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Appendix	8	

1. Mathematical	model	of	promoter	activity	9	
In	 this	 section,	we	develop	a	description	of	gene	expression	 regulation	by	 two	mechanisms:	global	10	
regulation	by	 the	expression	machinery	and	 specific	 regulation	by	metabolite-binding	 transcription	11	
factors.		The	model	accounts	for	the	contributions	of	the	expression	machinery	and	of	transcription	12	
factors	representing	global	and	specific	regulation,	respectively	(eq.	1	in	the	main	text):	13	

paij= E! KEi
αEi∙ 1+TFlj Kli

αli

l∈ TF

	

Here,	paij	denotes	 the	activity	of	promoter	 i	 in	condition	 j,	E	denotes	 the	activity	of	 the	expression	14	
machinery	 (in	 condition	 j)	 and	 TF	 denotes	 the	 activity	 of	 each	 specific	 transcription	 factor	 l	 (in	15	
condition	j).	The	two	parameters	K	and	α	associated	to	each	activity	represent	biochemical	affinities	16	
and	 cooperative	 or	 saturating	 mechanisms	 (approximated	 by	 power	 law	 terms	 for	 mathematical	17	
convenience,	 see	 below),	 respectively.	 In	 this	 representation,	 transcription	 factors	 can	 act	 as	18	
activators	 (αli	 >	 0)	 or	 inhibitors	 (αli	 <	 0).	 The	 activity	 of	 each	 transcription	 factor	 l	 can	 in	 turn	 be	19	
described	as	follows	(eq.	S1):	20	

TF!" = TF!"#! !" 1 +M!" K!"
!!"

!∈ !

	

where	 TFconc	 lj	 denotes	 the	 transcription	 factor	 concentration	 (in	 condition	 j),	 M	 denotes	 the	21	
concentration	 of	 each	 metabolite	 acting	 as	 a	 regulator	 of	 transcription	 factor	 activity	 with	 its	22	
transcription	factor	specific	parameters	Klk	and	βlk.	Metabolites	can	activate	(βlk	>	0)	or	inhibit	(βlk	>	0)	23	
transcription	factor	activity.	24	

The	 relationship	between	promoter	activity	and	global/specific	 regulation	described	 in	equations	1	25	
and	 S1	 can	be	 simplified	by	 first	 transforming	 them	 into	 log	 space,	 second	by	 approximating	 each	26	
term	 expressed	 as	 log(1+x)	 with	 log(x),	 and	 third	 by	 normalizing	 e.g.	 for	 a	 reference	 condition	 to	27	
eliminate	unknown	kinetic	parameters		(∆ log 𝑥! = log 𝑥! − log (𝑥!"#)	)(eq.	S2):	28	

∆log paij ≈ α!" ∙ ∆ log E! + α!" ∙
!∈ !"

∆log TF!"#! !" + α!" ∙ β!" ∙
!∈ !" ,!∈ !

∆log M!" 	

We	 can	 further	 simplify	 equation	 S2	 by	 assuming	 that	 transcription	 factor	 expression	 does	 not	29	
change	significantly	across	conditions,	as	has	been	shown	for	E.	coli	(Ishihama	et	al,	2014;	Gerosa	et	30	
al,	2015)	(eq.	S3):	31	

∆log paij ≈ α!" ∙ ∆ log E! + α!" ∙ β!" ∙
!∈ !" ,!∈ !

∆log M!" 	

Thus,	in	this	linearized	approximation	promoter	activity	can	be	decomposed	into	linear	contributions	32	
from	the	expression	machinery	activity	(=	global	regulation)	and	the	concentration	of	the	metabolites	33	
which	regulate	the	activity	of	the	respective	transcription	factors	(=	specific	regulation).	34	

	 	35	
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2. Using	correlation	to	infer	promoter-metabolite	interactions	from	steady-36	

state	data	37	
While	equation	S3	describes	the	general	case	of	a	promoter	under	both	global	regulation	and	specific	38	
regulation	 by	 multiple	 transcription	 factors	 with	 multiple	 metabolite	 effectors,	 regulatory	 circuits	39	
operating	in	E.	coli	metabolism	are	likely	to	be	simpler	(i.e.	with	fewer	relevant	regulatory	inputs).	In	40	
the	following	section,	we	assess	if	and	when	operating	regulatory	circuits	are	in	theory	identifiable	by	41	
correlating	steady	state	measurements	of	promoter	activity	and	metabolite	concentrations.	42	

There	are	many	factors	that	can	confound	correlations	of	promoter	activity	and	metabolites	within	43	
regulatory	 circuits,	 as	 well	 as	 factors	 that	 can	 lead	 to	 correlations	 even	 without	 direct	 regulatory	44	
mechanistic	links.	Factors	that	can	confound	true	regulatory	links	are	measurement	noise,	ignorance	45	
of	kinetic	parameters	(or	more	complex	interaction	mechanisms	for	which	the	model	approximation	46	
above	does	not	apply),	and	combinatorial	contributions	of	many	regulators	and	metabolites.	Factors	47	
that	 can	 lead	 to	 correlations	 without	 direct	 links	 are	 cross-correlations	 between	 metabolites	 or	48	
transcription	factors	in	many	conditions,	e.g.	due	to	co-regulation.	Given	these	limitations,	how	and	49	
when	can	metabolite-gene	links	mediated	by	transcription	factors	being	identified	by	correlations?	50	

To	 address	 these	 issues,	 we	 performed	 simulations	 assuming	 single-input	 promoters	 (=	 specific	51	
regulation	is	determined	by	the	concentration	of	a	single	metabolite)	and	using	the	same	number	of	52	
data	points	per	promoter	 (n=23	conditions	 for	which	we	quantified	metabolite	concentrations	and	53	
promoter	activities)	as	in	our	experimental	data	(see	simulation	steps	at	the	end	of	the	section).	54	

In	particular,	we	focused	on	two	aspects:	first,	when	is	it	necessary	to	remove	the	confounding	effect	55	
of	 global	 regulation	 to	 ensure	 the	 recovery	 of	 potential	 regulatory	 metabolites?	 To	 address	 this	56	
question,	we	 grouped	 the	 simulated	 promoter	 activities	 based	 on	 the	 relative	 contribution	 of	 the	57	
expression	machinery	 (determined	as	 the	Pearson	correlation	coefficient	between	 log	 transformed	58	
promoter	 activity	 and	 expression	 machinery	 activity,	 small	 contribution:	 R	 <	 0.25,	 moderate	59	
contribution:	 0.25	 <	 R	 <	 0.75,	 large	 contribution:	 R	 >	 0.75)	 and	 calculated	 the	 distribution	 of	60	
correlation	coefficients	between	log	transformed	metabolite	and	log	transformed	promoter	activity	61	
with	or	without	removing	the	expression	machinery	contribution.	An	interaction	is	considered	to	be	62	
recovered	 if	 the	 respective	 correlation	 coefficient	 exceeds	 the	 threshold	 (below	 -0.75,	 or	 above	63	
0.75).	As	expected,	for	promoters	that	are	predominantly	affected	by	global	regulation,	the	recovery	64	
of	 promoter-metabolite	 interactions	 is	 poor	 (simulation	 figure	 A,	 right	 panel).	 Conversely,	 for	65	
promoters	whose	 activity	 is	 dominated	 by	 specific	 regulation,	 correcting	 for	 expression	machinery	66	
effects	has	 little	 impact	on	 the	 recovery	of	 regulatory	metabolites	 (simulation	 figure	A,	 left	panel).	67	
These	results	are	consistent	with	the	experimental	findings	discussed	in	the	main	text	(figure	4D)	and	68	
confirm	that	removing	the	contribution	of	global	regulation	is	pivotal	especially	for	promoters	whose	69	
activity	is	modulated,	but	not	dominated,	by	specific	regulation.	70	

Second,	we	wanted	to	assess	the	impact	of	confounding	cross-correlating	metabolites	on	our	ability	71	
to	identify	true	regulatory	metabolites.	Towards	this	end,	we	simulated	additional	metabolites	with	72	
25%,	 50%,	 75%,	 95%	 similarity	 to	 the	 original	 simulated	metabolite	 concentration	 (using	 Pearson	73	
correlation	as	a	similarity	metric),	which	serve	as	false	positives,	and	determined	false	discovery	and	74	
true	 positive	 rates	 (simulation	 figure	 B).	 As	 illustrated	 by	 the	 resulting	 ROC	 curves,	 confounding	75	
metabolites	 that	 correlate	 poorly	 with	 the	 original	 metabolite	 (25%	 or	 50%	 similarity)	 have	 a	76	
negligible	 effect	 on	 false	 discovery	 rates.	 Even	 when	 considering	 confounding	 metabolites	 with	77	
higher	similarity	(75%),	the	false	discovery	rate	 is	below	10%	when	imposing	a	true	positive	rate	of	78	
75%	(meaning	that	75%	of	the	true	promoter-metabolite	interactions	present	in	the	data	set	will	be	79	
recovered).	In	the	simulations,	this	true	positive	rate	corresponds	to	a	correlation	threshold	of	0.74,	80	
which	justifies	the	correlation	threshold	used	for	the	experimental	data	(R>0.75).	81	
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	Protocol	 used	 to	 simulate	 data	 and	 evaluate	 the	 performance	 of	 the	 approximated	 model	 in	82	
recovering	true	metabolite-promoter	interactions	(repeated	for	10000	data	points):	83	

1. Uniformly	sample	23	values	in	the	range	[0,	10]	for	the	expression	machinery	activity	E∗ K!	84	
2. Uniformly	sample	23	values	in	the	range	[0,	10]	for	[𝑀] 𝐾!  (metabolite	concentration)	85	
3. Uniformly	 sample	 [𝑇] 𝐾! 	 (transcription	 factor	 concentration)	 in	 the	 range	 [0,	 10],	 add	86	

random	 variation	 in	 transcription	 factor	 concentration	 of	 15%	 (sampled	 from	 uniform	87	
distribution)	across	conditions	88	

4. Uniformly	sample	parameters	𝛼!"	in	the	range	[0,	1.5]	and	𝛼	and	𝛽	in	the	range	[-4,4]	89	
5. Calculate	promoter	activity	based	on	sampled	expression	machinery	activity,	metabolite	and	90	

transcription	factor	concentration,	and	parameters	using	equations	1	and	S1	91	
6. Add	15%	noise	sampled	from	a	normal	distribution	to	metabolites	and	promoter	activity	data	92	

to	simulate	measurement	noise	93	
7. Determine	 the	 correlation	 between	 log	 transformed	 promoter	 activity	 (either	 with	 or	94	

without	subtracting	the	log	transformed	expression	machinery	activity)	and	log	transformed	95	
metabolite	concentration	to	identify	putative	promoter-metabolite	interactions.	96	

8. For	 each	 simulation,	 generate	 a	 metabolite	 data	 set	 with	 25%,	 50%,	 75%	 similarity	 (=	97	
correlation)	to	the	original	metabolite	concentration,	and	repeat	step	7.	98	

	99	

	100	

Summary	 figure	 of	 simulations.	 A)	 Distribution	 of	 Pearson	 correlation	 coefficients	 between	101	
simulated	metabolite	concentration	and	promoter	activity	with	(red)	or	without	(black)	removing	the	102	
contribution	 of	 expression	 machinery.	 For	 each	 simulated	 promoter	 (n	 =	 10000),	 its	 expression	103	
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machinery	 contribution	 was	 determined	 as	 the	 Pearson	 correlation	 coefficient	 between	 log-104	
transformed	promoter	activity	and	expression	machinery	activity,	and	promoters	were	then	grouped	105	
into	small	(R	between	0	and	0.25,	left	panel),	moderate	(R	between	0.25	and	0.75,	middle	panel)	and	106	
large	(R	above	0.75,	right	panel)	contribution.	Dashed	lines:	correlation	thresholds	for	identification	107	
of	an	interaction	(R	<	-0.75	or	R	>	0.75).	B)	Impact	of	confounding	metabolites	on	the	identification	of	108	
promoter-metabolite	 interactions.	 For	 each	 simulated	 promoter	 and	 metabolite	 (n	 =	 10000),	 an	109	
additional	set	of	metabolites	with	25%	(blue),	50%	(red),	75%	(orange),	or	95%	(purple)	similarity	to	110	
the	original	data	(similarity	defined	as	Pearson	correlation	coefficient	between	original	and	additional	111	
metabolite	 data)	 was	 generated	 and	 used	 to	 calculate	 the	 correlation	 between	 log-transformed	112	
promoter	 activity	 (after	 removing	 expression	 machinery	 contribution)	 and	 each	 confounding	113	
metabolite	 (corresponding	 to	 a	 false-positive	 regulatory	 signal).	 False	 discovery	 and	 true	 positive	114	
rates	were	calculated	using	 the	p-value	of	 the	correlation	as	a	metric.	Horizontal	dashed	 line:	 true	115	
positive	 rate	 =	 0.75,	 corresponding	 to	 a	 correlation	 coefficient	 threshold	 of	 0.74	 (with	 p-value	116	
0.000047).	Left	vertical	dashed	line:	FDR	when	assuming	a	true	positive	rate	of	0.75	and	a	similarity	117	
of	 confounding	metabolites	of	0.75.	Right	 vertical	dashed	 line:	 FDR	when	assuming	a	 true	positive	118	
rate	of	0.75	and	a	similarity	of	confounding	metabolites	of	0.95.	119	

	 	120	
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3. Algorithm	to	systematically	identify	regulatory	metabolites	121	
	122	

Perform	separately	for	each	promoter:	123	

1. Subtract	first	singular	vector	to	obtain	the	isolated	specific	regulation	S	across	conditions	124	
2. Linear	regression	of	equation	S	=	p	*	M,	where	p	denotes	the	promoter-	and	metabolite	125	

specific	parameter	(corresponding	to	the	lumped	parameter	(αi,I	*	βl,k)	in	equation	3	in	the	126	
main	text)	to	be	determined	in	the	regression.	Exclude	conditions	in	which	the	metabolite	127	
could	not	be	quantified	128	

3. Calculate	Pearson	correlation	coefficient	R	between	S	and	its	reconstruction	based	on	p	*	M	129	
4. For	each	metabolite	pair	M1	+	M2:	linear	regression	of	equation	S	=	p1	*	M1	+	p2	*	M2	as	130	

above.	Exclude	conditions	in	which	either	of	the	metabolites	could	not	be	quantified.	131	
5. Calculate	Pearson	correlation	coefficient	R	between	S	and	its	reconstruction	based	on	(p1	*	132	

M1	+	p2	*	M2)	133	
6. Assess	whether	any	metabolite	pair	explains	S	better	than	the	best	single	metabolite	based	134	

in	the	difference	in	Akaike	Information	Criterion	(AIC):	135	
a. Calculate	AIC	and	ΔAIC	as	described	in	material	and	methods	for	each	metabolite	136	

pair	as	well	as	the	best	single	metabolite.	137	
b. Identify	metabolite	pairs	which	pass	all	cut-offs:	R	>	0.75;	at	least	20%	increase	in	R	138	

compared	to	the	best	single	metabolite;	ΔAIC	above	a	cut-off	corresponding	to	a	139	
relative	likelihood	of	>	50	(Burnham	et	al,	2011).	140	

7. If	more	than	one	metabolite	pair	pass	all	aforementioned	cut-offs:	select	the	one	with	the	141	
highest	correlation	coefficient	as	the	potential	regulatory	metabolite	pair	of	the	respective	142	
promoter	143	

8. If	no	metabolite	pair	passes	all	cut-offs:	Select	the	single	metabolite	with	the	highest	144	
correlation	coefficient	(given	a	general	cut-off	of	R	>	0.75)	as	the	potential	single	regulatory	145	
metabolite	of	the	respective	promoter	146	

9. If	no	single	metabolite	passes	the	correlation	coefficient	cut-off	of	R	>	0.75:	don’t	assign	any	147	
regulatory	metabolites	to	the	respective	promoter	148	

10. The	sign	of	each	metabolite-promoter	interaction	was	determined	based	on	the	fitted	149	
regression	parameters	p	(or	p1,	p2):	if	p	<	0,	the	interaction	is	defined	as	negative	150	
(metabolite	has	negative	effect	on	S),	if	p	>	0,	the	interaction	is	defined	as	positive	151	
(metabolite	has	positive	effect	on	S).	The	sign	of	the	correlation	coefficient	(e.g.	in	figure	3B	152	
or	S13)	is	then	set	accordingly.	153	

	 	154	
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Appendix	figures	155	

	156	

Appendix	Figure	S1.	Quantification	of	steady	state	promoter	activity	and	growth	rate	from	OD600	157	
and	GFP	time	course	data.	Example	condition:	M9	minimal	medium	with	2	g/L	glucose.	A)	Left	panel:	158	
Time	course	OD600	curves	of	96	reporter	strains	(95	promoter	reporter	strains,	plus	one	promoter-159	
less	reporter	strains	to	determine	the	background	signal).	Right	panel:	Corresponding	point-to-point	160	
growth	 rate	 (calculated	 by	 two-point	 finite	 difference	 numerical	 approximation,	 see	 (Gerosa	et	 al,	161	
2013)).	Black	continuous	line:	mean	point-to-point	growth	rate	across	all	strains.	Dashed	black	lines:	162	
corresponding	standard	deviation.	B)	Left	panel:	 time	course	of	GFP	measurements	 (see	methods).	163	
Right	panel:	Corresponding	point-to-point	promoter	activity	(see	methods	and	(Gerosa	et	al,	2013)).	164	
Exponential	 phase	was	 identified	 visually	 as	 the	 time	window	with	 the	 highest	 and	 approximately	165	
constant	 growth	 rate	 (marked	with	 violet	box),	 and	mean	promoter	activity	 and	growth	 rate	were	166	
calculated	in	this	window	for	each	promoter.	167	

	168	

	 	169	
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	170	

	171	

Appendix	Figure	S2.	GFP	expression	does	not	impair	growth	rate.	Promoter	activities	of	all	95	tested	172	
promoter	strains	 in	all	26	tested	conditions	plotted	against	the	growth	rate	of	the	respective	strain	173	
(relative	to	the	mean	growth	rate	in	the	same	condition).	174	

	175	

	176	

Appendix	Figure	S3.	Day-to-day	reproducibility	and	estimate	of	coefficient	of	variation	of	promoter	177	
activity	measurements.	All	64	promoters	with	promoter	activities	above	background	(see	main	text)	178	
were	 considered.	 A)	 Promoter	 activity	 during	 exponential	 growth	 (condition:	 M9	 glucose)	 was	179	
determined	 in	 five	 independent	experiments.	Median	day-to-day	variation	 is	15%.	B)	Coefficient	of	180	
variation	 (standard	deviation	divided	by	mean)	 in	9	 conditions	plotted	against	 the	mean	promoter	181	
activity	 (gray	circles,	based	on	2	 to	5	 replicates).	Red	circles:	median	coefficient	of	variation	 for	24	182	
evenly	spaced	bins	 (in	 log	scale).	Red	 line:	polynomial	 fit	of	median	coefficients	of	variation,	which	183	
allows	 to	 estimate	 the	 coefficient	 of	 variation	 also	 for	 promoters	without	 replicate	measurements	184	
(Keren	et	al,	2013).	185	

	 	186	
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	187	

Appendix	Figure	S4.	Steady	state	promoter	activity	of	64	promoters	in	26	conditions.	Error	denote	188	
standard	 deviation	 and	 were	 estimated	 based	 on	 day-to-day	 reproducibility	 measurements	 (see	189	
appendix	figure	3).		190	

	191	

	 	192	
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	193	

		194	

Appendix	 Figure	 S5.	 Hierarchical	 clustering	 of	 central	 metabolic	 promoters.	 A)	 Steady	 state	195	
promoter	activities	in	various	carbon	sources	as	well	as	different	sub-lethal	doses	of	chloramphenicol	196	
and	supplementation	of	5	mM	cyclic	AMP	(same	data	as	in	main	figure	1).	Promoter	activities	were	197	
normalized	 by	 z-score	 normalization	 and	 sorted	 by	 1-dimensional	 hierarchical	 clustering	 across	198	
promoters.	 MATLAB	 commands:	 1.	 step	 pdist	 (distance	 metric:	 Pearson	 correlation	 coefficient	199	
between	promoters),	2.	step	 linkage	(algorithm:	unweighted	average	distance),	3.	step	cluster	(cut-200	
off:	0.225,	clustering	metric:	distance).	Carbon	sources	were	sorted	by	increasing	growth	rate	(from	201	
left	to	right),	Chloramphenicol	data	were	sorted	by	increasing	chloramphenicol	concentrations	(from	202	
left	to	right).	Last	column:	M9	glucose	with	5	mM	cyclic	AMP	(cAMP).	B)	Selected	clusters	for	each	203	
conditions	 plotted	 against	 their	 respective	 steady	 state	 growth	 rate.	 Large	 filled	 circles:	 mean	204	
promoter	activities	of	all	promoters	in	respective	cluster.	Small	non-filled	circles:	promoter	activities	205	
of	all	individual	promoters	in	respective	cluster.	206	

	 	207	
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	208	

Appendix	Figure	S6.	Measured	steady	state	promoter	activity	in	pairwise	conditions.	A)	Condition	209	
pairs	 with	 highly	 similar	 growth	 rates.	 Fructose:	 0.53	 h-1.	 Succinate:	 0.53	 h-1.	 Glucose:	 0.64	 h-1.	210	
Gluconate:	0.65	h-1.	1	µM	Chloramphenicol	in	M9	glucose:	0.45	h-1.	5	mM	cAMP	in	M9	glucose:	0.44	211	
h-1.	B)	Pair	of	conditions	which	differ	greatly	 in	growth	rate.	Glucose:	0.64	h-1.	Galactose:	0.18	h-1.	212	
Median	 absolute	 log2-fold	 change	 between	 Glucose	 and	 Galactose	 conditions:	 1.1.	 Black	 circles:	213	
promoters	whose	 activity	 deviates	 by	more	 than	 5-fold	 in	 the	 pairwise	 conditions	 (>5x,	 or	 <0.2x),	214	
labeled	with	the	respective	promoter	name.	Dashed	lines:	commonly	used	log2	fold-change	cut-offs	215	
(log2	fold-change	>	1,	or	<	-1).	216	

	217	

	 	218	
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	219	

Appendix	 Figure	S7.	 Singular	 value	decomposition	of	 steady	 state	promoter	activity.	Shown:	 Top	220	
three	singular	vectors	explaining	most	of	the	data	set	variability.	Singular	value	decomposition	was	221	
performed	 on	 log	 transformed	 and	 z-score	 normalized	 promoter	 activity	 data	 for	 64	 central	222	
metabolic	promoters	as	described	 in	 the	main	 text,	using	 the	MATLAB	command	svds.	Numbers	 in	223	
brackets:	percentage	of	variance	in	data	set	explained	by	respective	singular	vector.	224	

	225	

	226	

Appendix	 Figure	 S8.	 Singular	 value	 decomposition	 of	 all	 tested	 conditions	 (A),	 and	 excluding	227	
chloramphenicol	treatment	(B).	Shown	is	the	first	singular	vector,	which	explains	68%	(A)	and	52%	228	
(B)	 of	 the	 variance	 in	 the	 data	 set,	 respectively.	 Black	 line	 denotes	 the	 polynomial	 fit	 of	 the	229	
relationship	 between	 SV1	 and	 the	 growth	 rate,	 and	 the	 dashed	 lines	 denote	 the	 95%	 confidence	230	
interval	of	the	fit.	231	

	 	232	
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	233	

Appendix	Figure	S9.	Measured	versus	predicted	steady	state	promoter	activity	of	central	metabolic	234	
promoters	 in	 6	 non-carbon	 source	 perturbations.	 Promoter	 activities	 were	 predicted	 from	 the	235	
steady	 state	 growth	 rate	 using	 the	 relationship	 between	 the	 first	 singular	 vector	 and	 growth	 rate	236	
depicted	 in	main	figure	2B.	Filled	circles	denote	promoters	whose	measured	activity	deviates	more	237	
than	 2-fold	 from	 the	 prediction	 (see	 dashed	 lines).	 Microaerobic	 cultivation	 was	 mimicked	 by	238	
incubating	the	96-well	plate	without	shaking	(barring	brief	and	mild	orbital	shaking	every	6	minutes	239	
immediately	before	OD	and	GFP	measurements	 to	prevent	bacterial	 sedimentation).	Note	 that	 the	240	
two	 promoters	 whose	 activity	 deviates	 the	 most	 from	 the	 growth-dependent	 prediction	 upon	241	
treatment	 with	 the	 oxidative	 stress	 inducing	 agent	 paraquat	 are	 zwf	 and	 pgi,	 both	 of	 which	 are	242	
activated	by	the	oxidative	stress	regulator	SoxS	(Salgado	et	al,	2013).	243	

	 	244	
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	245	

Appendix	Figure	S10.	Intracellular	concentrations	of	central	carbon	metabolites	during	exponential	246	
growth.	 Absolute	 metabolite	 concentrations	 of	 47	 central	 carbon	 metabolism	 metabolites	 in	 23	247	
conditions	 (transformed	 using	 the	 natural	 logarithm	 and	 normalized	 by	 mean	 metabolite	248	
concentration	 across	 conditions)	 as	 quantified	 by	 targeted	 LC/LC	 mass	 spectrometry.	 Metabolites	249	
which	were	present	 in	 the	medium	were	omitted	 from	the	quantification.	For	metabolites	marked	250	
with	(*),	no	absolute	quantification	was	available.	Their	concentration	was	quantified	relative	to	M9	251	
glucose,	and	then	transformed	using	the	natural	logarithm.	Error	bars	denote	standard	deviation	of	252	
four	biological	replicates.	253	

	254	

	255	

Appendix	 Figure	 S11.	 Robustness	 of	 fit	 between	 each	 promoter’s	 specific	 regulation	 component	256	
and	 each	 metabolite	 against	 data	 point	 elimination.	 Robustness	 of	 fit	 was	 performed	 by	257	
systematically	omitting	one	condition	and	repeating	the	analysis	outlined	in	figure	3A.	Shown	here:	258	
distribution	 of	 absolute	 difference	 in	 correlation	 coefficient	 R	 (Pearson	 correlation)	 between	 the	259	
original	 coefficients	 (all	 conditions	 included)	 and	 coefficients	when	 excluding	 one	 condition	 for	 all	260	
combinations	of	promoters,	metabolites,	and	omitted	conditions.	261	
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	262	

	263	

Appendix	Figure	S12.	Comparison	of	linear	(Pearson)	and	rank	(Spearman)	correlation	as	metrics	to	264	
identify	promoter-metabolite	interactions.	The	ability	of	each	metabolite	to	explain	each	promoter’s	265	
specific	 transcriptional	 regulation	 component	 (see	 figure	 3A)	 was	 assessed	 using	 Pearson	 and	266	
Spearman	correlation	coefficients,	respectively.	267	

	268	

Appendix	Figure	S13.	Identification	of	promoter-metabolite	interactions	in	absence	or	presence	of	269	
global	transcriptional	regulation.	A)	Heatmap	of	Pearson	correlation	coefficients	between	measured	270	
specific	transcriptional	regulation	(after	removal	of	the	respective	global	regulation	component)	and	271	
its	 reconstruction	based	on	one	metabolite	 (as	described	 in	 figure	3A)	 for	 all	 promoter-metabolite	272	
pairs.	Pairs	with	correlation	coefficients	above	0.75	or	below	-0.75	are	shown	with	thick	white	edges,	273	
all	of	which	were	highly	significant	even	after	adjusting	p-values	 for	multiple	hypothesis	 testing	 (q-274	
value	 <	 0.001,	 correction	 for	 multiple	 hypothesis	 testing	 as	 described	 by	 (Storey,	 2002)).	275	
Corresponding	 data:	 EV	 table	 7.	 B)	 Heatmap	 of	 Pearson	 correlation	 coefficients	 between	 log	276	
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normalized	 promoter	 activity	 (consisting	 of	 global	 and	 specific	 transcriptional	 regulation)	 and	 its	277	
reconstruction	based	on	one	metabolite	(as	described	in	figure	3A)	for	all	promoter-metabolite	pairs.	278	
Pairs	with	correlation	coefficients	above	0.75	or	below	-0.75	are	shown	with	thick	white	edges.	279	

	280	

	281	

Appendix	Figure	S14.	 Identification	of	pairwise	metabolic	 regulatory	signals	affecting	 the	specific	282	
transcriptional	 regulation	of	promoters.	A)	Outline	of	approach	with	example	promoter	cyaA.	 Left	283	
panel:	 Predicted	 and	 measured	 specific	 regulation	 for	 best	 single	 metabolite	 (GDP),	 with	 the	284	
correlation	 coefficient	 R	 in	 brackets.	 Blue	 circles:	 carbon	 sources.	 Red	 circles:	 chloramphenicol	285	
conditions.	Middle	panel:	predictive	power	of	all	pairwise	metabolite	combinations	(calculated	as	the	286	
correlation	 coefficient	 R	 between	 the	 promoter’s	 measured	 specific	 regulation	 and	 its	 prediction	287	
based	 on	 the	 respective	 metabolite	 pair)	 plotted	 against	 the	 difference	 in	 Akaike	 Information	288	
Criterion	(AIC),	which	penalizes	the	number	of	parameters	in	different	models,	compared	to	the	best	289	
single	 metabolite	 (ΔAIC	 =	 AICbestSingle	 –	 AICmetabolitePair).	 Horizontal	 red	 dashed	 line:	 threshold	 for	 R	290	
(0.75).	Vertical	 red	dashed	 line:	 threshold	 for	ΔAIC	 (based	on	a	 relative	 likelihood	 threshold	of	50,	291	
signifying	that	the	respective	metabolite	pair	is	50-times	more	likely	to	explain	the	data	than	the	best	292	
single	metabolite	(Burnham	et	al,	2011)).	Right	panel:	Predicted	and	measured	specific	regulation	for	293	
best	metabolite	 pair,	 namely	 cyclic	 AMP	 (cAMP)	 and	 L-phenylalanine	 (L-Phe),	with	 the	 correlation	294	
coefficient	 R	 in	 brackets.	 Blue	 circles:	 carbon	 sources.	 Red	 circles:	 chloramphenicol	 conditions.	B)	295	
Distribution	of	ΔAIC	across	of	promoter-metabolite	pair	combinations.	Note	that	the	vast	majority	of	296	
these	 combinations	 have	 negative	 ΔAIC’s,	 signifying	 that	 these	 metabolite	 pairs	 explain	 the	297	
respective	promoter’s	specific	regulation	worse	than	the	best	single	metabolite.	Vertical	red	dashed	298	
line:	threshold	for	ΔAIC	(same	as	in	A).	299	

	 	300	
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	301	

Appendix	 Figure	 S15.	 Reconstruction	 of	 individual	 promoters	 in	 23	 conditions	 based	 on	 the	302	
quantified	regulatory	network.	The	activity	of	each	promoter	was	reconstructed	from	its	global	and	303	
specific	 regulation	 components	 based	on	 the	 network	 depicted	 in	 figure	 4A,	 and	 then	 reverted	 to	304	
linear	scale.	Only	conditions	with	available	metabolite	and	promoter	activity	data	were	considered.	305	
To	 aid	 readability,	 measured	 and	 predicted	 promoter	 activities	 were	 further	 normalized	 to	 the	306	
maximal	measured	promoter	activity	of	each	promoter.	 In	brackets:	Pearson	correlation	coefficient	307	
between	measured	and	reconstructed	promoter	activity.	308	

	 	309	
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	310	

Appendix	 Figure	 S16.	 Leave-one-condition-out	 cross-validation.	 A)	 Comparison	 of	 measured	 and	311	
predicted	promoter	activity	for	individual	conditions	that	were	excluded	in	the	analysis.	The	impact	312	
of	 global	 regulation	 in	 the	 excluded	 condition	was	 predicted	 from	 its	 growth	 rate	 based	 on	 fitted	313	
relationship	between	growth	rate	and	singular	vector	1	depicted	in	figure	2B.	To	predict	the	impact	314	
of	specific	regulation,	the	topology	of	the	network	shown	in	figure	4A	was	used	as	a	basis,	and	the	315	
parameters	 of	 each	 promoter-metabolite	 interaction	 were	 re-fitted	 while	 omitting	 the	 data-point	316	
belonging	 to	 the	 excluded	 condition.	 Using	 these	 re-fitted	 parameters,	 each	 promoter’s	 specific	317	
regulation	component	was	then	predicted	based	on	the	respective	metabolite	concentration.	Finally,	318	
each	promoter’s	summed	contribution	of	global	and	specific	regulation	was	reverted	back	to	 linear	319	
scale.	 This	 procedure	 was	 repeated	 for	 each	 condition.	 R2	 denotes	 the	 overall	 goodness	 of	 fit	320	
between	measured	and	predicted	promoter	activity	across	all	conditions	and	promoters.	B)	Same	as	321	
A).	 However,	 while	 each	 promoter’s	 specific	 regulation	 component	 was	 still	 predicted	 from	 the	322	
respective	metabolite	as	described	above,	its	global	regulation	component	was	not	fitted,	but	rather	323	
directly	 obtained	 from	 singular	 value	 decomposition	 of	 the	 experimental	 data	 (corresponding	 to	324	
singular	 vector	 1).	 The	 improved	 goodness-of-fit	 compared	 to	 A)	 suggests	 that	 discrepancies	325	
between	measured	 in	predicted	promoter	activity	 in	A)	are	 largely	caused	by	deviations	of	directly	326	
quantified	global	regulation	from	its	growth-rate	dependent	fit	(figure	2B).	327	
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	328	

Appendix	 Supplementary	 figure	 S17.	 Transcript	 abundance	 of	 central	 metabolic	 genes	 in	 8	329	
different	 carbon	 source	 conditions.	 Data	 from	 Gerosa	 et	 al,	 2015.	 Cell	 Systems	 (mean	 of	 three	330	
biological	 replicates,	 log2	 normalized).	 Grey	 circles:	 absolute	 log2	 fold-change	 <	 1.	 Black	 circles:	331	
absolute	log2	fold-change	>	1.	332	

	 	333	
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	334	

Appendix	 figure	 S18.	 Relationship	 between	 transcript	 abundance	 and	 specific	 regulation	335	
component	of	 promoter	 activity	 in	 central	metabolic	 genes.	Y-axis:	 Transcript	 abundance	data	 as	336	
described	in	appendix	figure	S17.	Only	transcripts	whose	abundance	changed	>2-fold	in	at	least	one	337	
condition	were	considered.	X-axis:	specific	regulation	component	of	corresponding	promoter	activity	338	
data	 (after	normalization	and	removal	of	global	 regulation	component,	 see	main	 text).	 In	brackets:	339	
Pearson	correlation	coefficient	between	transcript	and	promoter	activity	data	(name	in	bold:	p-value	340	
of	correlation	<	0.05).	Red	lines:	linear	regression	as	visual	aid.		341	

	342	

	 	343	
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	344	

Appendix	Figure	S19.	Promoters	talA	and	pck	are	activated	by	Crp.	A)	Promoter	activity	of	talA,	pck,	345	
and	 acs,	 during	 exponential	 growth	 in	M9	 glucose	 2g/L	 with	 varying	 concentrations	 of	 externally	346	
supplemented	cyclic	AMP,	which	activates	the	transcription	factor	Crp.	Blue:	wild-type	strain,	grey:	347	
Crp	deletion	strain.	Promoter	activity	error	bars	were	estimated	based	on	day-to-day	reproducibility	348	
measurements	as	described	in	appendix	figure	S3.		B)	Promoter	activity	of	talA,	pck,	and	acs,	during	349	
exponential	growth	on	M9	minimal	medium	supplemented	with	12	different	single	carbon	sources	350	
(galactose,	 acetate,	 pyruvate,	 succinate,	 mannose,	 glycerol,	 fructose,	 gluconate,	 glucose,	 lactate,	351	
glcNAc,	G6P).	Blue:	wild-type	strain,	grey:	Crp	deletion	strain.	Note	that	the	Crp	deletion	strain	shows	352	
impaired	growth	in	all	conditions.	Promoter	activity	error	bars	were	estimated	based	on	day-to-day	353	
reproducibility	measurements	as	described	in	appendix	figure	S3.	Data	are	available	in	EV	table	3	–	5	354	
and	EV	table	3	-	6.	 	355	
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	356	

Appendix	 Figure	 S20.	 Schematic	 of	 central	 carbon	 metabolism	 (CCM)	 with	 corresponding	357	
transcriptional	 metabolite	 signals.	Metabolite	 signals	 as	 depicted	 in	 main	 figure	 4A.	 Each	 CCM	358	
reaction,	 for	 which	 at	 least	 promoter	 was	 quantified,	 is	 colored	 according	 to	 the	 identified	359	
metabolite	signal	 (see	accompanying	 legend).	The	respective	promoter	name	 is	written	next	to	the	360	
reaction.	 Note	 that	 some	 promoters,	 such	 as	 epd,	 drive	 the	 expression	 of	 more	 than	 one	 gene.	361	
Information	on	transcriptional	units	was	obtained	from	(Salgado	et	al,	2013).	362	

	 	363	
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EV	tables	364	
	365	

EV	Table	1:	List	of	promoters	used	in	this	study.		366	

EV	Table	2:	List	of	conditions	used	in	this	study.		367	

EV	Table	3:	Steady	state	promoter	activity.	368	

EV	Table	4:	Steady	state	global	regulation	as	inferred	by	singular	value	decomposition.	369	

EV	Table	5:	Dynamic	promoter	activities	during	diauxic	shift	from	glucose	to	succinate	with	370	
corresponding	prediction	based	on	growth	dependent	global	regulation	alone.	371	

EV	Table	6:	Intracellular	metabolite	concentrations	(relative	and	absolute	concentration).	372	

EV	Table	7:	Inferred	promoter-metabolite	and	transcription	factor-metabolite	interaction	network.	373	

EV	Table	8:	Reported	transcriptional	regulatory	network	of	promoters	used	in	this	study.	374	

	 	375	
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