 0.85 0.89 0.85 
gt_(-1) 0.72 0.71 0.65 
gt_(-3) 0.80 0.76 0.75 
h_15_ru 0.69 0.69 0.69 
h_6_ru 0.95 0.90 0.89 
hb_anterior_actv 0.80 0.72 0.80 
hb_centr_&_post 0.47 0.55 0.37 
h_stripe34_rev 0.69 0.75 0.66 
kni_(+1) 0.86 0.76 0.62 
kni_(-5) 0.83 0.82 0.89 
kni_83_ru 0.86 0.79 0.80 
knrl_(+8) 0.78 0.53 0.58 
Kr_AD2_ru 0.31 0.66 0.34 
Kr_CD1_ru 0.78 0.80 0.74 
Kr_CD2_ru 0.73 0.77 0.72 
nub_(-2) 0.84 0.77 0.85 
oc_(+7) 0.86 0.85 0.87 
oc_otd_early 0.92 0.91 0.89 
odd_(-3) 0.77 0.68 0.77 
odd_(-5) 0.67 0.61 0.72 
pdm2_(+1) 0.70 0.54 0.77 
prd_+4 0.83 0.79 0.84 
run_-17 0.87 0.92 0.94 
run_-9 0.92 0.90 0.90 
run_stripe1 0.90 0.80 0.84 
run_stripe3 0.95 0.91 0.90 
run_stripe5 0.81 0.86 0.88 
slp2_(-3) 0.80 0.86 0.80 
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