
The American Journal of Human Genetics, Volume 100
Supplemental Data
The Genetic Architecture of Gene Expression

in Peripheral Blood

Luke R. Lloyd-Jones, Alexander Holloway, Allan McRae, Jian Yang, Kerrin Small, Jing
Zhao, Biao Zeng, Andrew Bakshi, Andres Metspalu, Manolis Dermitzakis, Greg
Gibson, Tim Spector, Grant Montgomery, Tonu Esko, Peter M. Visscher, and Joseph E.
Powell



Supplemental note

Gene expression normalisation

Data summary

The initial (Phase 1) CAGE dataset contains expression data from seven unique cohorts:

The Brisbane Systems Genetics Study (BSGS) main and pilot studies20,21(Gene Expression

Omnibus number GSE33321); Coronary Artery Disease (CAD)15 (GSE49925); The Centre

for Health Discovery and Well-Being (CHDWB)22 (GSE35846); The Estonian Genome

Centre - University of Tartu (EGCUT)18 (GSE48348); Morocco13 (GSE17065); and The

Multiple Tissue Human Expression Resource Consortium (MuTHER)9 (ArrayExpress

archive under accession E-TABM-1140).

A summary of the original, uncombined data from these cohorts is given in Table S1.

The MuTHER and BSGS pilot LCL cohorts were not taken forward, as the expression levels

were not measured from whole blood. Genotype data were not available for the CAD

batch 2 cohort, and thus these samples were excluded from further analysis.

Quality Control and Normalisation

The CAGE data set comprises multiple cohorts with gene expression levels measured

in whole blood. Due to variation in microarray gene assaying processes such as sample

treatment, labelling, dye hybridisation and detection, the gene expression levels (measured

in array fluorescence intensities) cannot, in general, be compared directly without first

performing normalisation steps. Most approaches to normalising gene expression levels

from microarray data assume that the overall distribution of mRNA does not vary much

between samples. This seems reasonable for most laboratory treatments, however, within

and between laboratories large systemic error effects may arise—i.e. between laboratory

batch effects. The expression normalisation method implemented here consists of six steps,

with a subset of the steps carried out on the individual data cohorts (Table S1), followed

by concatenation into a single dataset and subsequent final normalisation.



• Variance stabilisation – an alternative to log2 transformation that more adequately

corrects for the fact that the variance of microarray measured spot intensities increases

with mean signal intensity

• Quantile normalisation – coerces the intensity values for all probes on a chip to a

single common distribution

• Age, cell counts and batch effect correction along with correction for other unob-

served heterogeneous sources of variability using the PEER27 software

• PEER residual phenotypes standardised to z-scores within cohort and concatenation

of all cohorts to a final matrix

• PEER and gender correction of final concatenated residual matrix

• Rank normal transformation of PEER residuals to a normal distribution with mean 0

and variance 1

All of the expression normalisation steps were carried out in the statistical computing

software, R24, using a combination of native functions, the PEER27 program, and functions

made available by Bioconductor packages11.

Variance stabilisation

It is common practice to transform microarray data to a logarithmic (usually base 2) scale.

This transformation collapses the original range of the signal and, moreover, it decouples a

random multiplicative error term from the true signal intensity. This is desirable because it

is well known that the variance of microarray signal intensities increases with the mean

signal intensity17. However, this transformation assumes a multiplicative model which

predicts that measurement error vanishes for very small signals, whereas microarray

data will always contain background noise. Thus, the logarithmic transform does not

adequately adjust the variance for low-intensity signals with the post transformation

variances being larger than expected. A more realistic model allows for both an additive

and a multiplicative error term.

The method of Huber et al. 12 includes both an additive and a multiplicative error term,

and has been shown to be more successful at decoupling the signal variance and signal



mean intensity in real data. As an alternative to performing log2 transformation, we used

the method of Huber et al. 12 as implemented in the vsn package in Bioconductor.

Quantile normalisation

In order to allow for a fair comparison of intensities between probes, the distribution of

expression intensities are mapped to a standard distribution (generated from the data) via

a process known as quantile normalisation3. This procedure explicitly assumes that the

distribution of gene expression measures does not change across samples. We used the

function normalizeBetweenArrays, from the limma package26 to implement this method.

While quantile normalisation is a fast solution, one potential problem is that the genes in

the upper range of intensity are forced into a common distribution shape, leading to a

reduction in both biological and technical variation25.

PEER correction analysis

Age, gender, cell counts and batch effects are known to be large sources of variation in gene

expression array data8. Not all cohorts had recorded values for age, cell counts and batch

information such as Illumina Sentrix ID, Sentrix position, and extraction date. Therefore,

we utilised the PEER software27 to account for such sources of variation in the absence

of these measurements. The algorithm used by the PEER software reduces overfitting

by estimating a suitable number of factors that explain a broad amount of the variation.

The software also allows for known covariates, such as age, gender, cell counts and batch

effects, to be included in the variance correction analysis concurrently. Relevant covariate

measurements available for some cohorts, included age, gender, cell counts for basophils,

eosinophils, neutrophils, lymphocytes, monocytes, and array scan date, scan order, Sentrix

ID, and Sentrix position. If any such covariates were available for an individual cohort

they were included in the PEER correction analysis. Correction for hidden sources of

variation via principal components analysis (PCA) is less effective than PEER in the sense

that the number of unobserved factors is often pre-specified, whereas PEER uses automatic

relevance determination to choose a suitable effective number of factors27. Hence, the



number of factors initially specified for the PEER analysis only needs to be sufficiently

large. For all cohorts we chose the maximum number of relevant factors to be 50. The

PEER correction analysis was performed on all cohorts separately with residuals from

the analysis standardised to z-scores across individuals to form the new within cohort

expression phenotypes.

Concatenation, final PEER correction and rank normal transformation

Residual phenotypes for each cohort from the previous step were concatenated to form a

large expression matrix with n = 2, 765 individuals. To create a combined gene expression

matrix, it was necessary to retain only those probes that are common to all cohorts. In the

case of blood samples, this meant reducing the total number of examined probes from

approximately 47, 000 to 38, 624.

Post concatenation, the expression matrix was again PEER corrected, using a potential

of 50 factors and gender as a covariate. Gender was included at this stage of the analysis

because it was the only covariate measured on all individuals in CAGE. The residuals

for each probe from this final PEER analysis were transformed using the rank normal

transformation of Blom 2 , which alters the distribution of scores to be normally distributed

with a mean of 0 and a standard deviation of 1.

Removal of probes on sex chromosomes

Probes measuring expression levels of genes located on the X and Y chromosomes were

removed from the analysis. The analysis was restricted to autosomal probes because of the

difficulties in adequately modelling the potential sex biases in gene expression, which are

primarily driven by escape from X chromosome inactivation and male-only expression

on the Y chromosome. Illumina probe identifiers were mapped to a genomic location

using the re-annotated Illumina Human HT12v4 probe sequences in the Bioconductor

illuminaHumanv4.db database6, and if they mapped to the X and Y chromosomes they

were removed. Of the 38,624 probes present after cohort concatenation, 1,846 were mapped

to positions on the sex chromosomes leaving 36,778 for analysis.



Expression matrix quality control

To verify the performance of the normalisation steps, and to identify any cohorts that

contained irregularities, PCA was performed on the final normalised expression matrix.

The results of the analysis for the first four PCs can be seen in Figure S1, where all of the

samples are distributed with no unique patterns across cohorts, implying that the main

sources of variation are not generated by cohort differences. This check is qualitative in the

sense that if individual within cohorts are seen to cluster, it would indicate between cohort

differences in variance structure. The same pattern was observed for all combinations

of PCs 1-20 (figures not shown), suggesting that no single cohort has a unique variance

structure across probes for the first 20 PCs.

To verify the correction for covariates within the PEER analysis, we performed linear

regression (in the R programming language) of the normalised gene expression measure-

ments for all 36,778 probes on the covariates age, cohort, gender, cell counts, the first 10

principal components (multiple regression) of the genotype matrix from all individuals,

and the first 10 principal components (multiple regression) from the genotype matrix

of European individuals (defined in Supporting Material). The regression for age, and

cell counts was only performed on those individuals that had these measurements (age

- n = 1, 164, cell counts - n = 793). The adjusted R-squared values from these 36,778

regressions were visualised as a histogram for each covariate (Figure S2). These analyses

indicate that the PEER analysis has adequately adjusted for age, gender, cell counts and

cohort differences with means and medians across all probes for these covariates being 0

(Figure S2). The first 10 PCs of the genotype matrix have an on average adjusted R-squared

greater than 0 and thus when performing genetic analyses we used a combination of linear

mixed models and genotype PC adjustment to account for population stratification.



Genotype imputation and quality control

In addition to the imputation process itself, it was necessary to perform quality control

steps on both pre- and post-imputation data, for example, filtering on data features such

as minor allele frequency (MAF), genotype missing rate, and Hardy-Weinberg equilibrium.

The entire imputation process, and its associated quality control steps were performed us-

ing the following publicly available pipeline <https://github.com/CNSGenomics/impute-pipe>.

The imputation pipeline comprised the following steps:

• Pre-imputation quality control, and data-consistency checks

• Imputation to reference panel

• Post-imputation quality control – filtering

• Merging datasets on common SNPs

Pre-Imputation quality control, and imputation to the reference panel

In order to perform imputation, it was necessary to supply a “strand file” for the genotype

chip used on each cohort, in order to correctly align alleles to a common strand (i.e. positive

or negative). In cases where this information had been supplied by the data providers, the

necessary strand file was taken from <http://www.well.ox.ac.uk/∼wrayner/strand/>.

This process ensures that the strand from the 1000 Genomes reference panel and the data

set being imputed are the same.

For each dataset, a strand summary table with key statistics on SNP allele alignment

with the 1000 Genomes Phase 1 Version 34 imputed (in house) Health and Retirement

Study (HRS) data set used as a reference (dbGaP Study Accession: phs000428.v1.p1) was

produced. Strand alignment was checked using the Genotype Harmoniser software Deelen

et al. 5 .

Once the pre-imputation quality control was completed, imputation was performed

as per the protocol outlined at <https://github.com/CNSGenomics/impute-pipe>. The

reference panel used was the 1000 Genomes Phase 1 Version 3.



Imputed data merging

After imputation each cohort contained approximately 38 million SNPs. A post imputation

check for an adequate proportion of SNPs with high ‘info’ score was conducted for each

cohort; the prior expectation for this proportion was driven by previous experience with

imputation. The info score is a quality metric output by IMPUTE210 (a component of

the imputation pipeline) that ranges between 0 and 1 – where a higher value indicates

greater certainty of imputation. To merge these datasets it was necessary to identify the

subset of SNPs that were common to all cohorts. To reduce the computational cost of

this process, we applied initial filtering on two info score thresholds: 0.9 and 0.3. Two

thresholds allow for more flexibility in downstream analyses. Matching over common

SNPs yielded approximately 5.4 millions SNPs for the 0.9 threshold, and 8.2 million SNPs

for the 0.3 threshold.

Once the common SNP lists were determined, we used PLINK23 to merge the datasets

to form the final genotype dataset. During this process approximately 500 SNPs were

removed due to multi-allelic differences between cohorts. These are likely to be a mix of

true multi-allelic SNPs and so-called “palindromic SNPs” that were not flipped correctly

during the imputation process.

The BSGS and EGCUT cohorts consisted of multiple data sets and were found to contain

some duplicates IDs (89 in total). BSGS contained 10 duplicate IDs between the main and

pilot studies. For BSGS, the genotype data were subsetted to the duplicate individuals

and a subset of 10,000 SNPs; correlations between the genotypes of the individuals with

duplicate IDs across these SNPs showed that these individuals were either monozygotic

(MZ) twins or the same individual (i.e., they had correlations across the 10k SNPs of >

0.95). To differentiate these samples further, we performed a correlation analysis of the

gene expression data across all common probes for the duplicate ID individuals. The

BSGS main and pilot data were generated from distinct samples at two time instances with

procedural and microarray differences. The gene expression correlation results showed

that these individuals had a high correlation (average of approximately 0.9). The values



were lower than expected for a duplicate individual but this could be accounted for by

the differences in procedure between the main and pilot studies. Further investigation of

the empirical distribution of correlations generated by comparing all individuals across

these two data sets was carried out; given this distribution we could not conclude with

certainty that these individuals were the same. Further correspondence with the laboratory

established that approximately 10 individuals were duplicated across the main and pilot

studies. Given this evidence, we decided to retain one set of these individuals with the

genotype and expression data kept from the main study. The main study was chosen

because it was a more recent study, from a larger cohort, and from the more recent array

(Table S1)

For EGCUT, the data provided consisted of one expression data set containing 1,065

individuals, and two sets of genotypes containing 1,144 total (non-unique) individuals

(Tables S1 and S2). A total of 79 duplicate IDs were identified between the two genotype

datasets, accounting for the difference in total individuals observed between the expression

and genotype data. A similar correlation study (to BSGS above) was carried out for the

genotype data and again we concluded that these individuals were either MZ twins or the

same individuals. As no expression duplicates IDs were found, we concluded that these

individuals were very likely to have been duplicated across the two data sets and thus

we carried forward the genotype data from the newer chip (i.e. the HumanOmniExpress

12v1).



Post-merge quality control

Post merging of the genotype data, allele frequency checks were performed within cohort

(by subsetting the merged genotype matrix) to remove any potential SNPs with large allele

frequencies differences from the 1000 Genomes reference. This analysis was performed by

comparing the allele frequencies for all SNPs in the merged CAGE data with European

allele frequencies (n = 379) in the 1000 Genomes Phase 1 Version 34. These analyses were

performed on the 8.2 million SNPs for the 0.3 threshold data set as the 0.9 (info score

threshold) set of SNPs was a subset of the 0.3 set. To make these comparisons, the allele

used to calculate the allele frequency was updated for each cohort to the allele in the 1000

Genomes using the GCTA software30, to ensure comparison of allele frequencies for the

same allele. If SNP allele frequencies within cohort differed by more than 0.2 (absolute

value) from those in the 1000 Genomes then they were removed from the CAGE genotype

data set using the PLINK 2 software. The choice of a 0.2 allele frequency difference

cutoff was based on the standard used for the Haplotype Reference Consortium’s19 data

preparation toolbox. The BSGS, CAD, CHDWB, and EGCUT cohorts contained individuals

of predominantly European ancestry, and therefore the variation in allele frequencies in

these cohorts relative to the 1000 Genomes European reference was smaller than that

of the Moroccan cohort (Figure S3). As the Moroccan cohort was relatively small (n =

188) and is ancestrally diverged from Europe there was greater variation in the allele

frequencies relative to the 1000 Genomes European reference. This led to many more SNPs

being removed due to allele frequency differences in the Moroccan cohort (Figure S3F) .

Approximately 300,000 SNPs were remove from the CAGE genotype data set due to allele

frequency differences across all the cohorts, with nearly all of these removed due to the

Moroccan cohort. The 0.2 allele frequency threshold was kept for the Moroccan cohort

for consistency, and although a large number of SNPs were removed it was a relatively

small number of the 8.2 million available. Post removal of allele frequency outlier SNPs, a

final check of allele frequencies versus the 1000 Genomes in the whole CAGE data set was

performed. No allele frequency outliers were detected with this comparison (Figure S4).



Final quality control on the genotype matrix was implemented, with a minor allele

frequency threshold of 0.01, a Hardy-Weinberg equilibrium p-value threshold of 1 × 10−6,

and a genotype call rate threshold of 99% applied to the genotype datasets using the

PLINK 2 software. The two final CAGE genotype datasets contained 2, 765 individuals

with 5,083,862 SNPs for info score threshold 0.9, and 7,763,174 SNPs for info score threshold

0.3.

Post merge we conduced final checks to investigate the quality of the imputed data.

To investigate cohort differences in the merged genotype matrix, we generated the first

20 principal components of the genotype matrix using PLINK. These were visualised

by plotting successive pairs of PCs against each other. For the 0.3 threshold data the

cohorts separate on the first three principal components plots and by the fourth-versus-

fifth comparison, separation is reduced (Figure S5). This trend of reduced separation

is observed in the remaining PC plots. These plots show that much of the variation in

the genotype data can be explained by differences between cohorts. Depending on their

research objectives, it will be up to the analysts using these data to decide whether to

correct for these differences or not.

Matching expression and genotype data

The final stage of the data preparation process was to match samples between the nor-

malised gene expression and the imputed genotype files. Ensuring the samples’ IDs match

correctly is vital to ensuring the integrity of downstream analyses. This required three

main steps:

• Encode the merged and normalised gene expression matrix with unique CAGE

sample identifiers

• Map CAGE sample identifiers to their respective genotype entries, stripping expres-

sion samples that lack genotype data

• Verify correctness of identifier mapping

Step one was achieved by simply generating a six-digit, zero-padded numeric identifier



for each unique sample ID in the merged gene expression matrix. This identifier was

then prepended with the prefix “CAGE”, and appended with an abbreviated dataset code

(the inclusion of which simplifies the process of tracing a CAGE-encoded sample back to

its parent dataset). The resulting identifiers are of the form CAGE000123_BSGS_M—where

BSGS_M is the abbreviated code for the main BSGS cohort.

The second step was performed by using PLINK to recode (–update-ids) the family

information of individuals in each of the imputed datasets. A plaintext file was used to

map the original sample identifiers to their respective CAGE identifiers, thus creating a

list of IDs for PLINK to update. In the cases where a sample did not have a unique family

identifier (i.e. their individual ID and family ID were the same in PLINK’s .fam file), it was

assigned as the sample’s original ID – again, in an attempt to keep the recoding process

transparent. Genotyped samples lacking a unique CAGE identifier – indicating they had

no associated expression data – were also found during this process, and were dropped

via PLINK’s –remove option.

Finally, it was necessary to determine whether the expression and genotype sample

identifiers still mapped individuals correctly. In order to perform this check, we made use

of a software tool, MixupMapper28. MixupMapper makes use of known eQTL in combi-

nation with the genotypic information of each sample in the supplied data to calculate

the expected expression level for a number of genes. These estimates are then compared

against the observed gene expression levels, and discordance between the two values is

taken to be indicative of a “mixup”—i.e. an individual whose label in the genotype data

does not match the expression data entry of the same label.

The output of MixupMapper is a plaintext report, with one row for each individual in

the supplied dataset. Each individual’s original expression and genotype IDs are listed,

with a score describing their relationship, the ID of the “best-matched” sample in the

supplied dataset, and its score. If the best-matched ID aligns with the original genotype

ID, the mixup verdict “false” is reported—otherwise, the verdict is “true”, suggesting that

the samples are mislabelled.



The final report from MixupMapper gave very few ‘true’ results suggesting that only a

small subset were potentially mixed up. Upon investigation these were found to be the

monozygotic twins from the BSGS pilot study.

Replication of eQTLs from Westra et al.29

As a final check that the genotype and expression data have been aligned well throughout

the quality control processes, we attempted to replicate the top 3,202 sentinel SNPs (SNP

with the greatest evidence for association for each probe) from Westra et al. 29 study. This

was done for the whole CAGE blood dataset, as well as for the individual cohorts to

help diagnose if any individual cohorts had errors. For each of the sentinel SNP-probe

combinations regression analysis was performed using the PLINK2 software, with 10 PCs

of the genotype matrix fitted. Chi-squared statistics were calculated from the summary

statistics provided from the study of Westra et al. 29 and the CAGE analysis and compared

via a scatter plot (Figure S6).

For the combined individual data, the Westra et al. 29 sentinel SNPs replicated well with

chi-squared statistics nearing those in the Westra et al. 29 study. Given that the Westra

et al. 29 study contained 5,311 individuals, which is nearly two times those in CAGE, the

chi-squared statistics across these probes suggest that the CAGE data have more power

per individual.

The final CAGE blood dataset consists of expression and genotypes for 2,765 individuals,

has 36,778 expression probes, and 7,763,174 or 5,083,862 SNPs (dependent upon info score

filtering). These data form CAGE release 2.0.

Annotation of Illumina HT12 v4 array probes to the genome

Entrez gene identifiers were taken from the Bioconductor illuminaHumanv4.db_1.26.0

data base, which follows the probe remapping protocols of Barbosa-Morais et al. 1 and

were based on gene data from NCBI from 17 March 2015. Transcription start and stop site

information was retrieved for each of the Entrez gene identifiers from the Bioconductor

org.Hs.eg.db data base, which was built on data from NCBI from 27 September 2015.



Genomic location mappings were based on data provided from UCSC Genome Bioinfor-

matics (Homo sapiens) on hg19 coordinates. Mappings based on the illuminaHumanv4.db

database were only accepted if the chromosome of the probe was on the same chromosome

as that of TSS/TES information provided from the org.Hs.eg.db data base. Each probe

maps to multiple transcripts and thus the median of the transcription start and stop site

was used as a summary measure. Of the the 36,778 probes present in the CAGE data set

31,690 had Entrez gene identifiers, which corresponded to 19,505 genes. These mappings

are available to download from <http://cnsgenomics.com/shiny/CAGE/>.

For those CAGE probes that had a COJO eQTL, probe quality was determined as per the

re-annotated results in the Bioconductor illuminaHumanv4.db database, which follows

the protocols of Barbosa-Morais et al. 1 . Under the protocols of Barbosa-Morais et al. 1 ,

a probe is considered specific if all its transcriptomic matches align to a single genomic

location, regardless of the number of isoforms for the targeted genes and differences

between gene model sources. These probes are given a quality score of "good" to "perfect"

(please see Barbosa-Morais et al. 1 for stricter definitions). Probes are deemed "bad" if the

probe matches repeat sequences, intergenic or intronic regions, or if probes target multiple

(≥ 3) transcripts from different locations in the genome. The "no match" score is given to a

probe if it does not significantly match any transcript or genomic location1. We tested for

genomic location "match back"1 for these probes, and identified 40 that did not map to a

known genomic location. A further 1,822 probes had a genomic annotation score of "bad"

and were not included in the presentation of eQTL results. Probes with "good" or "perfect"

quality score were deemed reliable. All "bad" and "no match" probes are still reported in

the nominal association database and COJO eQTL results but do not contain information

on probe genomic location or transcript start and stop sites.



Supplemental Figures and Tables

Figure S1 Principal component plots of normalised CAGE expression dataset. Plots
depict the first four principal components from a PCA analysis on the whole CAGE
expression data set (38,624 probes) after the completion of the normalisation pipeline.
Colours indicate the individuals from each cohort and are classified in the legend.



Figure S2 Covariates explaining variation in gene expression. Histograms of adjusted
R-squared values from regression of normalised expression measurements of 36,778
probes on covariates gender, age, cell counts, cohort, genotype PCs from all n = 2, 765
individuals, and genotype PCs from European individuals n = 2, 454.
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Figure S3 Cohort allele frequency quality control post impuatation. Allele frequency
plots of individual cohorts (y-axes) versus the 1000 Genomes Phase 1 Version 3 reference
(allele frequencies calculated from European individuals) post removal of SNPs with a
frequency difference greater than 0.2 (approximately 7.8 million SNPs plotted). Panel (A)
depicts the BSGS main cohort, (B) BSGS pilot, (C) CAD, (D) CHDWB, (E) EGCUT, and
panel (F) depicts the Moroccan cohort.



Figure S4 Allele frequency quality control post imputation for the whole CAGE data
set. Allele frequency plot of whole CAGE data (y-axis) versus the 1000 Genomes Phase
1 Version 3 reference (allele frequencies calculated from European individuals) post
removal of SNPs with a frequency difference greater than 0.2 (approximately 7.8 million
SNPs plotted).



Figure S5 Principal component plots of genotype dataset. Plots depict the first four
principal components from a PCA analysis on the whole CAGE genotype data set (7.8
million SNPs) after the completion of the imputation pipeline and merge. Colours indi-
cate the individuals from each cohort and are classified in the legend.



Figure S6 Meta-analysis chi-squared statistics comparison. Scatterplot of chi-squared
statistics for 3,202 sentinel SNPs (cis) from the Westra et al. 29 study versus chi-squared
statistics from CAGE data (all individuals n = 2, 765) generated using a linear model
in PLINK with 10 PCs fitted as additional fixed effects. The fitted regression line (red)
is plotted with the key statistics of this regression (no intercept term fitted) is displayed
at the top of panels. The light grey line represents the y = x line. The p-value is with
regard to the regression slope.



Figure S7 Ancestry investigation. Projected principal component (PPC) plot (PPC1 versus PPC2) of Hap Map 3 cohorts (green)
and CAGE data (n = 2, 765) (purple). The Utah residents of northern and western European ancestry (CEU) cohort from Hap
Map 3 formed the European sample, the Yoruba trios from Ibadan, Nigeria (YRI) formed the African cohort, and the Han Chinese
individuals from Beijing, China were used for the Asian cohort. Solid vertical lines indicate the bounds for removing European
ancestry outliers. The bounds were [lower quartile - 1.5× IQR, upper quartile + 1.5× IQR] of the first projected PC (where IQR is
the inter-quartile range).



Figure S8 Genetic relationship matrix for all of CAGE. Summary of elements of the genetic relationship matrix (GRM) built
using overlapping Hap Map 3 SNPs (893,626) and all individuals (n = 2, 765) in CAGE. Means and variances are summarised
for the histogram displayed. The GRM off diagonals are partitioned into those elements greater and less than 0.05 for ease of
interpretation.



Figure S9 Genetic relationship matrix for European individuals. Summary of elements of the genetic relationship matrix (GRM)
built using overlapping Hap Map 3 SNPs (893,626) and European individuals (n = 2,454). Means and variances are summarised
for the histogram displayed. The GRM off diagonals are partitioned into those elements greater (or equal to) and less than 0.05
for ease of interpretation.



Figure S10 Distributions of heritability estimates for all probes. Histogram of heritability estimates across 36,778 probes generated using
the Big K/Small K method, and estimates of h2

COJO and h2
S. Panels (A) and (B) display histogram summaries of the narrow-sense heritability

estimates using the constrained and unconstrained REML algorithms respectively. Panels (C) and (D) display histogram summaries of the
heritability estimates of the proportion of phenotypic variance explained by genome-wide Hap Map 3 SNPs using the constrained and un-
constrained REML algorithms respectively. Panels (E) and (F) display histogram summaries of the estimates of the proportion of phenotypic
variance explained by COJO eQTL (h2

COJO) and the sentinel SNP (h2
S) respectively.



Figure S11 Comparison of heritability estimates for expressed probes. Summary of heritability estimates (unconstrained) using only the
KIBS>t matrix of estimated relatedness (h2

AE), h2
g (constrained) and h2∗

g (unconstrained) of Big K/Small K method, proportion of phenotypic
variance explained by COJO SNPs (h2

COJO), and the proportion of phenotypic variance explained by the sentinel SNP (h2
S). Displayed sum-

maries are across 15,966 overlapping probes from the study of Kirsten et al. 16 , except for panel (A), which displays estimates for all 36,778
probes. Panel (A) displays the scatter plot of the AE model estimates of narrow-sense heritability versus Big K/Small K heritability estimates
using the unconstrained REML algorithm. Panel (B) is a scatter plot of Big K/Small K heritability estimates of h2∗

g versus Big K/Small K her-
itability estimates of h2∗. Panel (C) is a scatter plot of h2

g estimates versus the proportion of phenotypic variance explained by the sentinel
SNP. Panel (D) is a scatter plot of h2

g estimates versus the proportion of phenotypic variance explained by COJO eQTL. Panel (E) displays a
histogram plot of the difference between h2

g estimates and the proportion of phenotypic variance explained by COJO eQTL. Panel (F) displays
a scatterplot of h2

g estimates versus the difference between h2
g and the proportion of phenotypic variance explained by the COJO SNPs. For

panels (A), (B), (C) (D) and (F), the fitted regression line (red) and 95% confidence interval (shaded) is plotted with the key statistics of this
regression displayed at the top of panels. The p-value is with respect to the regression slope.



Figure S12 Distributions of heritability estimates for expressed probes. Histogram of heritability estimates across 15,966 expressed probes
generated using the Big K/Small K method, and estimates of h2

COJO and h2
S. Panels (A) and (B) display histogram summaries of the narrow-

sense heritability estimates using the constrained and unconstrained REML algorithms respectively. Panels (C) and (D) display histogram
summaries of the heritability estimates of the proportion of phenotypic variance explained by genome-wide Hap Map 3 SNPs using the con-
strained and unconstrained REML algorithms respectively. Panels (E) and F) display histogram summaries of the estimates of the proportion
of phenotypic variance explained by COJO eQTL (h2

COJO) and the sentinel SNP (h2
S) respectively.



Figure S13 Distributions of standard errors of heritability estimates for expressed probes. Histogram of standard errors of
heritability estimates across 15,966 probes generated using the Big K/Small K method. Panels (A) and (B) display histogram sum-
maries of the standard errors for narrow-sense heritability estimates using the constrained and unconstrained REML algorithms
respectively. Panels (C) and (D) display histogram summaries of the standard errors for heritability estimates of the proportion
of phenotypic variance explained by genome-wide Hap Map 3 SNPs using the constrained and unconstrained REML algorithms
respectively.



Figure S14 Comparison of mega- versus meta-analysis chi-squared statistics and effect sizes. Comparison of χ2 statistics for
the sentinel SNPs of 3,450 cis probes generated from the meta-analysis of Westra et al. 29 (n = 1,749) and an eQTL analysis using
European unrelated individuals (n = 1,748) from CAGE. Panels (A), (B), and (C) compare the same set of sentinel SNP χ2 statistics
generated using a single SNP analysis in PLINK corrected for 10 PCs (PLINK), eQTL analysis in BOLT-LMM (HapMap 3 SNPs
used as model SNPs), eQTL results from GEMMA (GRM generated from Hap Map 3 SNPs), and the meta-analysis χ2 statistics.
Panel (D) displays a zoomed view of panel (C) to investigate the point at which the χ2 statistics from the PLINK analysis de-
viated from those from the BOLT-LMM analysis. Panels (E) and (F) show the approximate effects sizes from the meta-analysis
versus those generated using PLINK and GEMMA-LMM. All panels include the fitted regression line (red) and 95% confidence
interval (shaded) is plotted and y = x line (black) for reference with the key statistics of this regression (no intercept term fitted)
displayed at the top of each panel. The p-value is with respect to the regression slope.



Cohort Probes Individuals Array

BLOOD

BSGS main 47323 846 Illumina HumanHT-12 v4.0

BSGS pilot 48760 80 Illumina HumanHT-12 v3.0

CAD (batch 1) 47231 147 Illumina HumanHT-12

CAD (batch 2) 46331 163 Illumina HumanHT-12

CHDWB (batch 1) 46328 176 Illumina HumanHT-12

CHDWB (batch 2) 46328 141 Illumina HumanHT-12

CHDWB (batch 3) 46328 132 Illumina HumanHT-12

EGCUT 48803 1065 Illumina HumanHT-12 v3.0

Morocco 48803 188 Illumina HumanHT-12

LYMPHOBLASTOID CELL LINES

BSGS pilot (LCL) 48760 95 Illumina HumanHT-12 v3.0

MuTHER (LCL) 48638 825 Illumina HumanHT-12 v3.0

FAT

MuTHER 48638 826 Illumina HumanHT-12 v3.0

SKIN

MuTHER 48646 705 Illumina HumanHT-12 v3.0

Total 5302

Table S1 CAGE cohort sizes and expression arrays. Summary of gene expression data
sets in phase 1 of CAGE. Array versions were not available for all cohorts; array infor-
mation was gathered from the relevant citations.



Dataset Individuals

BSGS main 846

BSGS pilot 80

CAD (batch 1) 147

CHDWB (batch 1) 176

CHDWB (batch 2) 141

CHDWB (batch 3) 132

EGCUT-CNV 982

EGCUT-Omni 162

Morocco 188

Total 2,854

Duplicates 89

Total post-merge 2,765

Table S2 Contributing individuals to CAGE peripheral blood data set. Summary of
CAGE cohort data dimensions post imputation and merge



Individuals

Number Analyses Description

2,765 BOLT-LMM Total number of individuals in CAGE with expression and genotypes across contributing

cohort data sets

2,454 Big K/Small K Set of individuals with European ancestry, which includes both related and unrelated

individuals. Non-Europeans were excluded via an outlier analysis of projected PC 1.

1,748 Westra et al. 29 comparison Set of unrelated European individuals. Unrelated status was determined via a

relatedness threshold of 0.05 on the genetic relationship matrix off diagonals

Probes

Number Analyses Description

36,778 BOLT-LMM/GREML Total number of overlapping probes passing quality control across contributing cohort data sets

used for eQTL analysis

11,829 COJO Number of probes with a SNP-probe association (BOLT-LMM) p-value < 5 × 10−8

carried forward for COJO analysis

15,966 h2 comparison Number of overlapping expressed probes from the set of 18,738 probes from the study of Kirsten et al. 2015

that mapped uniquely to the genome and had a probe annotation quality score of at least ‘good’ as per

the protocol of Barbosa-Morais et al. 1 2010

3,450 Mega vs Meta Subset of overlapping probes with cis-eQTLs from Westra et al. 29 with z-values contributing from both the

DILGOM cohort14 (n = 509) and Fehrmann cohorts7 (n = 1, 240)

Table S3 Summary of data subsets and thresholds used in CAGE analysis. Summary of the number of individuals and probes
used for different analyses. Descriptions outline the reasons or thresholds used to come to this number of individuals or probes.



Multiple 1 2 3 4 5 6 7 8 9 ≥ 10

No. probes (all) 6,617 2,231 754 242 78 27 12 5 0 1

No. cis probes 5,551 1,588 503 148 42 16 4 4 0 1

No. trans probes 2,978 289 52 17 1 1 0 0 0 0

Table S4 Multiple eQTL. Summary of the number (No.) of probes with a particular
multiple of COJO eQTLs for 9,967 probes (excluding probes with a genomic annotation
quality score of less than ‘good’). Cis and trans-eQTL probes were separated if the SNP
and gene were located on different chromosomes. Column sums of cis and trans do not
sum to equal the ’all’ row value because, for example, if a probe has 3 cis-eQTL and 1
trans-eQTL then the count would be incremented in the three column for cis, the one
column for trans, and the four column for ’all’.
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