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Supplementary Methods

Gibbs binding energy, log-odds scores, and learning model parameters

We show here the following: The statistical physics approach to learning a model for the sequence-
dependent binding energy of a protein to DNA that best explains the observed binding data is
equivalent to the purely statistical approach – followed by most work in the field of motif discovery
– of maximising the likelihood of the training sequences to have been generated by the motif model
and background sequence model.

Suppose we have measured binding sites of a transcription factor, e.g. in vivo by a ChIP-seq
experiment or in vitro using HT-SELEX. Our goal is to describe the Gibbs free energy ∆G(x) for
any potential binding site sequence x = (x1 :W ) ∈ {A,C,G,T}W , where W is the number of bases
with an influence on the binding specificity. This will allow us to make predictions for arbitrary
sequences about where and with what relative strength the factor binds. The following treatment
will also generalise to complex, multipartite motifs.

We denote by x1, . . . ,xN ∈ {A,C,G,T}W the N measured binding site sequences and by
pbg(x) the probability distribution of sequences x ∈ {A,C,G,T}W in the background set from
which the binding sites were selected. As examples, in ChIP-seq pbg(x) is learned from a mock
immunoprecipitation measurement and in HT-SELEX from the input sequence library prior to
the selection step.

According to Boltzmann’s law, the probability of a genomic site with sequence x to be bound
by the transcription factor divided by the probability of x not to be bound is

exp

(
−∆G(x)− µ

kBT

)
=

p(bound|x)

p(not bound|x)
=

p(bound|x)

1− p(bound|x)
, (S.1)

with the chemical potential µ that depends on the factor concentration but not on x. Solving for
p(bound|x) yields the well-known behaviour for unsaturated binding,

p(bound|x) =

(
1 + exp

(
∆G(x)− µ

kBT

))−1
. (S.2)

We parameterise the dependence of ∆G(x) on the binding site sequence x by defining the following
normalised probability distribution:

pmotif(x) :=
pbg(x) exp(−∆G(x)/kBT )∑
y pbg(y) exp(−∆G(y)/kBT )

, (S.3)

where the sum in the normalisation constant runs over all possible binding site sequences y ∈
{A,C,G,T}W . Abbreviating the denominator as const. and solving for ∆G(x)/kBT ,

− ∆G(x)

kBT log 2
+ const. = log2

pmotif(x)

pbg(x)
=: S(x), (S.4)

we find that the binding strength of a site x (as quantified by the negative Gibbs energy of binding
in units of kBT log 2) is, up to a constant, equal to the log-odds score S(x). Once we know pmotif(·)
we can compute S(x) and the relative binding strength ∆G(x)/kBT for any potential binding site
sequence x = (x1 . . . xW ).

To learn the distribution pmotif(·), and therefore also ∆G(x), from the measured binding sites,
we need the likelihood,

p(x1 . . .xN |pmotif) =

N∏
n=1

p(xn|bound,pmotif) (S.5)

of the binding sites given the model parameters pmotif. The probability p(xn|bound,pmotif) for
pulling out a sequence xn from an underlying distribution of possible sequences pbg(x) can be
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found using Bayes’ theorem,

p(xn|bound,pmotif) =
p(bound|xn,pmotif) pbg(xn)∑

y p(bound|y,pmotif) pbg(y)
. (S.6)

Here, p(bound|xn,pmotif) is the probability that xn is bound by the factor (eq. S.2).
We now assume, as commonly done, to be in a regime of unsaturated binding, p(bound|x) . 0.1

[1]. We can then approximate eq. (S.2) as p(bound|x) ≈ exp (−(∆G(x)− µ)/kBT ). Inserting this
expression into the likelihood and using eq. (S.3) yields

p(x1 . . .xN |pmotif) =

N∏
n=1

pmotif(xn). (S.7)

This equation for the likelihood applies to any choice of models for the binding site and background
sequences in the regime of unsaturated binding. It is remarkable because it shows that the statistical
physics approach to learning a binding energy model that explains the observed binding data
leads to the same likelihood as the purely statistical approach that has been followed in most
studies. (See Djordjevic et al. [2] for an interesting approach to learn a PWM model that does not
assume unsaturated binding but instead makes the simplifying assumption of zero temperature.)

PWM model and maximum a-posteriori approach

Without loss of generality, the probabilities for motif and background sequences can be written

pmotif(x1 :W ) =

W∏
j=1

pj(xj |x1 : j−1) ,

pbg(x1 :W ) =

W∏
j=1

pbg(xj |x1 : j−1) , (S.8)

with appropriate conditional distributions. The position weight matrix (PWM) model assumes
independence between nucleotides at different positions for the motif and background probabilities,
pj(xj |x1 : j−1) ≈ pj(xj) and pbg(xj |x1 : j−1) ≈ pbg(xj), resulting in

pmotif(x) ≈
W∏
j=1

pj(xj) , pbg(x) ≈
W∏
j=1

pbg(xj) . (S.9)

The log-odds score in (S.4) can therefore be written

S(x) =

W∑
j=1

log
pj(xj)

pbg(xj)
=

W∑
j=1

sj(xj), (S.10)

showing that this approximation implies independent contributions to the binding energy ∆G(x)
from each nucleotide in the binding site.

To find pj(a), we insert the left equation in (S.9) into eq. (S.7), take the logarithm, multiply

the summed terms by 1 =
∑T
a=A I(xni = a) (with indicator function I(·)), change the order of

the summations, and abbreviate the number of times we observed a base a at position j by
nj(a) :=

∑N
n=1 I(x

n
j =a), which yields

log p(x1 . . .xN |pmotif) =

W∑
j=1

T∑
a=A

nj(a) log pj(a). (S.11)

We can maximise this log likelihood under the constraints
∑T
a=A pj(a) = 1 using the method of

Lagrange multipliers, which yields the maximum likelihood solution pj(a) = nj(a)/N .
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This maximum-likelihood (ML) estimate has a serious drawback: particularly for small N it
tends to overtrain the model. If, for instance, a nucleotide A has not been observed at position j
in any of N = 4 binding sites, it would be given a zero probability, pj(A) = 0, even though quite
obviously from such few sequences we cannot conclude that A will never occur in position j of
other binding sites.

We can improve our estimation using the maximum a-posteriori (MAP) approach, in which
one maximises the posterior probability instead of the likelihood. According to Bayes’ theorem,
the posterior probability is proportional to the likelihood times the prior probability p(pmotif),

p(pmotif|x1 . . .xN ) ∝ p(x1 . . .xN |pmotif) p(pmotif). (S.12)

As prior, we can choose a product over Dirichlet distributions, p(pmotif) =
∏
j Dir(pj(·)|α0 pbg(·)) ∝∏

j

∏
a pj(a)α0 pbg(a)−1, with pseudocount parameters α0 pbg(a). The optimisation of the posterior

probability under the constraints
∑T
a=A pj(a) = 1 then leads to the MAP solution

pj(a) =
nj(a) + α0 pbg(a)

N + α0
. (S.13)

The Dirichlet prior in effect adds fractional pseudocounts α0pbg(a) to the observed counts nj(a).
The MAP solution interpolates linearly between the maximum likelihood solution nj(a)/N and
the prior distribution pbg(a).

Bayesian Markov model learning

The inhomogeneous Markov model (iMM) of order k retains from equation (S.8) the dependence
on the k previous positions,

p
(k)
motif(x1 :W ) =

W∏
j=1

p
(k)
j (xj |xj−k : j−1) , (S.14)

where for simplicity of notation xi with indices i ≤ 0 are ignored. PWMs are therefore iMMs
of order 0. The conditional probabilities are commonly estimated by adding pseudocounts
proportional to monomer background frequencies, as in PWMs,

p
(k)
j (xj |xj−k : j−1) =

nj(xj−k : j) + αk pbg(xj)

nj−1(xj−k : j−1) + αk
. (S.15)

Here nj(xj−k : j) =
∑
n I(xnj−k : j = xj−k : j) denotes the number of times xj−k : j occurs in the

bound sequences x1, . . . ,xN ending at position j. The total number of pseudocounts αk controls
the balance between counts and pseudocounts. Analogously to the case of the simple PWM model,
the expression in eq. (S.15) is the MAP solution obtained with the prior

p(p
(k)
motif|pbg) =

W∏
j=1

∏
xj−k : j−1

Dir
(
p
(k)
j (·|xj−k : j−1)

∣∣∣αkpbg(·)
)
. (S.16)

We can dramatically improve this estimate by noting that p
(k)
j (a|xj−k : j−1) will be much better

approximated by p
(k−1)
j (a|xj−k+1 : j−1) than by pbg(a). Therefore a much better choice for the

prior is

p(p
(k)
motif|p

(k−1)
motif ) =

W∏
j=1

∏
xj−k : j−1

Dir
(
p
(k)
j (·|xj−k : j−1)

∣∣∣αkp(k−1)j (·|xj−k+1 : j−1)
)
. (S.17)

As shown below, this prior leads to the following MAP solution for the model parameters,

p
(k)
j (xj |xj−k : j−1) =

nj(xj−k : j) + αk p
(k−1)
j (xj |xj−k+1 : j−1)

nj−1(xj−k : j−1) + αk
, (S.18)
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in which the pseudocounts for order k are derived from the model of order k − 1. To prove this,
we find the maximum of the logarithm of the posterior probability (eq. S.12) plus terms with
Lagrange multipliers λx′ for the optimisation constraints, using abbreviations for the context
x′ := xj−k : j−1 and the shortened context x′′ := xj−k+1 : j−1:

log p(x1 . . .xN |pmotif) + log p(pmotif) +

W∑
j=1

∑
x′

λx′

(
1−

T∑
a=A

p
(k)
j (a|x′)

)
−→
pmotif

max . (S.19)

The first term can be derived in a way similar to eq. (S.11), yielding
∑
j

∑
a

∑
x′ nj(x

′, a) log p
(k)
j (a|x′).

The second term follows from eq. (S.17) and logDir(p|α) =
∑
a αa log p(a) + const, which results

in
∑
j

∑
x′
∑
a αkp

(k−1)
j (a|x′′) log p

(k)
j (a|x′) + const. Setting the derivative of equation (S.19) with

respect to one of the parameters, p
(k)
j (a|x′), to zero gives

nj(x
′, a)

p
(k)
j (a|x′)

+
αkp

(k−1)
j (a|x′′)

p
(k)
j (a|x′)

− λx′ = 0. (S.20)

Solving for p
(k)
j (a|x′) and normalising it (which yields the value of λx′) completes the proof.

We can rewrite this result to show that it interpolates between the maximum likelihood solution

for order k, nj(xj−k : j)/nj−1(xj−k : j−1), and the order-(k−1) probability, p
(k−1)
j (xj |xj−k+1 : j−1):

p
(k)
j (xj |xj−k : j−1) = w

nj(xj−k : j)

nj−1(xj−k : j−1)
+ (1− w) p

(k−1)
j (xj |xj−k+1 : j−1), (S.21)

with an interpolation weight w that is a saturating function of the frequency of the context,
nj−1(xj−k : j−1),

w =
nj−1(xj−k : j−1)

nj−1(xj−k : j−1) + αk
. (S.22)

In our derivation of equations (S.21, S.22), the dependence of w on nj−1(xj−k : j−1) was dictated
in a natural way by our Bayesian viewpoint, and the only real choice we had was how to set
the values of αk. Our BaMMs are a special case of interpolated Markov models [3, 4], which
differ in the way the interpolation weights are chosen. In the past, various ad-hoc heuristics have
been proposed. Salzberg et al. [5], who introduced interpolated Markov models to computational
biology, used an interpolation scheme, in which w is 1 if nj−1(xj−k : j−1) > 400 and below that
threshold w grows from 0 to 1 with increasing nj−1(xj−k : j−1) and increasing significance with
which the hypothesis can be rejected that (xj−k : j−1 a) is distributed according to the order-(k−1)

probability p
(k−1)
j (a|xj−k+1 : j−1). In the scheme of Ohler et al. [6], w does not only depend on

nj−1(xj−k : j−1) but on the numbers of occurrence of the k suffixes xj−l : j−1 with l = 1, . . . , k. A
drawback is that even for very high nj−1(xj−k : j−1) the weights for orders lower than k do not
approach 0, as they should at the expense of a higher order. Most importantly, all previous schemes
require the motif sequences to be aligned, while our BaMMs allow for the de-novo discovery of
unaligned motifs enriched in a set of sequences using an EM-type algorithm.

EM algorithm for BaMM-based de-novo motif discovery

We are given sequences x1, . . . ,xN and we want to discover motifs enriched in them. We do
not know the positions of the potential motifs, however. We simplify the situation by using a
zero-or-one-occurrence-per-sequence (ZOOPS) model [7], which assumes that each sequence carries
one or no motif. When interpreted from the statistical physics viewpoint, the ZOOPS model does
not actually assume that at most one motif is present per sequence. Rather, binding can occur
anywhere on the sequences, and several sites per sequence can contribute to the binding, but not
more than a single factor can bind at the same time per sequence. If several binding sites are
present in one sequence, they can only contribute with a combined weight of up to one. In a
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multiple-occurrence-per-sequence (MOPS) model, the combined weight of these sites would be the
expected occupancy of the sequence, which can be more than one. In cases where we expect a
strongly varying number of binding site occurrences per sequence, a MOPS model might therefore
give better results. But this model requires a forward-backward computation at each M-step of
the EM algorithm, which would considerably slow down the motif learning.

To learn the parameters of the BaMM, pmotif, from unaligned binding sites, we derive here an
Expectation Maximisation (EM) algorithm that maximises the posterior probability (eq. S.12)
using the Dirichlet prior in eq. (S.17). The EM algorithm alternates between the E-step, in which
it estimates the probabilities rni of a motif to be present at each position i of each of the training

sequences n given the current estimate of model parameters p
(k)
motif, and the M-step, in which it

updates the model parameters p
(k)
motif given the current estimate of the rni.

In the ZOOPS model, the probability for a sequence xn = xn1 :L of length L with a motif of W
nucleotides starting at position zn = l is

p
(
xn|zn = l, p̃

(k)
motif

)
=

l−1∏
i=1

p
(K′)
bg (xni |xni−K′ : i−1)

l+W−1∏
i=l

p
(k)
i−l+1(xni |xni−k : i−1)

L∏
i=l+W

p
(K′)
bg (xni |xni−K′:i−1).

(S.23)
We use an inhomogeneous Markov model of order K for the motif and a homogeneous Markov
model of order K ′=2 for the background sequences. The hidden variable zn ∈ {0, . . . , L−W + 1}
gives the position of the single motif in sequence n. If no motif is present, which we signify by
zn = 0, we have simply p(xn|zn = l) =

∏L
i=1 pbg(xni |xni−K′ : i−1).

In the E-step, we update the responsibilities rni given the current parameter estimate of p̃motif,
which according to Bayes’ theorem is

rni = p(zn = i|xn, p̃(K)
motif) =

p
(
xn|zn = i, p̃

(K)
motif

)
p(zn = i)∑L−W+1

i′=0 p
(
xn|zn = i′, p̃

(K)
motif

)
p(zn = i′)

. (S.24)

We choose a flat positional prior, p(zn = 0) = 1− q and p(zn = i) = q/(L−W + 1) for i > 0. The
hyperparameter q specifies the prior probability for a sequence to contain a motif. It was found to
have little influence on the results and was set to 0.9 throughout this work. This choice prevents
false positive training sequences that do not contain any instance of the binding site to negatively
affect the quality of the predicted motif model.

In the M-step, we update the parameters p̃
(k)
motif for k = 0, . . . ,K given the responsibilities rni.

This is done by maximising the auxiliary function

Q(p̃motif|rni) =

N∑
n=1

L−W+1∑
i=0

rni log
(
p(xn|zn= i, p̃

(k)
motif) p(zn = i|q)

)
+ log p

(
p
(k)
motif|p

(k−1)
motif

)
,

(S.25)

with the prior given in eq. (S.17). We can maximise this function analytically under the constraints∑
a p(a|x1:k) = 1 for all x1:k ∈ {A,C,G,T}k by the method of Lagrange multipliers, which leads

after some algebra to equation (S.18), but with a new, probabilistic definition for the counts:

nj(x1 : k) :=
∑
n

rni I(x
n
i+j−k : i−j−1 = x1 : k). (S.26)

We run the M-updates for all model orders from lowest to highest order and update the pseudo-
counts by the just updated model probabilities from the order below. We iterate the EM-steps
until convergence of the model parameters.

Initialization of the EM algorithm We integrated code from our motif discovery tool
XXmotif [8] into BaMM!motif and initialize the EM algorithm for all models studied in this work
by setting the responsibilities rni = 1 for the motif instances returned by XXmotif, using options
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--reverseComp --XX-localization --XX-localizationRanking --XX-K 2 --mergeMotifsThreshold LOW

--maxPValue 0.05 --minOccurrence 0.05. BaMM!motif also allows the user to directly initialize
BaMMs by supplying model parameters or a set of aligned binding sites.

Higher-order sequence logos

We can quantify the information in our learned motif using the relative entropy between the
probability distributions for motif sequences and for background sequences and split it up into a
sum of terms over model orders:

H (pmotif|pbg) =
∑

x=x1 :W

pmotif(x) log2

pmotif(x)

pbg(x)

H (pmotif|pbg) =

W∑
j=1

∑
x=x1 :W

pmotif(x) log2

p
(k)
j (xj |xj−k : j−1)

p
(K′)
bg (xj |xj−K′ : j−1)

H (pmotif|pbg) =

W∑
j=1

 T∑
a=A

pj(a) log2

pj(a)

pbg(a)
+
∑
a,b

pj(b, a) log2

(
pj(a|b)
pj(a)

pbg(a)

pbg(a|b)

)

+
∑
a,b,c

pj(c, b, a) log2

(
pj(a|c, b)
pj(a|b)

pbg(a|b)
pbg(a|c, b)

)
+ . . .

 . (S.27)

The right hand-side on the last line splits the relative contribution up into one terms per order
k. The sequence logo of order k visualises the contributions of all (k + 1)-mers (a, b, . . .) at
each position j to these terms. Note that some oligomers contribute negatively; the information
contribution of one column is the sum of its positive and negative contributions. For simplicity
we use K ′ = 0 for the sequence logos, which eliminates the ratio of background probabilities in
1’st and higher orders.

Supplementary Datasets

ChIP-seq datasets

We evaluated BaMM!motif on human transcription factor ChIP-seq datasets published by The
ENCODE Project Consortium [9]. The March 2012 data freeze of the encyclopedia of DNA
elements (ENCODE) comprises 708 IDR optimal blacklist-filtered SPP [10] peak sets. The
irreproducible discovery rate (IDR) framework verifies the reproducibility of ChIP-seq peaks
identified from replicate experiments by computing a quantitative reproducibility score [11, 12].
Peaks that overlap blacklisted regions were removed. These regions were empirically identified by
the ENCODE Data Analysis Consortium (DAC) to show anomalous unstructured high signal
in next-generation sequencing experiments independent of cell line and experiment type. We
restricted our analysis to 87 RNA polymerase (RNAP) II-associated sequence-specific transcription
factors characterised by Wang et al. [13] (441 datasets) and nine additional sequence-specific
transcription factors (ATF1, ATF2, Elk1, FoxM1, IRF4, SREBP2, STAT5A, TCF3, ZnF217) from
subsequently conducted experiments (13 datasets).

Positive sequences were compiled from the top 5 000 peak regions (sorted best to worst according
to their signal value) or all peak regions if less than 5 000 peaks were available. Sequences were
extracted ±100 bp around peak summits using Biopieces (www.biopieces.org). Background
sequences were sampled from the trimer frequencies observed in positive sequences to ensure
similar sequence compositions in both sequence sets. The length and number of background
sequences was the same as the length and 100 times the number of positive sequences, respectively.

In order to initialise BaMMs, we ran XXmotif [8] using non-default options --reverseComp

--XX-localization --XX-localizationRanking --XX-K 2 --mergeMotifsThreshold LOW, and
filtered the results by requiring motifs to lie localised to peak summits (--maxPValue 0.05) and
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to occur in at least 5 % of sequences (--minOccurrence 0.05). The motif instances that XXmotif
used to calculate its top ranked PWM in each data set were employed to initialise BaMMs.
Optionally, we added two or four uniformly initialised positions to both 5′- and 3′-ends of the
models. The search space in training and test sequences was guaranteed to be identical and
independent of the number of model positions. For instance, in order to compare the performance
of models that describe the binding sites of the same transcription factor in the same data set
but differ in their number of positions, we adjusted the search space in the benchmark test
by extending training and test sequences of the longer model accordingly. In 446 (of all 454)
datasets, corresponding to 94 transcription factors, XXmotif found at least one motif in all four
cross-validation folds, independent of the length of training sequences. The remaining eight peak
sets of the transcription factors c-Myc (2 datasets), E2F1 (1), ELF1 (1), PAX5 (1), PGC1A (1),
and STAT1 (2) were excluded from the benchmark test.

To assess the performance of XXmotif, iMMs, and BaMMs in discriminating bound from
unbound sequences, we carried out a four-fold cross-validation, that is, we trained on 75 % of data,
tested on the 25 % held out data, and pooled results from the four holdout sets. In the process,
we calculated the maximum log-odds score over all possible motif positions for each positive and
background test sequence and evaluated the partial area under the receiver operating characteristic
(ROC) curve (pAUC) up to a false positive rate (FPR) of 5 %. Since the pAUC summarises the
part of the ROC curve that is most relevant to practical applications, it is preferable over the
area under the entire ROC curve (AUC). In Figure 3 C,D, an improvement was significant at a
confidence level of 0.0625=1/24 if the BaMM model obtained higher pAUCs on all four test sets.

To evaluate the ability of BaMMs to predict in vitro binding affinities measured by competitive
electrophoretic mobility shift assay (EMSA) for the mouse embryonic stem cell (mESC) transcrip-
tion factor Klf4, we learned models from in vivo ChIP-seq data [14]. Positive sequences were
compiled from the top 5 000 peak regions (sorted best to worst according to their signal value) by
extracting ±50 bp around peak region midpoints. To initialise BaMMs, we ran XXmotif with the
parameter setting used in the ENCODE ChIP-seq benchmark test.

EMSA datasets

We used the competitive EMSA experiments for the mESC transcription factor Klf4 from Sun et al.
[15], comprising dissociation constant (Kd) measurements for 33 sequences with single mutations
and 25 sequences with multiple mutations to the 10 bp consensus binding site of Klf4. These
dissociation constants were divided by the dissociation constant of the sequence with median Kd

(single mutant sequences) or with Kd closest to the mean Kd (multiple mutant sequences), and
the logarithms of the resulting ratios were computed. Prediction scores are calculated as log ratios
of odds scores. Since Kd(x) is proportional to exp(∆G(x)/kBT ) and according to eq. (S.4) also
to exp(−S(x)), the predicted log ratios are equal to −S(x) + const. We compared Klf4 BaMMs of
increasing order by means of the Pearson correlation between measured and predicted log ratios.

The competitive EMSA scores for 64 double-stranded oligonucleotide probes containing a
potential FoxA2 binding site were taken from Levitsky et al. [16]. We calculated Spearman
correlations between measured EMSA scores and log ratios predicted by FoxA2 BaMMs of
increasing order. Spearman correlations to predictions from other methods and models were
determined by Alipanahi et al. [17].

RNAP I/II core promoter sequences

We analysed sequences around Drosophila melanogaster transcription start sites (TSSs) measured
by Brown et al. [18] using cap analysis of gene expression (CAGE) [19]. Filtered bedGraph-
formatted CAGE datasets were pooled. Before clustering TSSs, the genomic distribution of
TSSs was smoothed using a 41 bp uniform kernel function. Clusters were defined by genome
intervals in which the smoothed distribution of TSS counts was found to lie entirely above the
genome-wide average. The mode of the distribution was used as the representative TSS in each
cluster. Subsequently, the clusters were filtered by three criteria. First, clusters with less than
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five TSS counts were excluded. Second, clusters had to exhibit more TSS counts compared to
any other cluster within 150 bp (regarding representative TSSs). Third, clusters had to overlap or
lie close to FlyBase-annotated TSSs [20], by requiring a representative TSS to be located within
250 bp upstream of an annotated TSS or within a 5′ untranslated region (UTR). The clustering
resulted in 15 971 TSSs assigned to 11 536 unique genes. Genes can thus be regulated by multiple
core promoters defined by distinct TSSs.

In order to assign TSS clusters to a broad and narrow transcription-initialising core promoter
class, the peakedness of the TSS distributions was quantified with a TSS width score by calculating
the mean absolute deviation from the median TSS location as

TSS width =
1

N

N∑
i=1

|xi −median(X)| , (S.28)

where N is the number of TSSs within the cluster, xi is the position of the i’th TSS, and median(X)
is the median TSS position within the cluster. The distribution of TSS widths shows a local
minimum at a value of five. Therefore, clusters with a TSS width smaller than five were classified
as narrow peak (NP) and the remaining as broad peak (BP) core promoters. This resulted in
7 262 NP and 8 709 BP core promoters assigned to 5 576 and 7 235 genes, respectively. Note that
1 275 genes have core promoters from both classes.

In addition to NP and BP core promoters, we modeled core promoter sequences of ribosomal
protein (RP) genes, which are known to differ from NP and BP core promoters in their architecture
[21]. The RPG database [22] maintains 87 RP genes from D. melanogaster. Except for RpS27A,
we could assign at least one core promoter to each RP gene, six of which had two associated core
promoters. We thus obtained 92 RP gene core promoters, 60 and 32 belonging to the NP and BP
class, respectively. Note that RP gene core promoters were not excluded from NP and BP core
promoter sequences.

The core promoter encompasses the region that lies approximately ±50 bp around the TSS
[23]. Therefore, we initialised core promoter models of all three classes from 101 bp sequences
centered at representative TSSs. We computed the 9’th percentile of TSS width scores for each
core promoter class, resulting in 3.64 (NP), 22.71 (BP), and 10.64 (RP), and learned NP, BP, and
RP gene core promoter models within 4 bp, 23 bp, and 11 bp using positive sequences of length
109 bp, 147 bp, and 123 bp, respectively, centered at representative TSSs. Background models
were learned from the trimer frequencies within 250 bp of representative TSSs.

We assessed the performance of iMMs and BaMMs in predicting TSS locations using a four-fold
cross-validation procedure. To calculate the precision (fraction of true in all predictions) of
the models in predicting the correct positions of TSSs, we determined the position with highest
log-odds score in each test sequence, extracted ±250 bp around representative TSSs. If the position
was within 4 (NP), 23 (BP), and 11 (RP) bp of the representative TSS, the prediction was judged
as correct, else as false. The window size of each class corresponds to the 9’th percentile of its TSS
cluster width scores (see above). Notably, while test sequences provide an identical search space
(401) for all core promoter classes, the precision of random predictions is different for NP (0.02),
BP (0.12), and RP (0.06) core promoters. We picture the distributions of maximum log-odds
score positions, that is, the predictions of signal locations, as enrichments compared to predictions
from a random predictor.

RNAP II polyadenylation site sequences

We use the major transcript isoform (mTIF) annotations from Pelechano et al. [24], obtained after
clustering transcript isoforms (TIFs) from S. cerevisiae grown in yeast extract peptone dextrose
(YPD). After selecting mTIFs covering one intact open reading frame (ORF) and summing up
the sequencing reads of mTIFs with identical polyadenylation (pA) site, we selected the pA site(s)
with the maximum number of sequencing reads per gene. We excluded pA sites with less than five
sequencing reads. In total, we selected 4 228 pA sites from 4 173 distinct genes. 51 and 2 genes
are represented by two and three pA sites, respectively.
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The sequence region that surrounds pA sites shows nucleotide preferences within 70 bp upstream
to 30 bp downstream of pA sites. Therefore, we modeled pA sites over the length of 101 bp covering
this region. To provide a biologically relevant length of test sequences, we determined the length
of 3′ UTRs from measured pA sites and S. cerevisiae ORF annotations from the Saccharomyces
Genome Database [25]. Since more than 90 % of 3′ UTRs are shorter than 300 bp, test sequences
were extracted from 220 bp upstream to 180 bp downstream of pA sites. This corresponded to
301 potential pA site positions within 150 bp of measured pA sites, from which the correct pA
site is to be predicted in the benchmark tests. We trained background models from the trimer
frequencies within 220 bp upstream to 180 bp downstream of pA sites.

Pelechano et al. defined mTIFs by clustering the transcripts with each of their 5′- and 3′-end
sites co-occurring within 5 bp [24]. On this account, we determined the precision of pA site
predictions by considering predictions within 5 bp of measured pA site locations as correct. Hence,
the precision of random pA site predictions would be 0.04. In other respects, the benchmark test
is identical to the evaluation procedure performed for RNAP I/II core promoter sequences.

RNAP pause site sequences

Larson et al. [26] measured 19 960 and 9 989 RNAP pause sites in Escherichia coli and Bacillus
subtilis, respectively, using nascent elongating transcript sequencing (NET-seq), and found ap-
proximately one pause site per 100 bp across well-transcribed genes on average. We extracted
test sequences that correspond to a search space of 101, centered at the pause sites. To prevent
overtraining caused by overlapping training and test sequences, we excluded pause sites within
54 bp of another pause site with higher relative peak height. This reduced the number of E. coli
and B. subtilis pause sites to 11 648 and 6 809, respectively. Background sequences were randomly
sampled from the E. coli and B. subtilis genomes using the NCBI Reference Sequence (RefSeq)
accession numbers NC 000913.3 and NC 000964.3, respectively, totaling to 100 times the number
of positive sequences.

In E. coli, Larson et al. [26] identified a 16 bp consensus pause sequence, 10 bp upstream to 5 bp
downstream of the pause index (the 3′-end of the transcript). We additionally incorporated the
2 bp immediately flanking the identified 16 bp consensus and learned the resulting 20 bp models
by varying the model order. Likewise, we learned 20 bp BaMMs of B. subtilis RNAP pause sites.
Longer models did not further improve benchmark test results.

Except for considering pause sites predicted to lie within 0 bp of measured sites to be correct,
a random prediction could therefore locate pause sites with a precision of 0.01, we resort to the
benchmark test described for RNAP I/II core promoter and RNAP II pA site sequences.

PAR-CLIP datasets

We modeled the binding of 25 messenger ribonucleoprotein (mRNP) biogenesis factors from
S. cerevisiae to mRNA using published PAR-CLIP datasets [27, 28]. After sorting PAR-CLIP
crosslink sites by occupancies (number of uracil to cytosine base transitions over RNA-seq counts)
and excluding crosslink sites located in tRNA transcripts, we focused on the top 2 000 protein-RNA
crosslink sites, which correspond to uracil nucleosides, and extracted 25 nt positive sequences
encompassing the central crosslink site. In order to learn to discriminate factor binding sites in
the transcriptome, 20 000 uracil-centered sequences (of the same length) were randomly sampled
from the S. cerevisiae transcriptome using mRNA annotations from Pelechano et al. [24] and
employed as background sequences both in learning and testing the models of all RNA-binding
proteins. Note that background sequences may also contain true RNA-binding motifs.

We assessed the performance of iMMs and BaMMs in discriminating between uracil nucleosides
with and without crosslink analogous to the evaluation procedure conducted in the ENCODE
ChIP-seq benchmark test.
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Supplementary Figures

Figure S1. Modelling nucleotide dependencies in BATF binding motifs improves motif
discovery and prediction. BATF models learned from ChIP-seq sites in GM12878 cells. Predictive
performance (left) for BaMMs of increasing order. 0’th-order (middle) and 1’st-order (right) sequence
logos of 2’nd-order BaMM.

Figure S2. Modelling nucleotide dependencies in c-Jun binding motifs improves motif
discovery and prediction. c-Jun models learned from ChIP-seq sites in HepG2 cells. Predictive
performance (left) for BaMMs of increasing order. 0’th-order (middle) and 1’st-order (right) sequence
logos of 2’nd-order BaMM.

13



Figure S3. Modelling nucleotide dependencies in c-Fos binding motifs improves motif
discovery and prediction. c-Fos models learned from ChIP-seq sites in K562 cells. Predictive
performance (top) for BaMMs of increasing order. 0’th-order (left), 1’st-order (middle) and 2’nd-order
(right) sequence logos (bottom) of 2’nd-order BaMM.

Figure S4. Modelling nucleotide dependencies in Hnf4a binding motifs improves motif
discovery and prediction. Hnf4a models learned from ChIP-seq sites in HepG2 cells. Predictive
performance (left) for BaMMs of increasing order. 0’th-order (middle) and 1’st-order (right) sequence
logos of 2’nd-order BaMM.
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Figure S5. Modelling nucleotide dependencies in IRF4 binding motifs improves motif
discovery and prediction. IRF4 models learned from ChIP-seq sites in GM12878 cells. Predictive
performance (top) for BaMMs of increasing order. 0’th-order (left), 1’st-order (middle) and 2’nd-order
(right) sequence logos (bottom) of 2’nd-order BaMM.

Figure S6. Modelling nucleotide dependencies in NF-YB binding motifs improves motif
discovery and prediction. NF-YB models learned from ChIP-seq sites in K562 cells. Predictive
performance (left) for BaMMs of increasing order. 0’th-order (middle) and 1’st-order (right) sequence
logos of 2’nd-order BaMM.
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Figure S7. Modelling nucleotide dependencies in NRSF binding motifs improves motif
discovery and prediction. NRSF models learned from ChIP-seq sites in PFSK-1 cells. Predictive
performance (left) for BaMMs of increasing order. 0’th-order (middle) and 1’st-order (right) sequence
logos of 2’nd-order BaMM.

Figure S8. Modelling nucleotide dependencies in PU.1 binding motifs improves motif
discovery and prediction. PU.1 models learned from ChIP-seq sites in GM12891 cells. Predictive
performance (left) for BaMMs of increasing order. 0’th-order (middle) and 1’st-order (right) sequence
logos of 2’nd-order BaMM.
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Figure S9. Modelling nucleotide dependencies in ZnF143 binding motifs improves motif
discovery and prediction. ZnF143 models learned from ChIP-seq sites in the H1-hESC line.
Predictive performance (top) for BaMMs of increasing order. 0’th-order (left), 1’st-order (middle) and
2’nd-order (right) sequence logos (bottom) of 2’nd-order BaMM.
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Figure S10. Nucleotides flanking the core binding sites of transcription factors contribute
to the specificity of higher-order models. (A) GR models learned from ChIP-seq sites in HepG2
cells. Predictive performance (left) for 2’nd-order 8-bp-extended and unextended BaMMs. 0’th-order
(middle) and 1’st-order (right) sequence logos of 2’nd-order 8-bp-extended BaMM. (B,C) Same as A but
showing (B) IRF1 models learned in K562 cells and (C) c-Fos models learned in Mcf-10a cells.
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Figure S11. Nucleotides flanking the core CTCF binding site contribute to the specificity
of higher-order CTCF models. CTCF models extended by 25 bp on either side, learned from
ChIP-seq sites in Mcf7 cells. Predictive performance (left) for BaMMs of increasing order. 0’th-order
(middle) and 1’st-order (right) sequence logos of 2’nd-order BaMM.

Figure S12. Robustness of BaMM learning at predicting transcription factor-DNA
binding motifs. Factor of increase in performance (on log scale) of 8-bp-extended 5’th-order BaMMs
versus non-interpolating (non-interp.) iMMs on 446 ChIP-seq datasets for transcription factors from
ENCODE. For iMMs we set α0 = 1 and αk = 5 for k ≥ 1, as this produced the best overall performance
of iMMs. Dashed line: mean fold increase.
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Figure S13. Higher-order sequence logos of pioneer transcription factor BaMMs. Sequence
logos of 5’th-order BaMMs for (A) Klf4 and (B) FoxA2, shown from 0’th up to 5’th order (top left to
bottom right).
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Figure S14. Higher-order sequence logos of NP core promoters from D. melanogaster.
0’th-order (top), 1’st-order (middle) and 2’nd-order (middle) sequence logos of 2’nd-order BaMM.
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Figure S15. Higher-order sequence logos of BP core promoters from D. melanogaster.
0’th-order (top), 1’st-order (middle) and 2’nd-order (middle) sequence logos of 2’nd-order BaMM.
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Figure S16. Higher-order sequence logos of pA sites from S. cerevisiae. 0’th-order (top),
1’st-order (middle) and 2’nd-order (middle) sequence logos of 2’nd-order BaMM.
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Figure S17. Performance of higher-order BaMMs at predicting RP gene core promoter
and RNAP pause site motifs. (A) Same as Figure 5A but for TSSs of 92 RP gene core promoters
from D. melanogaster. Correct predictions are defined to lie within 11 bp of measured TSSs. 0’th-order
(right) sequence logo of 0’th-order BaMM. (B) Same as Figure 5D but for RNAP pause sites from B.
subtilis. Correct predictions are within 0 bp of measured pause sites.
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Figure S18. Robustness of BaMM learning at predicting complex, multipartite motifs.
Same as precision barplots in Figure 5 and S17 but for BaMMs (dark bars) and iMMs (light bars) of
increasing order. Precision of models for (A) NP (left), BP (right), and RP gene (bottom left) core
promoters from D. melanogaster, (B) pA sites from S. cerevisiae, and (C) RNAP pause sites from E. coli
(left) and B. subtilis (right). For iMMs we set α0 = 1 and αk = 5 for k ≥ 1, as this produced the best
overall performance of iMMs.
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Figure S19. Higher-order protein-RNA binding specificity models. (A) 0’th-order (left),
1’st-order (middle), and 2’nd-order (right) sequence logos of 2’nd-order BaMM for Nab3 (central
crosslinked U was removed from the 0’th-order logo). (B) Same as A but for Yra1.

Figure S20. Robustness of BaMM learning at predicting mRNP biogenesis factor-RNA
binding motifs. Factor of increase in performance (on log scale) of 5’th-order BaMMs versus
non-interpolating (non-interp.) iMMs for 25 mRNP biogenesis factors from S. cerevisiae measured by
PAR-CLIP. For iMMs we set α0 = 1 and αk = 5 for k ≥ 1, as this produced the best overall performance
of iMMs. Dashed line: mean fold increase.
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Figure S21. 5’th-order BaMMs improve 97% of 1’st-order BaMMs trained on 446
ENCODE ChIP-seq datasets. Same as Figure 3C but showing the performance increase of 5’th-order
8-bp-extended BaMMs versus 1’st-order 8-bp-extended BaMMs. The average performance increase is
12% (dashed line).

27



Figure S22. ββα-type ZnF transcription factors profit as much as other factors from
higher orders when models are relatively short (core binding sites extended by 2× 4 bp).
(A) Same as Figure 3C but highlighting all ββα-type ZnF transcription factor datasets
(http://v1.factorbook.org). (B) Same as A but highlighting only CTCF and CTCFL datasets. (C)
Same as A but highlighting only ZnF274 datasets.
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