## **Supplementary Information**

## Genomic analysis reveals major determinants of *cis*-regulatory variation in *Capsella grandiflora*

Kim A. Steige<sup>a,b,1,2</sup>, Benjamin Laenen<sup>b,1,3</sup>, Johan Reimegård<sup>c</sup>, Douglas G. Scofield<sup>a,d</sup>, Tanja Slotte<sup>a,b,3</sup>

<sup>a</sup>Dept. of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, 75236 Uppsala, SWEDEN
<sup>b</sup>Science for Life Laboratory, Dept. of Ecology, Environment and Plant Sciences, Stockholm University, Lilla Frescati, SE-10691 Stockholm, SWEDEN
<sup>c</sup>Science for Life Laboratory, Dept. of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, SWEDEN
<sup>d</sup>Uppsala Multidisciplinary Center for Advanced Computational Science, Department of Information Technology, Uppsala University, Box 137, Uppsala 751 05, SWEDEN

<sup>1</sup>K.A.S. and B.L. contributed equally to the work.
<sup>2</sup>Current address: Institute of Botany, Biozentrum, University of Cologne,
Zülpicherstr. 47b, 50674 Cologne, GERMANY
<sup>3</sup>Authors for correspondence, email: Benjamin Laenen; Benjamin.Laenen@su.se;
Tanja Slotte; Tanja.Slotte@su.se

## **Supplementary Figures**



Figure S1. ASE in flower buds of three intraspecific *C. grandiflora* F1s. Distributions of the deviation from equal expression for all assayed genes (A-C) and for genes with at least 0.95 posterior probability of ASE (D-F), estimates of the dispersion parameter (G-I), and the posterior probability of ASE (J-L). All distributions are shown for each of the three intraspecific F1s intra6.3 (left), intra7.2 (middle) and intra8.2 (right).



Figure S2. ASE in leaves of three intraspecific *C. grandiflora* F1s. Distributions of the deviation from equal expression for all assayed genes (A-C) and for genes with at least 0.95 posterior probability of ASE (D-F), estimates of the dispersion parameter (G-I), and the posterior probability of ASE (J-L). All distributions are shown for each of the three intraspecific F1s intra6.3 (left), intra7.2 (middle) and intra8.2 (right).



Figure S3. Venn diagram of genes with ASE (posterior probability of ASE  $\geq$  0.95) in leaves and flower buds of all three F1s. There were a total of 10,522 genes that were amenable to analyses of ASE that did not show evidence for ASE, whereas a total of 1,010 had ASE in either leaves or flower buds.



Figure S4. DFE-alpha results for 0-fold degenerate sites. The estimated proportion of new mutations in the selected class in each bin of the distribution of negative fitness effects is shown, with whiskers corresponding to 95% confidence intervals based on 200 bootstrap replicates, separately for genes with ASE and control genes. The top panels show results under the stepwise population size change model and the lower panels show results for the constant population size model. Panels on the left show results for the population sample, and those on the right for the scattered range-wide sample. Significance levels of the p-value:  $* \le 0.05$ ;  $** \le 0.01$ .



Figure S5. Top panels show the distributions of overall expression level (log FPKM) before and after the subsampling procedure (see Methods) of ASE and Control genes. Bottom panels similarly show the distribution for polymorphism level ( $\pi$ ).



Figure S6. DFE-alpha results for 0-fold degenerate sites, after correction for expression level differences among control and ASE genes. The estimated proportion of new mutations in the selected class in each bin of the distribution of negative fitness effects is shown, with whiskers corresponding to 95% confidence intervals based on 200 bootstrap replicates, separately for genes with ASE and control genes. The left panel shows results under the stepwise population size change model and the right panel shows results for the constant population size model. Significance levels of the p-value:  $* \le 0.05$ ;  $** \le 0.01$ .



Figure S7. DFE-alpha results for 0-fold degenerate sites, after correction for polymorphism level differences among control and ASE genes. The estimated proportion of new mutations in the selected class in each bin of the distribution of negative fitness effects is shown, with whiskers corresponding to 95% confidence intervals based on 200 bootstrap replicates, separately for genes with ASE and control genes. The left panel shows results under the stepwise population size change model and the right panel shows results for the constant population size model. Significance levels of the p-value:  $* \le 0.05$ ;  $** \le 0.01$ .



Figure S8. Purifying and positive selection on 0-fold degenerate sites, with ASE vs. control status determined based on F1 individual intra7.2, under the two-epoch model of DFE-alpha and for the population sample (similar results were obtained for the 1-epoch model and the range-wide sample). The estimated proportion of new nonsynonymous mutations in each bin of the distribution of negative fitness effects is shown in the top panel, with whiskers corresponding to 95% confidence intervals based on 200 bootstrap replicates, separately for genes with ASE and control genes. The lower two panels show the proportion of divergent nonsynonymous substitutions relative to neutral divergence ( $\omega_{\alpha}$ ). Significance levels of the p-value: \*  $\leq 0.05$ ; \*\*  $\leq 0.01$ .



Figure S9. DFE-alpha results for 0-fold degenerate sites, after removing genes annotated as being involved in defense response ("GO:0006952"). The estimated proportion of new mutations in the selected class in each bin of the distribution of negative fitness effects is shown, with whiskers corresponding to 95% confidence intervals based on 200 bootstrap replicates, separately for genes with ASE and control genes. The left panel shows results under the stepwise population size change model and the right panel shows results for the constant population size model, for analyses of the population sample. Similar results were obtained for the range-wide sample.







Figure S11. Boxplots showing the number of phased SNPs per fragment for interspecific *C. grandiflora* x *C. rubella* F1s (inter3.1, inter4.1 and inter5.1) and for intraspecific *C. grandiflora* F1s (intra6.3, intra7.2, and intra8.2). The median number SNPs per phased fragment is 5 for both inter- and intraspecific F1s.



Figure S12. Success of read-back phasing. The distribution of the proportion of correctly read-back phased SNPs for three interspecific F1s (inter3.1, inter4.1 and inter5.1) with known haplotypes.



Figure S13. Trace plot and Gelman-Rubin-Brooks convergence plot of the parameters estimated during three independent MCMC chains of ASE analysis for one F1s leaf tissues. The shrink factor estimates when the chain "have forgotten" their state and value below 1.1 support among chain convergence. Results were consistent for the 3 F1s (not shown) and tissues with low shrink factors always below 1.1.

## Supplementary Tables

| Sample<br>designation | Replicate | Sample type | Yield (Gbp) | Yield Q≥30 (Gbp) |
|-----------------------|-----------|-------------|-------------|------------------|
| Intra6.3              | 1         | flower buds | 1.8         | 1.6              |
| Intra6.3              | 1         | leaves      | 9.2         | 8.3              |
| Intra7.2              | 1         | flower buds | 9.2         | 8.5              |
| Intra7.2              | 1         | leaves      | 14.6        | 13.5             |
| Intra7.2              | 2         | flower buds | 16.8        | 15.5             |
| Intra7.2              | 2         | leaves      | 11          | 10.1             |
| Intra7.2              | 3         | flower buds | 8           | 7.4              |
| Intra7.2              | 3         | leaves      | 11          | 10.1             |
| Intra8.2              | 1         | flower buds | 11          | 10.1             |
| Intra8.2              | 1         | leaves      | 11          | 10.1             |
| Total                 |           |             | 103.6       | 95.2             |

Supplementary Table S1. Yield of RNAseq data analyzed in this study.

| Sample      | ~                         |             | Yield O>30 |
|-------------|---------------------------|-------------|------------|
| designation | Sample type               | Yield (Gbp) | (Gbp)      |
| Cg5a-KS2    | Range-wide                | 8.2         | 7.5        |
| Cg7h-KS2    | Range-wide                | 7           | 6.4        |
| Cg85_3-KS2  | Range-wide                | 7.8         | 7          |
| Cg86_15-KS2 | Range-wide                | 8.8         | 8          |
| Cg87_19-KS2 | Range-wide                | 8.4         | 7.5        |
| Cg89_1-KS2  | Population                | 10          | 9.1        |
| Cg89_11-KS3 | Population                | 8.8         | 8.1        |
| Cg89_14-KS2 | Population                | 8           | 7.4        |
| Cg89_18-KS3 | Population                | 7.6         | 6.7        |
| Cg89_19-KS2 | Population                | 8.2         | 7.4        |
| Cg89_2-KS1  | Population                | 8           | 7.2        |
| Cg89_21-KS2 | Population                | 8.2         | 7.4        |
| Cg89_25-KS2 | Population                | 8.4         | 7.6        |
| Cg89_26-KS2 | Population/<br>Range-wide | 8.8         | 8          |
| Cg89 3-KS2  | Population                | 7           | 6.5        |
| Cg89-12-KS2 | Population                | 6.6         | 6.1        |
| Cg89-13-KS3 | Population                | 7.4         | 6.5        |
| Cg89-15-KS3 | Population                | 7.4         | 6.8        |
| Cg89-16-KS3 | Population                | 7.6         | 6.8        |
| Cg89-20-KS2 | Population                | 8.4         | 7.7        |
| Cg89-22-KS2 | Population                | 7.6         | 7.1        |
| Cg89-23-KS2 | Population                | 7.6         | 6.8        |
| Cg89-27-KS2 | Population                | 7.4         | 6.6        |
| Cg89-4-KS3  | Population                | 7.8         | 7          |
| Cg89-5-KS3  | Population                | 7.2         | 6.4        |
| Cg89-9-KS3  | Population                | 8.4         | 7.7        |
| Cg8d-KS3    | Range-wide                | 8.6         | 8          |
| Cg92_11-KS3 | Range-wide                | 8           | 7.4        |
| Cg93_9-KS3  | Range-wide                | 8.6         | 7.9        |
| Cg96_7-KS3  | Range-wide                | 8           | 7.3        |
| Cg98_8-KS1  | Range-wide                | 7.8         | 7.3        |
| Cg99-15-KS2 | Range-wide                | 8.8         | 8          |
| Intra6.3    | F1                        | 8           | 7          |
| Intra7.2    | F1                        | 11.6        | 10.2       |
| Intra8.2    | F1                        | 10.4        | 9.4        |
| Total       |                           | 286.4       | 259.8      |

Supplementary Table S2. Yield of DNA sequence data analyzed in this study.

Supplementary Table S3. Results from TopGO analyses for enrichment of Biological Process Gene Ontology terms among genes with evidence for ASE (posterior probability  $\geq 0.95$ ) in leaves. Only terms with FDR  $\leq 0.01$  are shown. No terms met this criterion in flower samples.

| GO.ID     | Term                    | Annotate | Significant | Expecte | FDR     |
|-----------|-------------------------|----------|-------------|---------|---------|
|           |                         | d        |             | d       | (Fisher |
|           |                         |          |             |         | test)   |
| GO:001597 | photosynthesis          | 152      | 28          | 9.29    | 0.00024 |
| 9         |                         |          |             |         |         |
| GO:001968 | photosynthesis, light   | 117      | 24          | 7.15    | 0.00024 |
| 4         | reaction                |          |             |         |         |
| GO:000695 | defense response        | 745      | 78          | 45.55   | 0.00169 |
| 2         |                         |          |             |         |         |
| GO:000695 | response to stress      | 1874     | 159         | 114.58  | 0.00285 |
| 0         |                         |          |             |         |         |
| GO:000609 | generation of precursor | 256      | 35          | 15.65   | 0.00446 |
| 1         | metabolites and energy  |          |             |         |         |
| GO:000976 | photosynthesis, light   | 15       | 7           | 0.92    | 0.00849 |
| 5         | harvesting              |          |             |         |         |

| Site class      | Gene set | Mean $\pi$ | $\pi P$ -value | π     | CI    | Mean $\theta_W$ | $\theta_W P$ -value | $	heta_{\scriptscriptstyle W}$ | CI    | $Mean \ D_T$ | $D_T P$ -value | D <sub>T</sub> | CI   |
|-----------------|----------|------------|----------------|-------|-------|-----------------|---------------------|--------------------------------|-------|--------------|----------------|----------------|------|
| 4-fold          | ASE      | 0.029      | < 0.001        | 0.003 | 0.080 | 0.029           | 1.50293E-21         | 0.008                          | 0.068 | -0.024       | 5.93202E-09    | -1.45          | 1.46 |
|                 | control  | 0.023      |                | 0.003 | 0.054 | 0.024           |                     | 0.008                          | 0.049 | -0.170       |                | -1.49          | 1.29 |
| 0-fold          | ASE      | 0.009      | < 0.001        | 0.000 | 0.033 | 0.011           | 1.03963E-48         | 0.001                          | 0.033 | -0.345       | 4.54597E-18    | -1.29          | 0.89 |
|                 | control  | 0.005      |                | 0.000 | 0.018 | 0.007           |                     | 0.001                          | 0.020 | -0.501       |                | -1.34          | 0.47 |
| 3'UTR           | ASE      | 0.018      | < 0.001        | 0.001 | 0.041 | 0.021           | 1.45389E-10         | 0.006                          | 0.045 | -0.344       | 2.38782E-18    | -1.28          | 0.90 |
|                 | control  | 0.014      |                | 0.002 | 0.034 | 0.018           |                     | 0.005                          | 0.041 | -0.501       |                | -1.34          | 0.48 |
| 5'UTR           | ASE      | 0.016      | < 0.001        | 0.000 | 0.050 | 0.016           | 3.31541E-08         | 0.004                          | 0.049 | -0.344       | 5.00495E-18    | -1.28          | 0.90 |
|                 | control  | 0.012      |                | 0.000 | 0.038 | 0.012           |                     | 0.004                          | 0.041 | -0.501       |                | -1.34          | 0.48 |
| 500 bp upstream | ASE      | 0.017      | < 0.001        | 0.005 | 0.037 | 0.020           | 1.18006E-11         | 0.008                          | 0.039 | -0.395       | 1.6763E-19     | -1.24          | 0.77 |
|                 | control  | 0.015      |                | 0.004 | 0.032 | 0.019           |                     | 0.007                          | 0.035 | -0.543       |                | -1.31          | 0.36 |
| intron          | ASE      | 0.020      | < 0.001        | 0.005 | 0.041 | 0.022           | 8.24546E-09         | 0.009                          | 0.043 | -0.345       | 3.49223E-18    | -1.29          | 0.87 |
|                 | control  | 0.018      |                | 0.005 | 0.035 | 0.020           |                     | 0.009                          | 0.035 | -0.502       |                | -1.34          | 0.47 |

Table S4. Population genetic summary statistics (nucleotide diversity:  $\pi$ , Watterson's theta:  $\theta_W$  and Tajima's D: D<sub>T</sub>), confidence intervals (CI), and *P*-values of Wilcoxon rank sum test of a difference between ASE and control genes.

Table S5. DFE-alpha estimates for all site classes analyzed, for the stepwise population size change model and the constant population size model, respectively. Four-fold synonymous sites were used as the neutral category in all analyses. Site categories analyzed were 0-fold degenerate sites, 5'UTRs, 3'UTRs, promoter regions (500 bp upstream of the TSS), and introns. Significance levels of the p-value:  $* \le 0.05$ ;  $** \le 0.01$ .

| Demographic<br>model | Site<br>class | Gene<br>set         | Estimate (95%CI)                                       |
|----------------------|---------------|---------------------|--------------------------------------------------------|
| Population Cg89      |               |                     |                                                        |
| Stepwise population  | n change      |                     |                                                        |
| 0-fold               | ASE           | L                   | -256954.87 (-271144.26, -244811.06)                    |
|                      |               | n2                  | 119 (89, 158.4)                                        |
|                      |               | nl                  | 101.1 (93.89, 158.4)                                   |
|                      |               | t2                  | 12 (12, 4567.06)                                       |
|                      |               | beta                | 0.17 (0.13, 0.2)                                       |
|                      |               | Es                  | -7.7 (-29.15, -2.68)                                   |
|                      |               | f0                  | 0.83 (0.82, 0.84)                                      |
|                      |               | α                   | -0.01 (-0.13, 0.11)                                    |
|                      |               | ωα                  | 0 (-0.03, 0.03)                                        |
| 0-fold               | Control       | L                   | -2175110.15 (-2208379.47, -                            |
|                      |               | <b>m</b> )          | 2142390.58)                                            |
|                      |               | 112<br>n1           | 144(131, 144)<br>105 24 (104 40, 106 44)               |
|                      |               | 111<br>+2           | 105.54 (104.49, 100.44)                                |
|                      |               | 12<br>boto          | 20.30(21.87, 40.04)<br>0.25(0.24, 0.27)                |
|                      |               | Es                  | (0.23, (0.24, 0.27))                                   |
|                      |               | ES<br>f0            | -4.07(-4.39, -5.00)                                    |
|                      |               | 10                  | 0.35(0.34, 0.39)                                       |
|                      |               | u                   | 0.03(0.04, 0.09)                                       |
| 2'I TP               | ASE           | ω <sub>α</sub>      | 152580 24 ( 158800 56 - 146076 55)                     |
| 5 01K                | ASE           | L<br>n2             | -132389.24 (-138890.30, -140070.33)<br>110 (08, 232.2) |
|                      |               | 112<br>n1           | 119(98, 232.2)<br>1011(9914(232)13)                    |
|                      |               | 111<br>+2           | 101.1 (99.14, 232.13) $12 (12, 4770.08)$               |
|                      |               | t2<br>beta          | 0.36(0.23, 0.8)                                        |
|                      |               | Es                  | 0.03(0.25, 0.8)                                        |
|                      |               | ES<br>f0            | -0.03(-0.00, -0.01)                                    |
|                      |               | 10                  | 0.55(0.61, 0.64)                                       |
|                      |               | u                   | 0.53(0.44, 0.65)                                       |
| 3'I TP               | Control       | ω <sub>α</sub><br>Ι | -1445345 39 (-1462311 3 -                              |
| JUIK                 | Control       | L                   | 1426852.15)                                            |

|                |         | n2                | 144 (144, 144)                             |
|----------------|---------|-------------------|--------------------------------------------|
|                |         | n1                | 105.39 (104.43, 106.58)                    |
|                |         | t2                | 26.66 (21.31, 34.43)                       |
|                |         | beta              | 0.44 (0.38, 0.55)                          |
|                |         | Es                | -0.03 (-0.03, -0.02)                       |
|                |         | f0                | 0.84 (0.84, 0.85)                          |
|                |         | α                 | 0.56 (0.53, 0.59)                          |
|                |         | ωα                | 0.5 (0.47, 0.54)                           |
| 5'UTR          | ASE     | L                 | -126534.44 (-133412.2, -120318.31)         |
|                |         | n2                | 119 (89, 231)                              |
|                |         | n1                | 101.1 (94.02, 231)                         |
|                |         | t2                | 12 (12, 4779.99)                           |
|                |         | beta              | 0.29 (0.2, 0.45)                           |
|                |         | Es                | -0.09 (-0.15, -0.03)                       |
|                |         | f0                | 0.83 (0.81, 0.84)                          |
|                |         | α                 | 0.62 (0.53, 0.73)                          |
|                |         | $\omega_{\alpha}$ | 0.58 (0.46, 0.75)                          |
| 5'UTR          | Control | L                 | -1206613.76 (-1219801.39, -                |
|                |         | n?                | 1191971.01)                                |
|                |         | n1                | 105 41 (104 61 106 53)                     |
|                |         | t2                | 26 73 (22 52 34 39)                        |
|                |         | heta              | 0.28(0.25, 0.32)                           |
|                |         | Es                | -0.08 (-0.09 -0.06)                        |
|                |         | f0                | 0.84 (0.84, 0.85)                          |
|                |         | a                 | 0.59(0.57, 0.61)                           |
|                |         | (Q)a              | 0.54 (0.51, 0.57)                          |
| 500bp upstream | ASE     | L                 | -239037.42 (-246708.38, -231910.82)        |
| 1 1            |         | n2                | 119 (98, 231)                              |
|                |         | n1                | 101.1 (99.14, 231)                         |
|                |         | t2                | 12 (12, 4779.98)                           |
|                |         | beta              | 0.74 (0.44, 1.62)                          |
|                |         | Es                | -0.02 (-0.03, -0.01)                       |
|                |         | f0                | 0.83 (0.81, 0.84)                          |
|                |         | α                 | 0.71 (0.65, 0.77)                          |
|                |         | ωα                | 0.88 (0.81, 0.99)                          |
| 500bp upstream | Control | L                 | -2399129.99 (-2416962.54, -<br>2382243.06) |
|                |         | n2                | 144 (144, 144)                             |

|                     |         | nl                | 105.44 (104.57, 106.79)                    |
|---------------------|---------|-------------------|--------------------------------------------|
|                     |         | t2                | 26.9 (22.29, 34.84)                        |
|                     |         | beta              | 9.11 (1.7, 100)                            |
|                     |         | Es                | -0.01 (-0.01, -0.01)                       |
|                     |         | f0                | 0.84 (0.84, 0.85)                          |
|                     |         | α                 | 0.72 (0.68, 0.75)                          |
|                     |         | ωα                | 0.85 (0.79, 0.89)                          |
| intron              | ASE     | L                 | -320600.37 (-343516.35, -301306.64)        |
|                     |         | n2                | 119 (89, 191)                              |
|                     |         | n1                | 101.1 (94.78, 191)                         |
|                     |         | t2                | 12 (12, 4779.88)                           |
|                     |         | beta              | 0.22 (0.15, 0.46)                          |
|                     |         | Es                | -0.02 (-0.04, -0.01)                       |
|                     |         | f0                | 0.83 (0.82, 0.84)                          |
|                     |         | α                 | 0.49 (0.43, 0.58)                          |
|                     |         | ωα                | 0.54 (0.46, 0.66)                          |
| intron              | Control | L                 | -3747727.32 (-3813864.92, -                |
|                     |         | 2                 | 3678864.68)                                |
|                     |         | n2                | 144 (144, 144)                             |
|                     |         | nl                | 105.53 (104.62, 106.91)                    |
|                     |         | t2                | 27.42 (22.57, 35.28)                       |
|                     |         | beta              | 1.56 (0.56, 100)                           |
|                     |         | Es                | -0.01 (-0.01, -0.01)                       |
|                     |         | f0                | 0.84 (0.84, 0.85)                          |
|                     |         | α                 | 0.5 (0.44, 0.56)                           |
|                     |         | $\omega_{\alpha}$ | 0.51 (0.45, 0.58)                          |
| Constant population | n size  |                   |                                            |
| 0-fold              | ASE     | L                 | -256962.28 (-271148.6, -244813.4)          |
|                     |         | nl                | 100 (100, 100)                             |
|                     |         | beta              | 0.2 (0.17, 0.22)                           |
|                     |         | Es                | -3.29 (-6.08, -2.11)                       |
|                     |         | f0                | 0.84 (0.83, 0.84)                          |
|                     |         | α                 | 0.08 (-0.01, 0.17)                         |
|                     |         | $\omega_{\alpha}$ | 0.02 (0, 0.05)                             |
| 0-fold              | Control | L                 | -2175899.69 (-2209232.68, -<br>2143257.99) |
|                     |         | nl                |                                            |
|                     |         | beta              | 0.35 (0.34, 0.35)                          |
|                     |         | Es                | -1.29 (-1.38, -1.19)                       |

|                |         | f0                | 0.86 (0.86, 0.87)                  |
|----------------|---------|-------------------|------------------------------------|
|                |         | α                 | 0.49 (0.48, 0.5)                   |
|                |         | ωα                | 0.12 (0.11, 0.12)                  |
| 3'UTR          | ASE     | L                 | -152603.26 (-158909.62, -          |
|                |         |                   | 146103.69)                         |
|                |         | nl                |                                    |
|                |         | beta              | 0.49 (0.31, 1.02)                  |
|                |         | Es                | -0.03 (-0.05, -0.02)               |
|                |         | f0                | 0.84 (0.83, 0.84)                  |
|                |         | α                 | 0.62 (0.56, 0.69)                  |
|                |         | $\omega_{\alpha}$ | 0.6 (0.51, 0.69)                   |
| 3'UTR          | Control | L                 | -1446572.18 (-1463360.56, -        |
|                |         | n1                | 1428060.67)                        |
|                |         | ll I<br>boto      | 1.6(1.22, 2.45)                    |
|                |         | Ea                | 0.02(0.02, 0.02)                   |
|                |         | ES                | -0.02(-0.02, -0.02)                |
|                |         | 10                | 0.86(0.86, 0.87)                   |
|                |         | α                 | 0.72 (0.7, 0.75)                   |
|                |         | ωα                | 0.67 (0.64, 0.71)                  |
| 5'UTR          | ASE     | L                 | -126541.88 (-133412.96, -          |
|                |         | n1                | 100 (100, 100)                     |
|                |         | beta              | 0.36 (0.26, 0.5)                   |
|                |         | Es                | -0.07 (-0.11, -0.05)               |
|                |         | f0                | 0.84 (0.83, 0.84)                  |
|                |         | α                 | 0 67 (0 58 0 75)                   |
|                |         | (I)a              | 0.63 (0.51, 0.8)                   |
| 5'IJTR         | Control | I.                | -1207495 86 (-1220673 48 -         |
| 5.011          | control | L                 | 1192858.6)                         |
|                |         | nl                | 100 (100, 100)                     |
|                |         | beta              | 0.62 (0.55, 0.7)                   |
|                |         | Es                | -0.04 (-0.04, -0.03)               |
|                |         | f0                | 0.86 (0.86, 0.87)                  |
|                |         | α                 | 0.71 (0.69, 0.73)                  |
|                |         | ωα                | 0.67 (0.65, 0.69)                  |
| 500bp upstream | ASE     | L                 | -239088.58 (-246751.2, -231991.05) |
|                |         | nl                | 100 (100, 100)                     |
|                |         | beta              | 1.05 (0.59, 3.34)                  |
|                |         | Es                | -0.02 (-0.02, -0.01)               |
|                |         | f0                | 0.84 (0.83, 0.84)                  |

|                     |         | α                 | 0.75 (0.71, 0.79)                                            |
|---------------------|---------|-------------------|--------------------------------------------------------------|
|                     |         | ωα                | 0.95 (0.88, 1.05)                                            |
| 500bp upstream      | Control | L                 | -2401990.44 (-2419373.47, -<br>2384878.95)                   |
|                     |         | n1                | 100 (100, 100)                                               |
|                     |         | beta              | 100 (100, 100)                                               |
|                     |         | Es                | -0.01 (-0.01, -0.01)                                         |
|                     |         | f0                | 0.86 (0.86, 0.87)                                            |
|                     |         | α                 | 0.78 (0.77, 0.79)                                            |
|                     |         | ωα                | 0.94 (0.92, 0.96)                                            |
| intron              | ASE     | L                 | -320649.35 (-343558.52, -<br>301334.71)                      |
|                     |         | nl                | 100 (100, 100)                                               |
|                     |         | beta              | 0.34 (0.22, 0.61)                                            |
|                     |         | Es                | -0.02 (-0.03, -0.01)                                         |
|                     |         | f0                | 0.84 (0.83, 0.84)                                            |
|                     |         | α                 | 0.55 (0.49, 0.61)                                            |
|                     |         | $\omega_{\alpha}$ | 0.62 (0.54, 0.71)                                            |
| intron              | Control | L<br>nl           | -3751129.56 (-3817573.88, -<br>3681960.11)<br>100 (100, 100) |
|                     |         | heta              | 100(100, 100)                                                |
|                     |         | Es                |                                                              |
|                     |         | f0                | 0.86 (0.86, 0.87)                                            |
|                     |         | α                 | 0.63 (0.61, 0.64)                                            |
|                     |         | Ω <sub>α</sub>    | 0.66 (0.64, 0.68)                                            |
| Range-wide sample   |         | oou               |                                                              |
| Stepwise population | change  |                   |                                                              |
| 0-fold              | ASE     | L                 | -228831.52 (-239793.9, -215937.1)                            |
|                     |         | n2                | 158 (131, 307.77)                                            |
|                     |         | n1                | 103.34 (102.54, 111.87)                                      |
|                     |         | t2                | 12 (12, 23.71)                                               |
|                     |         | beta              | 0.18 (0.11, 0.21)                                            |
|                     |         | Es                | -4.62 (-100.3, -2.84)                                        |
|                     |         | f0                | 0.79 (0.72, 0.81)                                            |
|                     |         | α                 | 0.06 (-0.24, 0.14)                                           |
|                     |         | ωα                | 0.01 (-0.06, 0.04)                                           |
| 0-fold              | Control | Ĺ                 | -1921169.23 (-1955228.74, -<br>1889955.17)                   |
|                     |         | n2                | 158 (158, 174)                                               |

|         |         | n1                  | 112.15 (110.59, 113.62)                 |
|---------|---------|---------------------|-----------------------------------------|
|         |         | t2                  | 48.98 (32.84, 56.07)                    |
|         |         | beta                | 0.28 (0.26, 0.29)                       |
|         |         | Es                  | -2.32 (-3.07, -2.1)                     |
|         |         | f0                  | 0.83 (0.82, 0.83)                       |
|         |         | α                   | 0.41 (0.38, 0.42)                       |
|         |         | ωα                  | 0.1 (0.09, 0.1)                         |
| 3'UTR   | ASE     | L                   | -134539.4 (-140342.97, -129761.8)       |
|         |         | n2                  | 231 (144, 660)                          |
|         |         | nl                  | 107.51 (103.34, 131.83)                 |
|         |         | t2                  | 12 (12, 20.01)                          |
|         |         | beta                | 0.4 (0.2, 100)                          |
|         |         | Es                  | -0.03 (-0.05, -0.01)                    |
|         |         | f0                  | 0.75 (0.59, 0.8)                        |
|         |         | α                   | 0.57 (0.45, 0.73)                       |
|         |         | $\omega_{\alpha}$   | 0.56 (0.43, 0.74)                       |
| 3'UTR   | Control | L                   | -1279054.76 (-1299259.06, -             |
|         |         | n)                  | 1260535.93)                             |
|         |         | 112<br>n1           | 138(138, 174)<br>11227(11050, 11201)    |
|         |         | 111<br>+2           | 112.27 (110.39, 113.91)                 |
|         |         | 12<br>beta          | 49.54 (0.45, 0.65)                      |
|         |         | Es                  | 0.02(0.03, 0.03)                        |
|         |         | £S<br>f0            | -0.02(-0.03, -0.02)                     |
|         |         | 10<br>0             | 0.59 (0.57, 0.63)                       |
|         |         | u<br>W              | 0.53 (0.51, 0.52)                       |
| 5'IITR  | ASE     | ω <sub>α</sub>      | -113525 53 (-118689 59 -107393 46)      |
| 5 0 I K | ABL     | L<br>n?             | 231 (158 661 65)                        |
|         |         | n1                  | $107\ 51\ (103\ 34\ 131\ 92)$           |
|         |         | t2                  | 107.51(105.54, 151.52)<br>12(12, 17.05) |
|         |         | heta                | 0.28(0.15, 0.42)                        |
|         |         | Es                  | -0.08 (-0.17 -0.04)                     |
|         |         | f0                  | 0.76(0.59, 0.79)                        |
|         |         | 0<br>0              | 0.6(0.45, 0.71)                         |
|         |         | ω<br>ω              | 0.57(0.38, 0.76)                        |
| 5'UTR   | Control | ω <sub>α</sub><br>L | -1080942 2 (-1094594 88 -               |
| 2.011   | Control | Ľ                   | 1065935.39)                             |
|         |         | n2                  | 158 (158, 174)                          |
|         |         | nl                  | 112.09 (110.64, 113.63)                 |

|                |         | t2             | 48.69 (32.78, 56.1)                       |
|----------------|---------|----------------|-------------------------------------------|
|                |         | beta           | 0.34 (0.29, 0.39)                         |
|                |         | Es             | -0.05 (-0.07, -0.05)                      |
|                |         | f0             | 0.83 (0.82, 0.83)                         |
|                |         | α              | 0.62 (0.59, 0.64)                         |
|                |         | ωα             | 0.57 (0.55, 0.6)                          |
| 500bp upstream | ASE     | L              | -211757.76 (-218720.28, -205932.29)       |
|                |         | n2             | 144 (131, 231)                            |
|                |         | nl             | 103.24 (101.9, 107.51)                    |
|                |         | t2             | 15.45 (12, 31.21)                         |
|                |         | beta           | 1.04 (0.55, 5.69)                         |
|                |         | Es             | -0.02 (-0.02, -0.01)                      |
|                |         | f0             | 0.8 (0.76, 0.81)                          |
|                |         | α              | 0.75 (0.69, 0.8)                          |
|                |         | ωα             | 0.96 (0.85, 1.07)                         |
| 500bp upstream | Control | L              | -2113038.25 (-2129886.18, -               |
|                |         | <b>n</b> )     | 2096361.1)                                |
|                |         | 112<br>m1      | 138(138, 174)                             |
|                |         | n1<br>+2       | 111.98 (110.08, 113.01)                   |
|                |         | lZ<br>hata     | 48.19 (33.07, 36)                         |
|                |         | Ea             | 99.99(4.87, 100)                          |
|                |         | ES<br>f0       | -0.01(-0.01, -0.01)                       |
|                |         | 10             | 0.85(0.82, 0.85)                          |
|                |         | α              | 0.75(0.73, 0.76)                          |
| ·              | ACE     | ω <sub>α</sub> | 0.89(0.85, 0.91)                          |
| intron         | ASE     |                | -282833.02 (-303379.94, -264364.89)       |
|                |         | n2             | 191 (131, 409)                            |
|                |         | n1             | 105.23(102.54, 117.61)                    |
|                |         | tZ<br>hata     | 12(12, 23.01)                             |
|                |         | beta           | 0.19(0.07, 0.94)                          |
|                |         | ES<br>m        | -0.02(-0.06, -0.01)                       |
|                |         | 10             | 0.77 (0.68, 0.8)                          |
|                |         | α              | 0.47(0.33, 0.57)                          |
| • ,            |         | ω <sub>α</sub> | 0.53 (0.36, 0.64)                         |
| intron         | Control | L              | -32/3883.1 (-3330916.44, -<br>3218921 67) |
|                |         | n2             | 158 (158, 174)                            |
|                |         | nl             | 111.95 (110.23, 113.37)                   |
|                |         | t2             | 48.02 (31.56, 54.61)                      |

|                  |           | beta              | 7.64 (0.89, 100)                           |
|------------------|-----------|-------------------|--------------------------------------------|
|                  |           | Es                | -0.01 (-0.01, -0.01)                       |
|                  |           | f0                | 0.83 (0.82, 0.83)                          |
|                  |           | α                 | 0.55 (0.48, 0.58)                          |
|                  |           | ωα                | 0.57 (0.5, 0.6)                            |
| Constant populat | tion size |                   |                                            |
| 0-fold           | ASE       | L                 | -228892.46 (-239843.29, -215994.66)        |
|                  |           | nl                | 100 (100, 100)                             |
|                  |           | beta              | 0.25 (0.22, 0.29)                          |
|                  |           | Es                | -1.19 (-1.97, -0.8)                        |
|                  |           | f0                | 0.83 (0.82, 0.83)                          |
|                  |           | α                 | 0.2 (0.1, 0.28)                            |
|                  |           | $\omega_{\alpha}$ | 0.05 (0.02, 0.07)                          |
| 0-fold           | Control   | L                 | -1922427.06 (-1956510.48, -<br>1891226.11) |
|                  |           | nl                | 100 (100, 100)                             |
|                  |           | beta              | 0.42 (0.41, 0.43)                          |
|                  |           | Es                | -0.7 (-0.76, -0.65)                        |
|                  |           | f0                | 0.86 (0.86, 0.86)                          |
|                  |           | α                 | 0.56 (0.55, 0.57)                          |
|                  |           | $\omega_{\alpha}$ | 0.14 (0.13, 0.14)                          |
| 3'UTR            | ASE       | L                 | -134598.17 (-140412.09, -129783.88)        |
|                  |           | n1                | 100 (100, 100)                             |
|                  |           | beta              | 1.56 (0.67, 100)                           |
|                  |           | Es                | -0.02 (-0.03, -0.01)                       |
|                  |           | f0                | 0.83 (0.82, 0.83)                          |
|                  |           | α                 | 0.74 (0.67, 0.83)                          |
|                  |           | ωα                | 0.75 (0.65, 0.89)                          |
| 3'UTR            | Control   | L                 | -1280785.37 (-1300998.02, -<br>1262315.36) |
|                  |           | nl                | 100 (100, 100)                             |
|                  |           | beta              | 100 (100, 100)                             |
|                  |           | Es                | -0.01 (-0.02, -0.01)                       |
|                  |           | f0                | 0.86 (0.86, 0.86)                          |
|                  |           | α                 | 0.83 (0.81, 0.84)                          |
|                  |           | $\omega_{\alpha}$ | 0.79 (0.77, 0.81)                          |
| 5'UTR            | ASE       | L                 | -113585.64 (-118760.57, -107468.66)        |
|                  |           | n1                | 100 (100, 100)                             |
|                  |           | beta              | 0.56 (0.39, 0.81)                          |

|                |         | Es                | -0.04 (-0.07, -0.03)                       |
|----------------|---------|-------------------|--------------------------------------------|
|                |         | f0                | 0.83 (0.82, 0.83)                          |
|                |         | α                 | 0.72 (0.64, 0.8)                           |
|                |         | $\omega_{\alpha}$ | 0.71 (0.57, 0.87)                          |
| 5'UTR          | Control | L                 | -1082319.23 (-1095962.67, -                |
|                |         | m 1               | 1067305.2)                                 |
|                |         | 111<br>hata       | 1.26(1.04, 1.64)                           |
|                |         | Dela              | 1.20(1.04, 1.04)                           |
|                |         | ES<br>m           | -0.03(-0.03, -0.02)                        |
|                |         | 10                | 0.86 (0.86, 0.86)                          |
|                |         | α                 | 0.79 (0.77, 0.81)                          |
|                |         | ωα                | 0.76 (0.74, 0.79)                          |
| 500bp upstream | ASE     | L                 | -211880.82 (-218796.62, -206062.17)        |
|                |         | nl                | 100 (100, 100)                             |
|                |         | beta              | 100 (1.81, 100)                            |
|                |         | Es                | -0.01 (-0.02, -0.01)                       |
|                |         | f0                | 0.83 (0.82, 0.83)                          |
|                |         | α                 | 0.85 (0.8, 0.86)                           |
|                |         | $\omega_{\alpha}$ | 1.13 (1.03, 1.2)                           |
| 500bp upstream | Control | L                 | -2117145.16 (-2133978.09, -                |
|                |         | n1                | 2100465.44)<br>100 (100 - 100)             |
|                |         | heta              | 100 (100, 100)                             |
|                |         | Ec                | 0.01(0.01, 0.01)                           |
|                |         | ES<br>f0          | -0.01(-0.01, -0.01)                        |
|                |         | 10                | 0.80(0.80, 0.80)                           |
|                |         | α                 | 0.79(0.78, 0.8)                            |
| • <i>,</i>     |         | ωα                | 0.96 (0.94, 0.98)                          |
| intron         | ASE     | L                 | -282950.23 (-303525.7, -264529.84)         |
|                |         | nl                | 100 (100, 100)                             |
|                |         | beta              | 0.8 (0.34, 100)                            |
|                |         | Es                | -0.01 (-0.02, -0.01)                       |
|                |         | f0                | 0.83 (0.82, 0.83)                          |
|                |         | α                 | 0.63 (0.55, 0.72)                          |
|                |         | $\omega_{\alpha}$ | 0.73 (0.62, 0.85)                          |
| intron         | Control | L                 | -3278975.81 (-3336542.74, -<br>3224367.68) |
|                |         | nl                | 100 (100, 100)                             |
|                |         | beta              | 100 (100, 100)                             |
|                |         | Es                | -0.01 (-0.01, -0.01)                       |

| f0 | 0.86 (0.86, 0.86) |
|----|-------------------|
| α  | 0.64 (0.62, 0.65) |
| ωα | 0.68 (0.66, 0.7)  |

Table S6. Predictor importance in logistic regression best-fit model predicting ASE from genomic features using BIC (BIC=3093.1). Regression coefficients and their standard error, z-statistics and associated P-values, and odds ratios (OR) are shown

| Model parameter       | Coeff. (SE)  | z value | P-value           | OR   |
|-----------------------|--------------|---------|-------------------|------|
| Gene-body methylation | -0.62 (0.18) | -3.45   | <10-3             | 0.54 |
| Expression level      | 0.20 (0.05)  | -3.45   | <10 <sup>-3</sup> | 1.22 |
| Promoter polymorphism | 0.20 (0.05)  | 4.37    | <10 <sup>-3</sup> | 1.23 |
| Tissue specificity    | 0.20 (0.05)  | 5.12    | <10 <sup>-3</sup> | 1.35 |
| Intercept             | -2.55 (0.05) | -46.81  | <10 <sup>-3</sup> | 0.08 |
|                       |              |         |                   |      |

Table S7. Predictors importance in logistic regression model predicting ASE from genomic features using model averaging with AIC and BIC criterion. Conditional averages for regression coefficients and their standard error, z-statistics and associated P-values, odds ratios (OR) and predictor relative importance are shown.

|                            | AIC          |                   |      |            | BIC          |                   |      |            |
|----------------------------|--------------|-------------------|------|------------|--------------|-------------------|------|------------|
| Model parameter            | Coeff (SE)   | P-value           | OR   | Importance | Coeff (SE)   | P-value           | OR   | Importance |
| Gene-body methylation      | -0.64 (0.20) | 0.001             | 0.51 | 0.99       | -0.62 (0.18) | <10 <sup>-3</sup> | 0.54 | 0.92       |
| $\pi_N/\pi_S$              | 0.08 (0.04)  | 0.029             | 1.09 | 0.73       | 0.07 (0.04)  | 0.044             | 1.08 | 0.07       |
| Expression level           | 0.20 (0.06)  | <10 <sup>-3</sup> | 1.22 | 0.99       | 0.20 (0.06)  | <10 <sup>-3</sup> | 1.22 | 0.80       |
| Promoter polymorphism      | 0.20 (0.05)  | <10 <sup>-3</sup> | 1.23 | 1          | 0.20 (0.05)  | <10 <sup>-3</sup> | 1.23 | 0.99       |
| Tissue specificity         | 0.30 (0.06)  | <10 <sup>-3</sup> | 1.35 | 1          | 0.28 (0.07)  | <10 <sup>-3</sup> | 1.35 | 0.99       |
| TE within 1 kb             | 0.32 (0.13)  | 0.012             | 1.38 | 0.88       | 0.32 (0.13)  | 0.011             | 1.38 | 0.20       |
| Co-expression module size  | -0.08 (0.05) | NS                | 0.92 | 0.55       | -0.09 (0.05) | NS                | 0.91 | 0.05       |
| Gene length                | 0.08 (0.06)  | NS                | 1.09 | 0.51       | 0.07 (0.06)  | NS                | 1.08 | 0.03       |
| Recombination rates        | 0.06 (0.05)  | NS                | 1.06 | 0.46       | 0.06 (0.05)  | NS                | 1.06 | 0.03       |
| Gene density               | 0.04 (0.05)  | NS                | 1.04 | 0.32       | 0.025 (0.05) | NS                | 1.02 | 0.01       |
| Synonymous divergence      | 0.03 (0.05)  | NS                | 1.03 | 0.31       | 0.03 (0.05)  | NS                | 1.03 | 0.01       |
| Alpha paralog present      | 0.02 (0.11)  | NS                | 1.02 | 0.27       | 0.02 (0.11)  | NS                | 1.02 | 0.01       |
| Beta/gamma paralog present | -0.12 (0.15) | NS                | 0.87 | 0.34       | -0.12 (0.15) | NS                | 0.89 | 0.02       |

| with higher than 2070 contr | with higher than 2076 contribution are highlighted in bold. |      |      |      |      |      |      |      |      |
|-----------------------------|-------------------------------------------------------------|------|------|------|------|------|------|------|------|
| Variable                    | PC1                                                         | PC2  | PC3  | PC4  | PC5  | PC6  | PC7  | PC8  | PC9  |
| Recombination rate          | 0.1                                                         | 0.8  | 30.1 | 5.8  | 4.2  | 9.5  | 26.8 | 8.9  | 2.3  |
| Tissue specificity          | 27.7                                                        | 5.7  | 5.4  | 6.8  | 7.7  | 7.3  | 3.3  | 0.1  | 40.6 |
| Gene length                 | 16.0                                                        | 19.3 | 5.3  | 12.4 | 5.5  | 0.4  | 10.4 | 31.1 | 5.3  |
| Expression level            | 26.4                                                        | 11.2 | 5.9  | 4.7  | 10.0 | 1.3  | 6.5  | 2.8  | 39.6 |
| Gene density                | 6.1                                                         | 2.8  | 24.5 | 17.7 | 12.7 | 16.2 | 12.3 | 20.6 | 1.0  |
| Synonymous divergence       | 11.0                                                        | 22.3 | 3.6  | 1.9  | 1.4  | 30.0 | 1.9  | 20.8 | 1.8  |
| Promoter polymorphism       | 1.4                                                         | 1.2  | 14.2 | 32.2 | 1.3  | 5.2  | 23.2 | 1.0  | 3.0  |
| $\pi_N/\pi_S$               | 10.3                                                        | 13.6 | 8.6  | 4.4  | 43.1 | 2.8  | 2.6  | 6.4  | 0.4  |
| Coexpression module size    | 1.0                                                         | 23.1 | 2.7  | 14.2 | 14.1 | 27.4 | 13.0 | 8.3  | 6.0  |

Table S8. Percent contributions of each continuous variable to each PC. Variables with higher than 20% contribution are highlighted in bold.

| therefore meruded despite naving marviduary non-signmeant effects. |             |            |         |                   |      |  |
|--------------------------------------------------------------------|-------------|------------|---------|-------------------|------|--|
| Model parameter                                                    | Coefficient | Std. Error | z value | P-value           | OR   |  |
| Gene-body methylation                                              | -0.67       | 0.19       | -3.59   | 0.0003            | 0.51 |  |
| TE within 1 kb                                                     | 0.32        | 0.13       | 2.48    | 0.0132            | 1.37 |  |
| PC1                                                                | 0.06        | 0.04       | 1.52    | NS                | 1.06 |  |
| PC3                                                                | -0.10       | 0.04       | -2.28   | 0.0229            | 0.91 |  |
| PC4                                                                | 0.11        | 0.05       | 2.38    | 0.0174            | 1.11 |  |
| PC5                                                                | -0.08       | 0.04       | -1.97   | 0.0485            | 0.92 |  |
| PC6                                                                | -0.11       | 0.05       | -2.13   | 0.0328            | 0.89 |  |
| PC7                                                                | 0.09        | 0.06       | 1.57    | NS                | 1.09 |  |
| PC8                                                                | -0.14       | 0.06       | -2.25   | 0.0244            | 0.87 |  |
| PC9                                                                | 0.36        | 0.08       | 4.68    | <10 <sup>-3</sup> | 1.43 |  |
| Intercept                                                          | -2.60       | 0.06       | -43.29  | <10 <sup>-3</sup> | 0.07 |  |

Table S9. Results of the best fit logistic regression including principal components of the continuous variables as well as the binary variables TE presence within 1 kb and gene-body methylation using stepwise AIC. PC1 and PC7 improved model fit and are therefore included despite having individually non-significant effects.

| and gene-body methylation using stepwise BIC. |             |            |         |                   |      |
|-----------------------------------------------|-------------|------------|---------|-------------------|------|
| Model parameter                               | Coefficient | Std. Error | z value | P-value           | OR   |
| Gene-body methylation                         | -0.69       | 0.18       | -3.91   | <10 <sup>-3</sup> | 0.51 |
| PC9                                           | 0.36        | 0.08       | 4.68    | <10 <sup>-3</sup> | 1.43 |
| Intercept                                     | -2.52       | 0.06       | -43.29  | <10 <sup>-3</sup> | 0.08 |

Table S10. Results of the best fit logistic regression including principal components of the continuous variables as well as the binary variables TE presence within 1 kb and gene-body methylation using stepwise BIC.

| expression  |          |                      |           |                      |
|-------------|----------|----------------------|-----------|----------------------|
| Designation | Seed     | Geographical origin, | Pollen    | Geographical origin, |
|             | parent   | seed parent          | parent    | pollen parent        |
| Intra6.3    | Cg89.30- | Greece, Zagory,      | Cg935/13- | Greece, Corfu,       |
|             | 1        | Koukouli             | 2         | Sokraki              |
| Intra7.2    | Cg94-6-1 | Greece, Zagory,      | Cg5d-1    | Greece, Corfu, Near  |
|             |          | Mikro Papingo        |           | Troumpeta            |
| Intra8.2    | Cg2k-1   | Greece, Corfu,       | Cg88.14-1 | Greece, Zagory,      |
|             |          | Paleokastritsas      |           | Monodendri           |
|             |          |                      |           |                      |

Table S11. Intraspecific *C. grandiflora* F1 samples for analysis of allele-specific expression

| Species     | Designation | Geographical origin      |
|-------------|-------------|--------------------------|
| С.          | Cg5a-KS2    | Greece, Corfu,           |
| grandiflora | C           | Troumpeta                |
| C.          | Cg7h-KS2    | Greece, Lefkas, Exanthia |
| grandiflora | C           |                          |
| C.          | Cg85.3-KS2  | Greece, south of         |
| grandiflora | C           | Ioannina                 |
| Č.          | Cg86.15-KS2 | Greece, Zagory           |
| grandiflora |             |                          |
| C.          | Cg87.19-KS2 | Greece, Zagory           |
| grandiflora | -           |                          |
| C.          | Cg89.1-KS2  | Greece, Zagory,          |
| grandiflora | -           | Koukouli                 |
| C.          | Cg89.11-KS3 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| C.          | Cg89.12-KS2 | Greece, Zagory,          |
| grandiflora | -           | Koukouli                 |
| C.          | Cg89.13-KS3 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| C.          | Cg89.14-KS2 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.15-KS3 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.16-KS3 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.18-KS3 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.19-KS2 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.2-KS1  | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.20-KS2 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.21-KS2 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.22-KS2 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.23-KS2 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.25-KS2 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.26-KS2 | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |
| С.          | Cg89.27-KS2 | Greece, Zagory,          |
| grandiflora | a           | Koukouli                 |
| С.          | Cg89.3-KS2  | Greece, Zagory,          |
| grandiflora | <b>a</b>    | Koukouli                 |
| С.          | Cg89.4-KS3  | Greece, Zagory,          |
| grandiflora |             | Koukouli                 |

Table S12. Geographic origin of samples for population genomic analyses.

| С.          | Cg89.5-KS3  | Greece, Zagory,        |
|-------------|-------------|------------------------|
| grandiflora |             | Koukouli               |
| С.          | Cg89.9-KS3  | Greece, Zagory,        |
| grandiflora |             | Koukouli               |
| С.          | Cg8d-KS3    | Greece, Sterea Ellada, |
| grandiflora |             | Thirio                 |
| C.          | Cg92.11-KS3 | Greece, Zagory         |
| grandiflora |             |                        |
| C.          | Cg93.9-KS3  | Greece, Zagory         |
| grandiflora | -           |                        |
| Ċ.          | Cg96.7-KS3  | Greece, Zagory, Mikro  |
| grandiflora | C           | Papingo                |
| Ċ.          | Cg98.8-KS1  | Greece, Katara Pass    |
| grandiflora | ~           | -                      |
| Č.          | Cg99.15-KS2 | Greece, near Panagia   |
| grandiflora | -           | northeast of Metsovo   |
|             |             |                        |