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Experimental Design: 
Fas-mediated apoptosis leading to caspase activation is well characterised within Jurkat cells 

(Scaffidi et al, 1998; Van Damme et al, 2005). Within this cell type the loss of mitochondria 

transmembrane potential and the release of cytochrome C via the insertion of tBID into the 

mitochondria (Li et al, 1998) are required for the successful activation of executioner caspases 

(Scaffidi et al, 1998). This activation occurs within 4 hours of Fas treatment and progressively 

amplifies committing the cell to destruction (Scaffidi et al, 1998; Van Damme et al, 2005; Weis 

et al, 1995). However, the precise roles of caspase cleavage events are uncertain—do they 

disassemble essential protein complexes and cellular machinery by selective cleavage of key 

proteins, or does unrelenting cleavage eventually exhaust cellular resources leading to 

inevitable cell death? To explore the temporal and spatial link between proteolytic processing 

and protein:protein interactions both high content interactome proteomics and high fidelity N-

termini proteomic identification of proteins in complexes were performed (Figure S1). To 

determine caspase-specific cleavages versus cleavages from other protease classes, TAILS 

was performed with and without caspase inhibition using the inhibitor Z-vad-FMK. As the 

release of cytochrome C is dependent on the remodelling of the mitochondrial membrane and is 

a critical step in the initiation of apoptosis comprehensive analysis of interaction changes 

requires characterisation of both organelle and cytosolic interactomes. To achieve this we 

established a protein correlation profiling (PCP) strategy compatible with the characterisation of 

organelle interactomes (Figure S2) and complemented this analysis with our established size 

exclusion chromatography (SEC) approach (Kristensen et al, 2012). Combining these two 

powerful approaches enabled the characterisation of protein alterations specifically associated 

with the initiation of apoptosis. Finally, we further deepened our interrogation of these proteins 

and their interaction complexes by identifying proteolytic processing events that were caspase 

dependent and caspase independent using TAILS. 
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Supplementary Figure legend 

 

Figure S1, Establishment of the BN-PCP-SILAC approach: A diagrammatic workflow of the 
BN-PAGE approach: samples are labelled using SILAC and isolated in parallel. Prior to BN 
separation, isotopically labelled samples (denoted by the yellow and blue samples) are 
combined (forming the green sample) and separated together. Gel slices are generated and in-
gel digestion performed. The digested reference isotopologue labelled samples, shown in red, is 
then aliquoted into each gel fraction digests and sample cleaned up using C18 enrichment 
followed by LC-MS analysis. 
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Figure S2, BN-PCP-SILAC SEC coverage and quantitation: A) Protein coverage observed 
across BN-PCP-SILAC fractionation. Using BN-PAGE separation, the majority of proteins were 
quantified in >50% of SEC fractions, enabling the generation of robust protein profiles in both 
isotopologue channels. B) Comparison of overlap in protein groups observed using BN page 
and large pore (LP) BN Page by Heide et al (Heide et al, 2012) and this study. C) Pie chart of 
quantitation of observed protein groups where across isotopologue channels. Group one 
represents the percentage of proteins observed in only a single isotopologue channel and 
Group two represents the percentage of proteins observed in both isotopologue channels. Of 
the quantified proteins 98% of proteins were quantified in both isotopologue channels. 
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Figure S3, Markov clustering of binary interactions determined from PCP-BN-SILAC: 
Complexes observed within the PCP-BN-SILAC interactome based on Markov clustering 
mapped to position within the separation gradients. A) 70% precision, 2060 clusters with a final 
precision of 82.6%, B) 60% precision, 2666 clusters with a final precision of 67.2%, C) 50% 
precision, 3143 clusters, with a final precision of 54.4%. D) Molecular weight ruler of BN-PAGE 
based on NativeMark stained Protein Standard. 

Figure S3, Markov Clustering Of Binary Interactions
 Determined From PCP-BN-SILAC

Markov clustering of 70% precision binary interactions; 2,060 clusters 
observed with a final precision of 82.6%

Markov clustering of 60% precision binary interactions; 2,666 clusters 
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Markov clustering of 50% precision binary interactions; 3,143 clusters 
observed with a final precision of 54.4%. 
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Figure S4, Fas-mediated initiation of apoptosis time course: A) FAC analysis of Fas-
mediated apoptosis time course. The addition of anti-Fas IgM antibody (CH11) leads to an 
increase in the proportion of TUNEL positive cells during the initiation of apoptosis. B) Western 
analysis of poly(ADP-ribose) polymers (PARP1) during the initiation of apoptosis. During the 
initiation of apoptosis increasing amounts of cleaved PARP-1 are generated due to the 
activation of caspase activity.  
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Figure S4, Fas-Induced Initiation Of Apoptosis Time Course
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Figure S5, Vertex degree distribution of interactomes: A) Cytoplasmic interactome 
(determined at a 70% precision), B) Organelle interactome (determined at a 70% precision).  

 

 

 

 

 

 

 

Figure S5, Vertex Degree Distribution Of Interactomes
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Figure S6, Distribution of Markov clustered complexes within interactomes: The number 
complexes observed within the PCP-SILAC interactome based on Markov clustering are shown 
70%, 60% and 50% precision. 
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Figure S7, Fas-mediated changes in the cytoplasmic and membrane interactomes at 
1hour post treatment: A) Observed changes in the cytosolic interactome in response to 1 h 
Fas-stimulation. In total 1820 Gaussian features were mapped across 40 fractions with few 
alterations within the interactome observed. B) Observed changes in the 
mitochondrial/membrane interactome in response to 1 h Fas-stimulation. In total, 1073 
Gaussian features were mapped across 40 fractions with few alterations within the interactome 
observed. 
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Figure S8, tBID BN-PCP-SILAC protein and peptide profiles: Protein and peptide profiles of 
tBID demonstrate that in response to apoptosis the level of tBID increase in the membrane. A) 
Protein profiles reveal multiple discrete regions within the BN gradient were tBID was observed, 
supporting that this protein form multiple membrane associations. B) Peptide profiles provide 
protein coverage information with the absent of N-terminal peptides supporting that the form of 
BID observed is tBID.  
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Figure S9, Changes in the protein and peptide profiles of nuclei related components 
observed in the cytoplasmic interactome: Consistent with the enrichment of protein-DNA 
complex subunit organization large changes in multiple nuclei related proteins were observed 
including A) Histone H2A 1-J (Q99878), B) Nucleolar RNA helicase 2 (Q9NR30), C) DNA-
binding protein SATB1 (Q01826) and D) Nucleolin (P19338). 
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Figure S10, Analysis of Z-vad FMK stabilized N-termini. A) The distribution of observed P1 
amino acid in stabilized N-termini are shown with native corresponding to all dimethylated 
peptides within five amino acid of the true N-termini. The Majority of stabilized N-termini 
correspond to dimethylated neo-termini consistent with the generation of cleavage events in 
response to Fas stimulation. B) Motif analysis of P1 aspartic acid neo-termini reveals a motif 
consistent with caspase cleavage specificity. C) Distribution of P1 aspartic acid neo-termini 
reveals in response to Fas stimulation without caspase inhibition. Without inhibition two 
populations of P1 aspartic acid neo termini can be seen, one that's decreases and is centered 
on -0.93 and one that increases centered on 0.53. 
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Figure S11, Investigation of alterative protease activities in response to Fas initiated 
apoptosis: A) Western blotting analysis of Granzyme B failed to detect an active form of 
Granzyme B in any of the condition examined in this study B). In vitro cleavage assays using 
Jurkat lysates and Ac-IEPD-pNA as a substrate show an increase in Asp-lytic activity in Fas 
treated cells. The observed lytic activity is not sensitive to the pre-incubation with a specific 
granzyme B Inhibitor Compound 20, suggesting that other (than Granzyme B) proteases are 
responsible for these cleavages.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S11, Alterative protease activity in response to Fas 
initiated apoptosis
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Figure S12, Map of Filamin-B (O75369): TAILS analysis reveals the present of a neo-N-
terminus at position 1,220 generated in response to apoptosis. Uneveness analysis of the 
interactome data reveals a potential cleavage around positions 1600 which would separate the 
known C-terminal protein interaction binding domains from the N-terminal actin-binding domain. 

 

 

 

 

 

 

 

 

 

C-terminal Protein Binding Region 

Figure S12,  Map of Filamin-B (O75369)

Cleavage site



	 15	

 

Figure S13, Investigation of protein specific proteolysis of known caspase targets: 
Protein profile for CDC-42 (P60953), A) TACC3 (Q9Y6A5), B) NCAPH (Q15003), C) reveals 
that in response to apoptosis the major Gaussian feature is lost. 
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Figure S14, BN-PCP-SILAC Protein and Peptide Profiles of the known caspae-3 target 
NADH dehydrogenase (P28331): Within both non-treated and treated BN-PAGE protein and 
peptide profiles no changes in the associations are observed suggesting the known alteration 
leading to loss of mitochondrial transmembrane potential occur later in apoptosis progression.  
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Datasets descriptions 
All MS date files generated for this manuscript are provide within the PRIDE repository 

accessible under the dataset identifier PXD00289. A description of each of the experiments are 

provided below and the associated files found within this repository are described within Table 

EV 25. 

 

Experiment description 

1) Membrane BN-PAGE PCP experiment (one dataset of 50 BN-PAGE fractions):  Initial 

experiment to assess the feasibility and reproducibility of PCP-BN_PAGE. Three 

isotopically labelled populations of Jurkat cells (light, medium and heavy) were used to 

assess reproducibility by comparing the observed interactions and differences between 

medium and heavy profiles.  

2) 4 hour Anti-Fas treatment cytoplasmic PCP SEC experiment (three datasets, each 

composed of 55 SEC fractions):  Experiment designed to assess the effect of apoptosis 

on the soluble interactome. Three isotopically labelled populations of Jurkat cells (light, 

medium and heavy) were used, light cells were used as the reference population and 

added equally to all fractions; medium cells were untreated and heavy cells treated for 

four hours with Anti-Fas IgM. 

3) 4 hour Anti-Fas treatment membrane PCP BN-PAGE experiment (three datasets, each 

composed of 55 BN-PAGE fractions):  Experiment designed to assess the effect of 

apoptosis on the organelle/membrane interactome. Three isotopically labelled 

populations of Jurkat cells (light, medium and heavy) were used, light cells were used as 

the reference population and added equally to all fractions; medium cells were untreated 

and heavy cells treated for four hours with Anti-Fas IgM. 

4) 1 hour Anti-Fas treatment cytoplasmic PCP SEC experiment (one dataset composed of 

40 SEC fractions):  Experiment designed to assess the effect of apoptosis on the soluble 

interactome. Three isotopically labelled populations of Jurkat cells (light, medium and 

heavy) were used, light cells were used as the reference population and added equally 

to all fractions; medium cells were untreated and heavy cells treated for one hour with 

Anti-Fas IgM. 

5) 1 hour Anti-Fas treatment membrane PCP BN-PAGE experiment (one dataset 

composed of 40 BN-PAGE fractions):  Experiment designed to assess the effect of 

apoptosis on the organelle/membrane interactome. Three isotopically labelled 

populations of Jurkat cells (light, medium and heavy) were used, light cells were used as 
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the reference population and added equally to all fractions; medium cells were untreated 

and heavy cells treated for one hour with Anti-Fas IgM. 

6) N-tail enrichment experiments (three biological replicates): Experiment designed to 

assess the N-termini of proteins within protein complexes after 4 hour anti-Fas treatment 

in the presence of absence of a pan caspase inhibitor. Three isotopically labelled 

populations of Jurkat cells (light, medium and heavy) were used, light cells were used as 

the reference population and added equally to all fractions; medium cells were untreated 

and heavy cells treated for four hours with Anti-Fas IgM. 
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