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Supporting Information

Table A. Various ‘ball-park’ figures of dendritic spines that we use
as model parameters and figures for comparison.

Code Quantity Typical Scale Source

N Number of actin filaments in spine-head (see
"Estimate for the Number of Actin
Filaments", S1 File)

∼ 71 (1)

Rbase Radius of the base of the spine (viz. where
the spine is connected to the dendritic
membrane). This quantity was estimated on
the basis of microscopy images published
by (2).

∼ 300 nm (2)

Rneck Radius of a typical spine-neck 75± 30 nm (3)
Rhead Radius of a typical spine-head 220± 154 nm (3)
Lneck Length of a typical spine-neck 0.2− 2 µm (2)
Lfilop. Length of a typical filopodium 0.9− 10µm (4) (mean

≈ 5µm (5))
(4, 5)

` Length that actin filament extends upon one
polymerization step

2.2 nm (6)

Aneck Surface-area of a typical spine-neck 0.24± 0.17 µm2 (3)
Ahead Surface-area of a typical spine-head 0.61± 0.57 µm2 (3)
Afilop. Surface-area of a typical filopodium (this was

calculated using Afilop. ≈ 2πRfilop.Lfilop. with
Rfilop.,Lfilop. from (4, 5))

0.85− 16µm2 (mean
≈ 6.3µm2)

(4, 5)

factin Average actin polymerization force 3.8 pN (6)
Kb Bending rigidity of lipid bilayer membrane 5× 10−19 J (7)
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theory: constant surface-area
theory: constant surface-tension
empirical

Figure 1: Comparison of the ensemble of constant surface-area versus the ensemble of constant surface-
tension with experiments. Figures of comparison were: The dendritic filopodium thickness dfilopodium,
the number of filaments observed inside dendritic filopodia N , the neck-thickness of mature spines
dneck and the head-width of mature spines dhead. Comparison of the predictions with experiment
shows that the models in both ensembles predict the correct order of magnitude for all morphological
characteristics, although significant differences are observed between the two ensembles. Experimental
data on widths was taken from (2), number of filaments Nfilaments required to produce dendritic
filopodia was estimated from EM images published in (1). Whiskers denote maximum and minimum
values of the corresponding data. Note that the standard deviation in measured quantities is necessarily
lower, and often much lower, than these lower and upper bounds.

0.1 Septin Complexes are Unlikely Required for Effecting the Transition
to Mature Spines

Although septin-complexes are found consistently along spine-necks (8–10), they are only reported to
be positioned at the base of the spine and not along the full length of the spine-neck. Our models predict
that it is required to place line tensions along the full length of the spine-neck in order to constrain it,
and therefore we can refute septin-complexes as being solely responsible for constraining the long, thin
spine-necks. Moreover, the assembly of septins into ring-like structures has an associated time-scale in
the order of minutes (11). Hence, we find that cytoskeletal remodeling—which can performed on the
time-scale of fractions of a second (6)—is much more rapid than positioning these septins. From these
observations combined, we hypothesize that ring-like septin-complexes or anchoring proteins are not
required for the transition from filopodium to mature spine, but could plausibly aid in the stabilization
of these mature, mushroom-like spines.

0.2 Estimate for the Number of Actin Filaments
We counted the number of actin filaments as 20 on ∼ 20% of the surface-area resulting in ∼ 100
filaments for one entire spine-head as published by (1). Then, noting that on the average the filaments
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are not oriented perpendicular to the membrane–but rather at an angle π/4, we find the effective
number of actin filaments to be ∼ 100 · cos(π/4) ≈ 71. This number falls within the range for the
number of polymerizing filaments N = 50 − 150 we derived from data published in (12) ((12) has
published the density of non-stationary actin molecules, which we integrated over the surface area to
obtain a measure for the number of polymerizing filaments).

0.3 Standard Deviation in Spine-Neck Width
We measured the width of the spine-neck of images by (2) by fitting the intensity of the profile with
Gaussian distributions along the axis of the spine-neck. We asserted that the standard deviation of
these Gaussians is a measure for the width of the spine-neck. Then, we computed the relative variation
in these widths. Using this method, the relative variation in the width of the spine-neck was found to
be 13.5%.

0.4 Shape Equations
Taking the first variation of the Canham-Helfrich energy functional, and insisting that the first variation
δE is zero under all possible infinitesimal perturbations results in a differential equation that describes
stationary shapes {r(s), ψ(s)}. The stationary shapes include shapes corresponding to an energetic
minimum, an energetic maximum or a saddle point in the energy functional. A seminal paper by (13)
describes the higher-order variations, from which we can infer the class of stationary point. We will
not discuss this technical difficulty in this publication, although we have used numerical perturbative
methods to determine which shapes correspond to energetic minima. This differential equation, that
we shall henceforth call the shape equation, is (14, 15)
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where we have dropped the s–dependencies and σ̄ ≡ σ/Kb. Most publications that we have consulted
make reference to second-order shape equations (14), but–in accordance with (15)–we find the third-
order shape equation 1 to be numerically substantially more stable. The second-order shape equations,
e.g. found by taking the first integral of 1, is used to find boundary conditions for ψ′′. This equation
is (15)
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where f̄ ≡ f/2πKb. Although the point force f does not show up in the shape equation 1, it does
enter in the determination of the correct boundary conditions through equation 2.

In this paper, we have used the ensemble of a prescribed surface-area available to the shape (for
more details and rationale, see the main text). We have used its conjugate variable, the surface-tension
σ, with a shooting-and-matching technique to constrain the surface-area to a given value. Similarly, we
use respectively the vertical force f , the initial curvature ψ′(0) and the total arc-length S as Lagrange
multipliers (and hence, shooting variables) to generate shapes with a prescribed height L, total surface-
area A and to match them to the z−axis (i.e. r(S) = 0). For more information on this numerical
technique, we refer to (16)).
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