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Supplementary Fig. S1. Individual derivative melt curves of 89 reference bacterial species. 

 

 

 

 

 

 

 

 

 



	 	

 

Supplementary Fig. S2. The limit of detection analysis of ITS PCR HRM. Serially diluted E. coli 

genomic DNA calculated based on its genome copies (GC) was amplified in a 40 (a) and a 50 (b)-cycle 

PCR targeting the ITS region. The PCR was immediately followed by HRM to produce corresponding 

derivative melt curves. The limit of detection (LOD) was determined to be the concentration where melt 

curve profile was maintained (arrows). 
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Supplementary Table S1. List of 89 reference bacterial species in the database. 

Bacterial Species in Database 
Acinetobacter baumannii Burkholderia pseudomallei Haemophilus influenzae Shigella flexneri 

Acinetobacter haemolyticus Campylobacter fetus Klebsiella oxytoca Shigella sonnei 

Acinetobacter johnsonii Chlamydia pneumoniae Klebsiella pneumoniae  Staphylococcus aureus 

Acinetobacter lwoffii Chlamydia trachomatis Legionella pneumophila Staphylococcus capitis (CoNS) 

Aerococcus sanguinicola Citrobacter freundii Micrococcus luteus Staphylococcus caprae (CoNS) 

Aerococcus urinae Clostridium perfingens Morganella morganii Staphylococcus epidermidis (CoNS) 

Aerococcus viridans  Corynebacterium diphtheriae Mycoplasma hominis Staphylococcus haemolyticus (CoNS) 

Aeromonas caviae Corynebacterium jeikeium Neisseria lactamica Staphylococcus hominis (CoNS) 

Bacillus anthracis (2 strains) Eikenella corrodens Neisseria meningitidis Staphylococcus lentus (CoNS) 

Bacillus cereus Enterobacter agglomerans Neisseria sublfava Staphylococcus lugdunensis (CoNS) 

Bacillus halodurans Enterobacter cloacae Oligella urethralis Staphylococcus saprophyticus  (CoNS) 

Bacillus mycoides Enterococcus casseliflavus Pasteurella multicoda Staphylococcus xylosus (CoNS) 

Bacillus polymyxa Enterococcus durans Propionibacterium acnes Stenotrophomonas maltophilia  

Bacillus subtilis Enterococcus faecalis Proteus vulgaris Streptococcus agalactiae 

Bacillus thuringensis Enterococcus faecium Providencia rettgeri Streptococcus dysgalactiae 

Bacteriodes fragilis Enterococcus gallinarum Providencia stuartii Streptococcus parasanguinis 

Bordetella parapertussis Enterococcus raffinosus Pseudomonas aeruginosa Streptococcus pneumoniae (5 strains) 

Bordetella pertussis Escherichia coli Pseudomonas putida Streptococcus pyogenes 

Borrelia burgdorferi Escherichia vulneris Salmonella bongorii Streptococcus anginosus 

Brucella abortus Francisella philomiragia  Salmonella enterica Enteritidis Vibrio fluvialis 

Brucella ovis Francisella tularensis Serratia liquifaciens Yersinia pestis (2 strains) 

Burkholderia cepacia Fusobacterium nucleatum Serratia marcescens Yersinia pseudotuberculosis 

Burkholderia mallei       
 

 

 

 

 

 

 

 

 

 

 

 

 



	 	
SUPPLEMENTARY METHODS 

1. Naïve Bayes 
 

In this section, we present details about the proposed adaptive Naïve Bayes algorithm. Given C 

species in the reference dataset, and for the i-th species Ci, we have Ni number of training samples. For any 

new unknown test sample x, we aim to calculate the posteriori probability via Bayes' theorem:							 

𝑝 𝐶𝑘 𝑥 = 	
𝑝 𝐶𝑘 𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)  

where p(Ck) is the prior for the k-th species, and p(x|Ck) is the likelihood function given all the training 

samples in the k-th species. 

The prior information is assumed to be homogeneous: 

𝑝 𝐶𝑘 = 	
1
𝐶 

The likelihood function is calculated with a Gaussian distribution: 
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The essence in the algorithm lies in the way we calculate the distance 𝐷(𝑥, 𝑥:;). This measures the similarity 

between curve shapes for the test sample and training reference. 

Assume for a test species, denoted as 𝑆=	 = {𝑆=+, 𝑆=,, … , 𝑆=@} where m is the number of replicates in 

this species. We want to achieve a consensus prediction of whether this species falls into any species 

category from the reference panel. We assume each replicate of same importance, so we just average the 

final posteriori probability of each replicate to obtain the prediction for the test species: 

𝑝 𝐶𝑘 𝑆= = 	
1
𝑚	 𝑝(𝐶𝑘|𝑆=
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2. Curve Similarity Calculation 

There are three steps in the calculation of curve similarity. First, we align each curve according to 

the temperature of 53°C. This guarantees each curve is well-aligned and thus high accuracy in the following 



	 	
curve similarity calculation. Second, we apply Hilbert Transformation on the curves. Hilbert transformation 

is a convolution process on the curve: 

𝐻 𝑓 𝑡 = 	
1
𝜋

𝑓(𝜏)
𝑡 − 	𝜏

⋈

I	⋈
𝑑𝜏 

where ƒ(t) denotes the curve we have. The output of Hilbert transformation is a complex function where the 

real part is the original input and the complex part denotes the transformed domain. We calculate the 

distance between two curves by combining the two parts as follows: 

𝐷 𝑓, 𝑔 = 	 ||
=

𝒓𝒆𝒂𝒍 𝐻 𝑓 𝑡 − 𝒓𝒆𝒂𝒍 𝐻 𝑔 𝑡 ||,	 + ||
=

𝒄𝒐𝒎𝒑𝒍𝒆𝒙 𝐻 𝑓 𝑡 − 𝒄𝒐𝒎𝒑𝒍𝒆𝒙 𝐻 𝑔 𝑡 ||,	 

where ƒ and 𝑔 represent two curves. 

 

3. Details in predicting out-of-reference samples 

To distinguish whether the test target belongs to any species in the reference panel, we adapt the 

original Naïve Bayes to accommodate the prediction of out-of-reference samples. Assume for a test species, 

denoted as 𝑆=	 = {𝑆=+, 𝑆=,, … , 𝑆=@} where m is the number of replicates in this species. First, for each replicate, 

we assign a prior probability to be out-of-reference sample by looking at the curve region between 

temperature 52.5°C to 53.5°C. This would give us some knowledge about whether this replicate is an outlier 

because most of outlier curves will generate some unusual peak curves in this temperature region. Further, 

when we apply Naïve Bayes, we assign the posteriori probability to be out-of-reference by adding a gated 

function that if the following quantile is below some threshold: 

𝑃(𝑆= ∈ 𝐶X) = 𝐼 𝑚𝑎𝑥[𝑝 𝑆= 𝐶[ < 𝜃 . 

we set θ = 0.3 in our experiments. 


