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Derivation of the GP Model from the Stochastic Differential Equation of Protein 

Turnover Kinetics 

The kinetic equations for protein turnover dynamics are derived under the condition of 

steady-state that is the total protein abundance, P, at any time is constant: 

P�t� = P�t�� + P�t�� = 	
��
  
where, P�t�� and P�t�� denote the heavy (stable isotope labeled) and light (natural) 

protein abundances, respectively. In the one-compartment model1 it is assumed that the 

proteins are degraded proportional to their abundance with a rate constant, kdeg, and are 

synthesized at a constant rate ksyn. The Diagram 1 A shows the one-compartment. The 

kinetic equations for the heavy isotope labeled proteins, P�t��, and unlabeled proteins, 

P�t�� are: 

�P�t�� � = −k���P�t�� 	+ 	k���P�t�� � = −k���P�t��																                                                                                                            
(1a) 

Eq. (1A) assumes that the labeling is 100% and asymptotically only labeled proteins will 

be present in the sample. However, in general, the labeling is not 100% for all proteins. 

To account for this, we consider a possibility that only a portion of proteins, λ, is labeled 

asymptotically, while the rest (1- λ) are unlabeled. The new set of equations for the 

protein concentrations becomes: 

�P�t�� � = −k���P�t�� 	+ 	λk���											P�t�� � = −k���P�t�� 	+ �1 − λ�k���		                                                                                  
(1b)   
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Since Eq. (1a) is particular case of Eq. (1b), in the rest of the text we will use the latter 

to develop are our model. The total protein concentration, P(t), is assumed to be in a 

steady-state and the relevant kinetic equation is: 

P�t�� = −k���P�t� 	+ 			k��� = 0 

From the above equation we obtain ksyn: 

k��� = k���P�t�                                                                                                               
(1c) 

The ratio of the synthesis rate over protein concentration is a convenient measure to 

estimate the fraction of the newly synthesized protein. This measure, termed the 

fractional synthesis rate, is equal to the degradation rate constant under the steady-

state assumption, Eq. (1c). When we insert the above value of ksyn into the kinetic 

equation for P�t�� in Eq. (1b), and divide left- and right-hand sides of the equation by 

P(t), then we obtain differential equation for β�t� = P�t��/P�t�, proportion of the protein 

that has incorporated heavy isotopes: 

β�t�� � = −k�� β�t� 		+ 	λk��� = k���!λ − β�t�"	                                                                                   
(2) 

The solution to Eq. (2) is obtained, for example, by the variation of constants, first 

solving the equation without the λkdeg term, to obtain, β�t� = Ce%&'()*. Then by inserting 

the solution into Eq. (2) and allowing the variation of C, we obtain the equation for C: 

C�t�� e%&'()* = λk��� 
which produces a solution for C(t): 

C�t� = 	 λe&'()* + C+ 
where C0 is a constant. The solution of β�t� is then,  
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β�t� = λ + C+e%&'()* 
The value of C0 is obtained from the initial condition. It is assumed that at time t = 0, 

there were no heavy isotope labeled proteins and therefore β�0� = 0:  

β�t� = λ�1 −	e%&'()*�                                                                                                                              
(3) 

Eq. (3) is the solution for the proportion of the heavy isotope labeled proteins in one-

compartment model. 

A general form of the stochastic analog of Eq. (2) for the heavy protein proportions is: 

dX�t� = k����λ − 	X�t��dt + Γ�k���, t, X, λ, σ1�dB�t�,																	X�0� = 	0                                                        

where Γ�k���, t, X, λ, σ1� is the volatility, dB�t� is the Brownian motion, σ1 is the standard 

deviation of model fluctuations, and X(t) is the stochastic equivalent of β�t�. We chose a 

homoscedastic volatility, with the volatility equal to the standard deviation, 

Γ!k���, t, X, λ, σ1" = σ1. As it will be seen below, the choice of Γ leads to a Gaussian 

Process (GP) for X(t). If we have used an affine volatility function, Γ!k���, t, X, λ, σ1" =
X�t�σ1, the process, X(t), will then be a log-Gaussian process2.   

With the Γ!k���, t, β, σ1" = σ1 the equation for X(t) becomes: 

dX�t� = k���!λ − 	X�t�"dt + σ1dB�t�,																					X�0� = 0                                                    

(4) 

The solution to Eq. (4) is found with the assumption of the Itô’s process3 for X(t). In this 

case, a function, Z(t), defined as: 

Z�t� = X�t�	e*&'()                                                                                                                      
(5) 

Using the Itô’s formulae3 
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dZ�t� = 4 556 Z�t�7 dX�t� + 4 55* Z�t�7 dt + 8 59
569 Z�t�:	!dX�t�";	  

we find that 

Z�t� = X�0�e+∗&'() +	= e�&'()>
+ ?k���!λ − 	X�s�"ds + σ1dB�s�A + k���= e�&'()*

+ X�s�ds 
and after some straightforward simplifications we obtain: 

Z�t� = λ�e*&'() − 1� + σ1= e�&'()*
+ dB�s� 

Inserting the formulae for Z(t) back into Eq. (5) yields the solution for X(t): 

X�t� = λ�1 − e%*&'()� + σ1 B e%&'()�*%��*+ dB�s�                                                                                
(6) 

The stochastic process in Eq. (6) is well-known GP with Ornstein-Uhlenbeck (OU) 

covariance matrix 3, 4, K(s,t), defined as: 

K�s, t� = σ1;D!%|�%*|&'()"/k��� 

and the mean, μ�t�: 
μ�t� = !1 − e%*&'()"λ 
If in addition to the correlated noise there is also a white noise corresponding to errors 

in measurements (ε~N�0, σJ;��, then the final process, Y(t), is: 

Y�t� = X�t� + L;				YNNO~MVN�μNO, Σ�; 			Σ�s, t� = 	K�s, t� + σJ;δ�s, t�;		YNNO, μNO ∈ 	RV; 				Σ, K ∈ 	RVWV	
is a GP with the covariance matrix Σ�s, t�. Here, MVN stands for multivariate normal 

distribution, n is the number of data (time) points, YNNO and μNO are vectors in an n 

dimensional space, Rn, and δ is the Kronecker’s delta.  

We note that in an earlier publication, a solution for Eq. (6) was applied with a 

Gaussian kernel in phospho-protein time course data analysis1, 5. The Gaussian kernel 
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has two parameters: the scale, and the strength. The decay/rate constant is a separate 

parameter. All three parameters have to be determined from the fits to experimental 

data. In the OU kernel, the scale parameter is the degradation rate constant and 

therefore there is one less parameter. It is an important consideration, as in addition 

being an exact solution, a model with reduced number of parameters are less likely to 

overfit the data.  

Many bioinformatics software1, 6 to extract protein degradation rates from the 

stable isotope labeling mass spectrometric experiments used one or other form of the 

solution to Eq. (3) (with the assumption that λ = 1). However, in an depth analysis of a 

large-scale dataset from a 15N labeling of mouse, Guan and colleagues1 have shown 

that the model is not adequate for most of the proteins, in particular in the cases of fast 

protein turnover. A natural extension of the model is the two-compartment model, where 

in addition to the protein decay and synthesis, amino acid decay and synthesis are also 

considered. The Diagram 1 B shows the two-compartment models. The assumptions 

results in the following kinetic equations for P�t�� and AA�t��, the concentration of the 

labeled amino acids in the precursor pool: 

YP�t��� = k���AA�t�� − k���P�t��AA�t�� � = λk+ 	− 		k���AA�t��						                                                                                     
(7) 

where k0 is the constant rate of amino acid synthesis, and the model incorporates 

incomplete labeling of amino acids, and subsequently proteins. The system of equations 

(7) for labeled species concentrations is first transformed into the corresponding system 

of equations for the proportions of the labeled species: 
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Yβ�t�� = k���α�t� − k���β�t�α�t�� = λk��� 	− 		k���α�t�			                                                                                             (8)                          

where α�t� = [[�
�\ [[] , and AA denotes the concentration of amino acids. The kinetic 

equation for labeled proportion of amino acids, α�t�, is obtained by observing that (in the 

steady-state approximation):  

AA = AA�t�� 		+			AA�t�� = 	
�
�; 			AA� = k+ 	− 		k���AA = 0; 		AAk��� = k+								
The kinetic equation for β�t� is obtained similarly by observing that: 

P = P�t�� + P�t�� = 	
�
�; 			P� = k���AA	 −	k���P = 0; 		Pk��� = k���AA;																													 
k���AA�t�� =	α�t�k���AA = α�t�	k���P	 
By inserting the expressions for ksynAA(t)H and k0 into the first and second equations in (7), we 

obtained the system of equations (8). 

The solution for α�t� is obtained using the variation of constants (similar to the solution (3)), and 

the initial condition (α�0� = 0): 

α�t� = λ!1 − e%*&^_`" 
Inserting the result into Eq. (8) for β�t� we obtain the kinetic equation for it: 

β�t�� = λk����1 −	e%*&^_`� − k���β�t�                                                                                         
(9) 

One way to solve the equation is to again use the variation of constants: 

β�t�� = −k���β�t�; 			β�t� = Ce%&'()*		 
Then the equation for C(t) is: 

C�t�� e%&'()* = λk����1 −	e%*&^_`� 
C�t� = 	C+ + λe*&'() 	+ λk���k��� − k��� e%�&^_`%&'()�* 
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And β�t� is: 

β�t� = C+e%&'()* + λ + λk���k��� − k��� e%&^_`*	 
C0 is obtained from the initial condition, β�0� = 0: 

C+ = −λ − λk���k��� − k��� = − λk���k��� − k��� 
And for β�t�: 
β�t� = λ − λ!k���e%*&'() − k���e%&^_`*"/!k��� − k���" 
Thus, the two-compartment model results in a two-exponent fit for the proportions of the 

labeled proteins. 

The stochastic equation corresponding to Eq. (9) is: 

dX�t� = k���!λ!1 −	e%*&^_`" − X�t�" + σ1dB�t�,																					X�0� = 0                                    

(10) 

where, similar to Eq. (4) we have assumed the homoscedasticity of volatility, 

Γ!k���, k���, t, X, λ, σ1" = σ1.  
The random process, X(t), in Eq. (10) is obtained similar to (6), by considering a derived 

Itô’s process, Z(t), shown in Eq. (5) and using Itô’s formulae: 

Z�t� = = e�&'()>
+ ak��� bλ!1 −	e%�&^_`" − 	X�s�c ds + σ1dB�s�d + k���= e�&'()*

+ X�s�ds 
Straightforward integrating with the exponents results in: 

Z�t� = λ!e*&'() − 1" − λk���!e*�&'()%&^_`� − 1"/!k��� − k���" 	+ σ1= e�&'()*
+ dB�s� 

Using Eq. (5) we obtain for the random process X(t): 

X�t� = λ!1 − e%*&'()" 	− λk���!e%*&^_` − e%&'()*"/!k��� − k���" + σ1= e%&'()�*%��*
+ dB�s� 
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and after straightforward arithmetic, X(t) is the following process: 

X�t� = λ − λ!k���e%*&'() − k���e%&^_`*"/!k��� − k���" + σ1 B e%&'()�*%��*+ dB�s�                 
(11) 

The process in Eq. (11) is process in Eq. (6) and they both are GPs with OU kernel. The 

only difference is in the means which for Eq. (11) is: 

μ�t� = λ − λ!k���e%*&'() − k���e%&^_`*"/!k��� − k���" 
The final process, Y(t), includes the white noise due to the instrumental measurements: 

Y�t� = X�t� + L;				YNNO~MVN�μNO, Σ�; 			Σ�s, t� = 	K�s, t� + σJ;δ�s, t�;																																																							
�12�	
The OU kernel 	K�s, t� was defined above. 

Parameter Estimation 

We used the random process (12) to fit the experimental data and extract the 

parameters, θ = �k���, k���, σ1, σJ, λ�.	The parameter estimation was done by maximizing 

the posterior distribution of the model parameters. The log-likelihood function for the 

process (12) is: 

log!ℒ�θ�" = −0.5 log�det�Σ�� − 0.5�yNO − μNO�nΣ%o�yNO − μNO� − 0.5nlog�2π� 
In the above formula T stands for transpose. The θ dependent part of the posterior 

distribution, p�θ|y�, is the product of the likelihood function and the prior distributions, 

π�θ�. The log of the posterior distribution of the parameters is: 

log!p�θ|y�" ∝ log!ℒ�θ�" + 	log	�π�θ��                                                                               
(13) 
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The parameters can be estimated from the data either by  maximizing the posterior 

distribution, Eq. (13), with respect to the parameters7, or by sampling from the posterior 

distribution with Markov chain Monte Carlo methods8. We used a quasi-Newton 

approach9 to maximize the posterior distribution function and obtain the parameters. For 

the prior distributions (except for λ) we chose exponential distributions with the prior 

decay rates estimated from the non-stochastic model. For λ a uniform prior was chosen. 

To improve the performance of the quasi-Newton approach we provided the gradient of 

the posterior distribution with respect to the parameters. The relevant derivatives are 

given below: 

ttk��� log!ℒ�θ�" = −0.5uv 8Σ%o ttk��� Σ: + 0.5�yNO − μNO�nΣ%o 8
ttk��� Σ: Σ%o�yNO − μNO� +

+	λk��� we%*&'()!tk��� − tk��� + 1" + e%*&^_`!k��� − k���"; x
n
Σ%o�yNO − μNO�

ttk��� log!ℒ�θ�" = λk��� we%*&^_`!tk��� − tk��� + 1" + e%*&'()!k��� − k���"; x
n
Σ%o�yNO − μNO�																

ttyz; log!ℒ�θ�" = −0.5uv 4Σ%o ttyz; Σ7 + 0.5�yNO − μNO�nΣ%o 4
ttyz; Σ7 Σ%o�yNO − μNO�																tty{; log!ℒ�θ�" = −0.5uv 8Σ%o tty{; Σ: + 0.5�yNO − μNO�nΣ%o 8
tty{; Σ: Σ%o�yNO − μNO�														ttλ log!ℒ�θ�" = −b1 − !k���e%*&'() − k���e%&^_`*"/!k��� − k���"cn Σ%o�yNO − μNO�						

 

In the above formula Tr stands for the trace of a matrix. The derivations use the facts, 

that Σ is dependent only on k���, 	σ1, 	σJ. Derivatives Σ  and its determinant were 

obtained from the respective formulas for the matrices10.  All of the derivations are in 

closed forms. The derivatives of the priors are added to the respective derivatives of the 
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log-likelihoods to obtain the partial derivatives of the log of posterior probability density 

function. 
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Diagram D1. A One-compartment model of protein turnover. It assumes that the 

proteins are synthesized at a constant rate, ksyn, and are degraded proportional to the 

protein concentration with a rate constant kdeg. B Two-compartment model assumes 

that proteins are synthesized from the amino acids with a rate constant, ksyn, and are 

degraded with a rate constant, kdeg. One- and two-comparment models result in a single 

and double exponential curve fits, respectively. 
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Figure S1.  Pairwise scatter plot of the residual sum of squares obtained from protein 

turnover models using exponential curve fitting11 (y-axis) and from GP (x-axis). The red 

line is the line of unity. The shown are the results for brain proteins. For 687 proteins out 

of 705 the GPs produced a better fit to the experimental data. 
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Figure S2. The pairwise scatter plot of the Pearson correlations obtained from protein 

turnover models using exponential curve fitting11 (y-axis) and from GP (x-axis). The red 

line is the line of unity. The correlation values are those between the experimental time 

course data of protein labeling and predictions from a model. For 794 out of the 797 

mouse liver proteins the GP produced predictions which correlated with the 

experimental data better than the corresponding correlations between the experimental 

data and two-exponent curve fit.  
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Figure S3. The pairwise scatter plot of the Pearson correlations obtained from protein 

turnover models using exponential curve fitting11 (y-axis) and from GP (x-axis) for 

mouse brain proteins. The red line is the line of unity. The correlation values are those 

between the experimental time course data of protein labeling and predictions from a 

model. For 660 out of the 705 mouse brain proteins the GP produced predictions which 

correlated with the experimental data better than the corresponding correlations 

between the experimental data and two-exponent curve fit.  
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Figure S4. 95% confidence interval (between magenta colored lines) of the mean 

(green) obtained from the fit to the experimental data (empty circles) using GP with OU 

covariance matrix for mitochondrial trifunctional protein, subunit α (Q8BMS1).  
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Figure S5. A scatter plot of the decay rates constants obtained from the GP (x-axis) 

and two-exponent curve fitting (y-axis). In general the rate constants computed by the 

GP model were larger (mouse brain proteins). 
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Figure S6.  The density of the difference between degradation rate constants computed 

by the GP and two-exponent curve fit. The rate constants computed by the GPs were 

larger (faster degradation than predicted by the two-exponent curve fit). 
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Figure S7. The boxplots of the decay rate constants computed by two-exponent curve 

fitting (yellow) and GP model (green) for mouse Brain and Liver proteomes. The latter 

predicts about two-fold faster degradation rate constants in mouse liver. 
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Figure S8. The density of standard deviations, σγ, of model distributions for the liver 

data set. 
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