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The Genetic Architecture of Gene Expression
in Peripheral Blood

Luke R. Lloyd-Jones,1,2,7,* Alexander Holloway,2,7 Allan McRae,1 Jian Yang,1,2 Kerrin Small,3 Jing Zhao,4

Biao Zeng,4 Andrew Bakshi,2 Andres Metspalu,5 Manolis Dermitzakis,6 Greg Gibson,4 Tim Spector,3

Grant Montgomery,1 Tonu Esko,5 Peter M. Visscher,1,2,7 and Joseph E. Powell1,2,7,*

We analyzed the mRNA levels for 36,778 transcript expression traits (probes) from 2,765 individuals to comprehensively investigate the

genetic architecture and degree of missing heritability for gene expression in peripheral blood. We identified 11,204 cis and 3,791 trans

independent expression quantitative trait loci (eQTL) by using linear mixed models to perform genome-wide association analyses.

Furthermore, using information on both closely and distantly related individuals, heritability was estimated for all expression traits.

Of the set of expressed probes (15,966), 10,580 (66%) had an estimated narrow-sense heritability (h2) greater than zero with a mean

(median) value of 0.192 (0.142). Across these probes, on average the proportion of genetic variance explained by all eQTL (h2COJO)

was 31% (0.060/0.192), meaning that 69% is missing, with the sentinel SNP of the largest eQTL explaining 87% (0.052/0.060) of the

variance attributed to all identified cis- and trans-eQTL. For the same set of probes, the genetic variance attributed to genome-wide com-

mon (MAF > 0.01) HapMap 3 SNPs (h2g) accounted for on average 48% (0.093/0.192) of h2. Taken together, the evidence suggests that

approximately half the genetic variance for gene expression is not tagged by common SNPs, and of the variance that is tagged by com-

mon SNPs, a large proportion can be attributed to identifiable eQTL of large effect, typically in cis. Finally, we present evidence that,

compared with a meta-analysis, using individual-level data results in an increase of approximately 50% in power to detect eQTL.
Introduction

In the past decade, genome-wide association studies

(GWASs) have identified thousands of loci for complex

traits and diseases. Most associated variants are not located

in protein-coding regions and are instead highly enriched

for regulatory regions of the genome. Thus, it has been sug-

gested that for many variants, the functional mechanisms

by which they affect disease susceptibility is through regu-

lation of gene expression.1,2 GWA-type approaches have

been used to map loci, termed expression quantitative trait

loci (eQTL), that influence the expression levels of thou-

sands of transcripts. To date, the majority of identified

eQTL are located proximal to their transcript (i.e., cis).3–7

The mean of the estimates of heritability across expressed

mRNA transcripts in peripheral blood ranges from 0.14

to 0.24,7–9 although these studies vary in numerous as-

pects of their design and methodological approaches. We

consider the proportion of transcript narrow-sense herita-

bility not explained by the heritability attributed to

identified eQTL as the missing heritability of gene expres-

sion.10–13 On average, the proportion of heritability ex-

plained by eQTL across mRNA transcripts, which is largely

attributed to cis variants, ranges from 0.20 to 0.38,3,4,7,8

suggesting that to date much of the heritability for gene

expression is still unaccounted for.

By using individual-level data, we can investigate some

of the hypotheses for missing heritability in more detail.
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One of the proposed hypotheses is that there is a large

contribution from rare variants of large effect. Typically,

rare variants are not included on SNP arrays and are not

well tagged through imputation to a common reference

panel. Another hypothesis is that the majority of missing

heritability is due to common variants of small effect

that are not detected at the level of genome-wide signifi-

cance. If the second hypothesis is true, increasing sample

size will be more important than extending variant

coverage for continued progress in understanding cellular

or higher-order complex traits.14 For gene expression,

much of the remaining variation is hypothesized to be hid-

den in trans-eQTLs of small effect.4,7–9,15

We use data from the Consortium for the Architecture of

Gene Expression (CAGE), which comprises individual-

level whole-blood expression and genotype data on

2,765 individuals. For all transcript expression traits (also

referred to as probes), we use the method presented in

Zaitlen et al.16 to estimate concurrently the total narrow

sense heritability (h2) and the proportion of phenotypic

variance explained by all common SNPs ðh2
g Þ using a linear

mixed model (LMM) that relies on a partitioned identity-

by-state (IBS) genetic relationship matrix and takes

advantage of both the related and unrelated individuals

present in the data. To summarize the extent of missing

heritability across expression traits, h2 and h2
g are compared

to the proportion of genetic variance explained by

eQTLs identified from an exhaustive association study.
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Furthermore, we investigate the relative power of meta-

analyses versus mega-analyses with individual-level data

for eQTL detection.
Material and Methods

Consortium for the Architecture of Gene Expression
We investigated the genetic architecture underlying gene expres-

sion variation in peripheral blood tissue using data from 2,765

individuals within CAGE (Table S1). For the full details of the

cohorts contributing to CAGE and their sample preparation,

normalization, and imputation, see the Supplemental Note. In

brief, the 2,765 samples consisted of data from five cohorts:

BSGS (n¼ 916),5,17 CAD (n¼ 147),18 CHDWB (n¼ 449),19 EGCUT

(n ¼ 1,065),20 and Morocco (n ¼ 188).21 We conducted the quan-

tification of gene expression for each cohort by isolating RNA from

whole blood and then hybridizing RNA to Illumina Whole-

Genome Expression BeadChips (HT12 v.3, HT12 v.4). Genotype

data were acquired using different genotyping platforms and

were imputed to the 1000 Genomes Phase 1 Version 3 reference

panel,22 resulting in 7,763,174 SNPs passing quality control. The

gene expression levels in each cohort were initially normalized us-

ing variance stabilization,23 followed by a quantile adjustment to

standardize the distribution of expression levels across samples us-

ing the software of Ritchie et al.24 The PEER software25 was used to

concurrently correct for the measured covariates such as age,

gender, cell counts, and batch effects, which are known to explain

variation in gene expression, and hidden heterogeneous sources of

variability. Not all cohorts hadmeasurements for all covariates and

thus we relied on the PEER software to correct for these in their

absence. For all cohorts we chose the maximum number of rele-

vant factors in the PEER analysis to be 50. The residuals from

PEER for each cohort were then standardized to z-scores and

concatenated across cohorts. We retained only those probes that

passed quality control in all cohorts, resulting in 38,624 taken for-

ward. We performed a further PEER correction analysis on the

concatenated data with the covariate gender included and then

transformed the residuals for each probe using the rank normal

transformation of Blom,26 which alters the distribution of the re-

siduals to be normally distributed with a mean of 0 and a standard

deviation of 1. Finally, probesmeasuring expression levels of genes

located on the X and Y chromosomes were removed from the anal-

ysis, leaving 36,778 for analysis.
Heritability Estimation
The 2,765 CAGE samples consist of a mix of both highly related

individuals and different ancestral groups (Figures S7 and S8). To

avoid problems associatedwith population stratification, we chose

to estimate heritability using data from individuals of European

ancestry. To investigate ancestry for the 2,765 individuals in

CAGE, the relationship between the first two principal compo-

nents (PCs) of the CAGE genotype matrix relative to the

HapMap 3 ancestry cohorts (i.e., projected PCs27,28) showed

mixed population backgrounds within CAGE (Figure S7). Non-Eu-

ropean individuals were defined to be those exceeding the bounds

of [lower quartile � 1.5 3 IQR, upper quartile þ 1.5 3 IQR] of the

first projected PC28 (where IQR is the inter-quartile range); this

threshold removed 311 individuals leaving 2,454 with European

ancestry (see Table S3 for a detailed summary of data subsets

used across analyses).
The America
We utilized a method presented by Zaitlen et al.16 to estimate

the narrow-sense heritability (h2) and the proportion of pheno-

typic variance explained by genotyped SNPs ðh2
g Þ via the use of a

two-variance component LMM that requires an IBS genetic rela-

tionship matrix (GRM) (denoted KIBS). This method, here termed

Big K/Small K, makes use of both the unrelated and related Euro-

pean individuals present in the CAGE dataset by partitioning

the phenotypic covariance matrix as S ¼ KIBS>t (h
2
IBS> t � h2

g ) þ
KIBSh

2
g þ I(1 � h2

IBS> t ). The KIBS>t matrix is estimated by setting

the off-diagonal elements of KIBS less than the off-diagonal

threshold t to zero. The resultant estimate of h2 is the proportion

of phenotypic variance attributed to the sum of the two variance

component parameters. The method was implemented in the

GCTA software29 for all European individuals (n ¼ 2,454), with

t ¼ 0.05 and SNPs common to the HapMap 3 set and the 7.8 M

CAGE SNPs (893,626) used to construct the GRM (Figure S9).

The first ten PCs of the genotype matrix for the European individ-

uals were included as fixed effects in the REML analysis to control

for any residual population stratification in the European individ-

uals. For comparison, the unconstrained and constrained versions

of the REML algorithm in GCTA were run. The narrow-sense her-

itability and proportion of phenotypic variance explained by gen-

otyped SNPs from the unconstrained algorithm are denoted as h2�

and h2�
g , respectively, to differentiate from the constrained values.

In order to make inferences regarding the proportion of narrow-

sense heritability explained by genome-wide SNPs and identified

eQTL, wemade comparisons across a set of probes that overlapped

with those reported to be expressed in the study of Kirsten et al.4

This set was chosen because the Kirsten et al.4 data are completely

independent from CAGE, had expression levels determined from

peripheral blood, and had a similar data size to CAGE

(n ¼ 2,112). The probe list was downloaded from the GEO website

and consisted of 18,738 probes that mapped uniquely to the

genome and had a probe annotation quality score of at least

‘‘good’’ as per the protocol of Barbosa-Morais et al.30 Of the set

of 18,738 well-expressed probes, 15,966 overlapped with the

CAGE data, which formed the comparative set.

eQTL Discovery
BOLT-LMM Association Analysis

We used a LMM, implemented in the BOLT-LMM software,31 to

identify SNP-probe associations across 36,778 mRNA transcript

level phenotypes in a computationally efficient manner, while ac-

counting for the population structure present in the data. BOLT-

LMM was chosen because it has high computational efficiency,

performs LMM analysis, and uses a mixture of two normal distri-

butions for the genetic effects. The standard LMM, referred to as

the ‘‘the infinitesimal model,’’ implicitly assumes that all variants

have an effect that is drawn from independent Gaussian distribu-

tions. BOLT-LMM relaxes the assumptions of the infinitesimal

model by using a mixture of two Gaussian distributions as the

prior on the genetic effects, giving the model greater flexibility

to accommodate SNPs of large effect, which are often present for

expression traits, while maintaining effective modeling of

genome-wide effects (for example, ancestry).31

We estimated SNP effects for each combination of 7,763,174

autosomal SNPs against 36,778 probes using data from all 2,765

individuals. To increase computational efficiency while maintain-

ing power and correction for confounding, we used the modelSnps

option in BOLT-LMM, which requires the specification of a set of

linkage disequilibrium (LD) pruned SNPs, and was set to be the

HapMap 3 set of SNPs.
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COJO Refinement of SNP-Probe Associations

To subset the extensive set of SNP-probe association results gener-

ated by BOLT-LMM, we performed a conditional and joint (COJO)

stepwise model selection32 procedure. The method was imple-

mented in the GCTA software and uses the summary statistics

generated from the BOLT-LMM analysis. Probes were carried for-

ward for this analysis if they had a SNP-probe association with a

p value < 5 3 10�8. To avoid overfitting in the COJO model selec-

tion procedure, an initial clumping of the BOLT-LMM association

summary statistics was performed for each probe. This analysis

was completed with the PLINK 2 software33 with an LD threshold

R2 of 0.1 and the default clump distance of 250 kb. The clumped

summary statistics were then used for the COJO analysis.

The COJO analysis selects SNPs (cis and trans) on the basis of

conditional p values thresholded at p < 5 3 10�8 and then esti-

mates the joint effects of all selected SNPs after the model has

been optimized. GCTA allows for the individual-level genotype

data to be used in the procedure; thus, we used the CAGE genotype

data as an LD reference for the COJO analysis. An estimate of the

proportion of phenotypic variance explained by the identified

COJO eQTL was calculated for each probe by fitting the selected

SNPs in a multiple linear regression model in the R programming

language34 (with ten PCs fitted as fixed effects to correct for popu-

lation stratification), and the resultant ratio of the genetic variance

and the phenotypic variance taken to be the heritability estimate

ðh2
COJOÞ. The genetic variance was calculated as Var(X bb), where bb is

the vector of estimated SNP effects from the multiple regression

model and X the corresponding genotypes. Additionally, for the

probes that had an identified eQTL, the proportion of phenotypic

variance explained by the sentinel SNP (defined to be the SNPwith

the smallest association p value for each probe) was calculated by

fitting the selected SNP in a linear regression model (with ten PCs

added to correct for population structure) and estimating the pro-

portion of phenotypic variance explained by that SNP ðh2
S Þ as

above for the COJO set of SNPs.

Power to Detect SNP-Probe Associations: Mega- versus

Meta-analysis
We investigated the statistical power for eQTL discovery using in-

dividual-level data versus a meta-analysis by comparing associa-

tion results from using the CAGE data to those presented inWestra

et al.6 In Westra et al.,6 Spearman’s rank correlations were used to

measure the association between genotypes and phenotypes for

each of the gene expression data cohorts. These correlations

were converted to t scores, and then, via the inverse normal distri-

bution, to z values. For each dataset i, the z value for each SNP j and

probemwas weighted by the square root of the sample size for the

dataset used to calculate the z value for the SNP tested in the asso-

ciation test, i.e.,

zwijm
¼ ffiffiffiffiffi

nij

p
zijm

For each cis-eQTL association present after controlling the false

discovery rate at 0.05, Westra et al.6 reported the weighted z value

zwijm
. If at least three cohorts had results for a SNP-probe pair, the

combined z value was calculated as

zmetajm ¼ 1ffiffiffi
n

p
X

i
zwijm

;

where n is the total number of individuals contributing a weighted

z score; this statistic was then used to calculate the presented

p value. To be consistent with the data present in Westra et al.,6
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a set of unrelated European individuals was determined by

removing individuals from the subset of 2,454 European individ-

uals in the CAGE dataset via a threshold of 0.05 on the off-diago-

nals of the genetic relationship matrix (GRM) (Figure S9). This

resulted in the removal of a further 706 individuals, leaving

n ¼ 1,748 individuals for comparison. We recalculated the

zmetajm values from the Westra et al.6 study using the DILGOM

cohort35 (n ¼ 509) and the largest Fehrmann cohort36

(n ¼ 1,240), which resulted in n ¼ 1,749 individuals. These co-

horts were chosen because they were the largest cohorts that

when summed had a similar number of individuals to the set of

unrelated Europeans from the CAGE dataset. The resultant

z values were converted to c2 statistics by squaring these values.

We preferred to make comparisons between the c2 statistics

because they are on the scale of the number of individuals

and are all positive. Additionally, a comparison between effect

sizes was made by estimating bbjm from the recalculated zmetajm

statistics. This required the estimation of an approximate

standard error for each bbjm, which was calculated as s ðbbjmÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjð1� pjÞðn þ z2metajm

Þ
q

where pj is the allele frequency for

SNP j (obtained from a large independent dataset of unrelated Eu-

ropeans) and n ¼ 1,749.

To compare the results from the two datasets, the sentinel SNP

(from the cis set of results in Westra et al.6) for each of 3,450 over-

lapping probes reported in Westra et al.6 were used. For the 3,450

probes, an association analysis using the BOLT-LMM software was

run on the set of unrelated European individuals in CAGE. To pro-

vide further comparison, SNP-probe associations for the overlap-

ping sentinel SNPs were investigated using a standard single-SNP

linear association analysis performed in the PLINK 2 software,

with the first ten PCs of the genotype matrix used as covariates.

This analysis was chosen to provide a baseline comparison with

a standard analysis performed in the literature and reflected a

methodology closer to that used in Westra et al.6

We investigated a potential deflation of the test statistics as a

function of the amount of variance explained by an individual

SNP. BOLT-LMM uses an approximate method that first estimates

the variance components of the LMM under the null model (no

SNP effect) and then keeps the variance components from the

null model fixed when testing the effect of each SNP. This reduces

computation time, but the assumption that the variance ex-

plained by each SNP is approximately zero is a good approxima-

tion only for highly polygenic traits. For eQTL that explain a large

proportion of phenotypic variance (up to 60% observed for a sin-

gle eQTL in the CAGE analysis), this assumption leads to a defla-

tion of the c2 statistics by a factor of approximately 1/(1 � R2).

For SNPs that explain a large amount of phenotypic variance, an

exact test that repeatedly estimates variance components when

performing each association is desirable. Zhou and Stephens37

presented an efficient exact method, referred to as genome-wide

efficient mixed-model association (GEMMA), that makes approxi-

mations unnecessary inmany contexts but is computationally less

efficient than BOLT-LMM and thus was not viable for the full

CAGE analysis. To provide more exact estimates of c2 statistics

for reference and comparison, we performed a LMM eQTL analysis

using the GEMMA software for the 3,450 overlapping probes.

To make comparisons between sets of c2 statistics for the

sentinel SNPs from the different methodologies, a linear model

was fitted with no intercept term. Regression slopes were then

used to measure whether the c2 statistics were on average greater

than those calculated in Westra et al.6
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Table 1. Summary of Identified eQTL

No. eQTL per
Probe Probes Genes eQTL cis-eQTL trans-eQTL

S 1 9,967 8,080 14,995 11,204 3,791

1 6,617 5,707 6,617 4,692 1,925

2 2,231 2,050 4,462 3,419 1,043

3 754 708 2,262 1,775 487

4 242 232 968 780 188

S 5 123 112 686 538 148

Summary of eQTL mapping from the BOLT-LMM and COJO analyses of the
whole CAGE dataset. Of the set of 11,829 probes with at least one COJO
eQTL, there were 1,862 probes with a genomic annotation quality score of
less than ‘‘good’’ as per the protocol of Barbosa-Morais et al.,30 and thus the
results for 9,967 probes are presented. Genes correspond to the number of
unique HGNC gene names for each set of probes. cis-eQTL were defined to
be those associations such that the SNP was located on the same chromosome
as the gene and trans-eQTL the complement of this.
Results

Expression Quantitative Trait Loci

We performed an eQTL analysis on 2,765 individuals for

each of the 36,778 mRNA transcript phenotypes and

7,763,174 SNPs using a LMM implemented in the BOLT-

LMM software.31 A total of 2,733,370 SNP-probe associa-

tions were identified at a p value threshold of 5 3 10�8.

Each probe with one or more associations at this threshold

was taken forward for clumping using the PLINK 2 soft-

ware and then for conditional and joint (COJO) anal-

ysis.32 The COJO analysis selects SNPs (cis and trans) on

the basis of conditional p values (thresholded at p < 5 3

10�8) and estimates the joint effects of all selected SNPs

after the model has been optimized. The COJO analysis

identified a total of 17,608 eQTLs for 11,829 unique probes

and 9,190 HGNC genes. Of this set, 2,613 eQTL (1,862

probes) were for probes with a genome annotation quality

score of less than ‘‘good’’ as per the protocol of Barbosa-

Morais et al.,30 making them unreliable for classification

as cis or trans. The remaining 14,995 eQTL corresponded

to 9,967 probes with 11,204 (75%) located in cis and

3,791 (25%) in trans (Table 1). cis-eQTL were defined to

be those associations where the SNP was located on the

same chromosome as the gene, and trans-eQTL the com-

plement of this. We identified multiple independent

eQTLs for 2,306 probes in cis and 360 in trans (Table S4).

All SNP-probe associations below a p value threshold of

1 3 10�6 and the complete set of COJO eQTL are publicly

available to download or query using the CAGE Shiny

online application (see Web Resources).

Heritability of Gene Expression

For the 36,778 transcripts passing quality control, we esti-

mated narrow-sense heritability (h2) and the proportion of

phenotypic variance explained by genotyped SNPs ðh2
g Þ via

the Big K/Small K method of Zaitlen et al.16 This analysis

was implemented in the GCTA software using both the un-
The America
constrained and constrained REML algorithms29 (see

Figure S10 for full distributions of heritability estimates).

Poor convergence of the REML algorithm was observed

for 6,811 probes in the unconstrained Big K/Small K anal-

ysis, and thus to obtain estimates for these probes we used

the –reml-force-converge option in the GCTA software. The

majority of the probes with poor convergence had herita-

bility estimates that were close to 0. As an initial bench-

mark, we also estimated narrow-sense heritability using

just the KIBS>t matrix of estimated relatedness and the un-

constrained REML algorithm. The unconstrained narrow-

sense heritability estimates from this model showed very

similar results to the sum of the two variance components

estimated using the unconstrained Big K/Small K method

(Figure S11A), and thus we focused on the results from

the Big K/Small K method.

To make conclusions about the proportion of h2 ex-

plained by genotyped SNPs, COJO eQTL, and the sentinel

SNP, we compared means and medians across the set of

15,966 overlapping expressed probes from the study of

Kirsten et al.4 This is in contrast to the COJO eQTL results,

which are reported for all probes that had a COJO eQTL. To

investigate whether this preselection of probes was reason-

able, we calculated the average number of identified COJO

eQTL in the overlapping expressed probes from the study

of Kirsten et al.4 and for the complement set of probes

(20,812). For the overlapping Kirsten et al.4 probes, the

average number of eQTLs per probe was 0.72 and for the

complement the average number was 0.29. Therefore, for

the comparative set, we observed a greater than 2-fold

enrichment for identified eQTLs, implying that our prese-

lected set was much more likely to contain probes with a

genetic contribution to variation. For the set of 15,966

overlapping probes, the mean and median estimates of

h2 from the constrained algorithm were 0.139 and 0.089

(Table 2 and Figure S12). Average standard errors across

the 15,966 probes for h2 and h2� were approximately

0.053 and 0.052, respectively (Figure S13). Of the set of

15,966 probes, 10,580 probes (66%) had a bh2�
greater

than 0, representing 8,842 unique HGNC genes (Table 2).

The mean and median from the constrained algorithm

for these probes were 0.192 and 0.142, respectively, with

smaller estimates from the unconstrained algorithm of

0.158 and 0.103 (Table 2 and Figure 1).

Missing Heritability for Gene Expression

For all probes, estimates of the proportion of variance ex-

plained by significant eQTLs ðh2
COJOÞ were summarized to

investigate the extent of missing heritability for gene

expression. Across the set of 15,966 probes, the sentinel

SNP of the largest eQTL for a gene explained on average

88% (0.036/0.041) of the variance attributed to all identi-

fied cis- and trans-eQTL ðh2
COJOÞ. Across this same set of

probes, h2
COJO explained on average 30% (0.041/0.139) of

h2, suggesting that 70% of the heritability is missing

(Table 2). For the set of expressed probes with a h2� esti-

mate greater than zero (10,580 probes), 6,585 (62%) had
n Journal of Human Genetics 100, 228–237, February 2, 2017 231



Table 2. Summary of Heritability Estimates across Overlapping Probes from the Study of Kirsten et al.4

Threshold h2 h2* h2
g h2

g
* h2

COJO h2
S

Expressed probes (15,966) mean 0.139 0.089 0.068 0.052 0.041 0.036

median 0.089 0.042 0.022 0.036 0.000 0.000

bh2�
> 0 (10,580) mean 0.192 0.158 0.093 0.079 0.060 0.052

median 0.142 0.103 0.048 0.056 0.018 0.016

bh2�
> 0.05 (7,560) mean 0.241 0.212 0.116 0.104 0.081 0.070

median 0.193 0.158 0.074 0.077 0.036 0.029

bh2�
> 0.1 (5,383) mean 0.294 0.268 0.142 0.136 0.106 0.091

median 0.245 0.218 0.100 0.100 0.060 0.047

bh2�
> 0.2 (2,987) mean 0.391 0.368 0.194 0.198 0.158 0.135

median 0.349 0.329 0.148 0.148 0.117 0.090

bh2�
> 0.4 (997) mean 0.566 0.538 0.304 0.330 0.273 0.234

median 0.536 0.512 0.264 0.264 0.258 0.205

Numbers in parentheses indicate the total number of probes used to calculate estimates. For Big K/Small K narrow-sense heritability estimates (h2 and h2�) and the
proportion of phenotypic variance explained by genome-wide HapMap 3 SNPs (h2

g and h2�
g ), all European individuals in CAGE with varying degrees of relatedness

were used (n ¼ 2,454). The asterisk (*) notation refers to the results from the unconstrained variance components REML algorithm implemented in the GCTA
software. The parameters h2

COJO and h2
S correspond to the proportion of phenotypic variance explained by COJO eQTL and the sentinel SNPs, respectively.
one or more independent significant eQTL identified from

the COJO analysis, leaving 3,995 having no significant

eQTL. For those probes with no significant eQTL, h2
COJO

was set to zero when calculating averages across probes,

as were all probes without a COJO eQTL across other bh2�

threshold summaries. For these probes, similar on average

proportions were seen, with 87% (0.052/0.060) of h2
COJO be-

ing explained by h2
S and 31% (0.060/0.192) of h2 explained

by h2
COJO (Table 2). For transcripts with a bh2�

> 0.4 (997

probes), on average 48% (0.273/0.566) of h2 could be

attributed to h2
COJO. Of the set of 15,966 probes, a total of

2,634 probes (2,387 unique genes) had an estimate of

h2
COJO that explained greater than 50% of h2, indicating

that their genetic architecture is predominantly driven

by a few loci of large effect. We also observed a positive

linear relationship between estimates of h2 and h2
COJO, sug-

gesting that as the heritability of gene expression tran-

scripts increases, so does the proportion of phenotypic

variance explained by identified QTLs (Figure 2B).

The ratio of h2
COJO and h2

g gives an indication of the de-

gree of ‘‘hiding’’ heritability, which is most likely due to

common variants of small effect.38 Across the set of

15,966 probes, on average 60% (0.041/0.068) of h2
g is ex-

plained by h2
COJO, with the proportion increasing to 65%

(0.060/0.093) for expressed transcripts with a bh2�
> 0.

Average standard errors for h2
g and h2�

g across the 15,966

probes were approximately 0.129 and 0.126, respectively

(Figure S13). For transcripts with a bh2�
> 0.4, on average

90% (0.273/0.304) of h2
g could be attributed to h2

COJO

(Table 2). These results suggest that for more heritable

probes there is less hiding heritability.

The ratio of h2
g and h2 represents the ‘‘still-missing’’ her-

itability, which is most likely due to variants that are

poorly tagged by genotyped SNPs, for example due to
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rare variants. An alternative explanation is that h2 is biased

upward due to confounding by non-additive or non-ge-

netic factors. Across the set of 15,966 probes, on average

49% (0.068/0.139) of h2 could be attributed to h2
g , suggest-

ing that 51% is still missing (Table 2). For the set of probes

with bh2�
> 0, a similar on average proportion of 48%

(0.093/0.192) was observed, which increases to 54%

(0.304/0.566) for transcripts with a bh2�
> 0.4. These results

suggest that on average approximately half of the narrow-

sense heritability is captured by genome-wide HapMap 3

SNPs. This is in contrast to results for human complex

traits, where it has been observed across 49 human pheno-

types that h2
g is approximately one third of h2.39 The pro-

portion of hiding and still-missing heritability for each

probe is available to download at the CAGE Shiny online

application (see Web Resources).

Mega- versus Meta-analysis Chi-Square Statistics

We investigated the relative statistical power to identify

eQTL when using individual-level data versus meta-

analyzed summary statistics by comparing the results

from the analysis of the CAGE data to a published meta-

analysis.6 Association chi-square ðc2Þ statistics for 3,450

sentinel SNPs (common to both studies) were compared

between the meta-analysis and those obtained by

analyzing the CAGE data using a single SNP analysis in

PLINK and a LMM fitted with BOLT-LMM. Comparisons

between association c2 statistics for all common sentinel

SNPs were made via regressing the c2 statistics generated

from CAGE on those obtained in the meta-analysis.

Linear regressions of mega-analysis association c2 statis-

tics (CAGE), generated using single-SNP regression in

PLINK 2 and a LMM in BOLT-LMM, on meta-analysis c2

statistics showed slope coefficients of 1.5 and 0.86,
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Figure 1. Boxplot Summary of Heritability Estimates
The summarized results are for the set of 10,580 probes that had

a bh2�
greater than 0 from the set of overlapping expressed probes

from the Kirsten et al.4 study. Estimates from the Big K/Small K
method are displayed for the narrow-sense heritability from the
constrained algorithm (h2), the narrow-sense heritability from

the unconstrained algorithm (h2�), and the proportion of pheno-

typic variance explained by genome-wide HapMap 3 SNPs (h2
g )

from the constrained REML algorithm, which used European indi-

viduals (n ¼ 2,454). The parameters h2
COJO and h2

S refer to the pro-

portion of phenotypic variance explained by COJO eQTL and the
sentinel SNP.
respectively (Figures 3 and S14A). We expected the slopes

of the single-SNP regression analysis and the LMM to be

approximately the same, but we observed a deflation in

the c2 statistics from BOLT-LMM relative to the PLINK

analysis. Upon investigation, this deflation is expected

from theory (see Material and Methods). A deviation be-

tween PLINK and BOLT-LMM was seen after a c2 statistic

of z100 (Figure S14D), which has little practical conse-

quence for discovery and significance given that such

test statistics are large.

The deviation between the BOLT-LMM and GEMMA-

LMM statistics for the set of overlapping sentinel SNPs is

substantial, with the same parabolic deflation seen as in

the comparison of BOLT-LMM and PLINK (Figure S14C).

The regression slope from the GEMMA-LMM comparison

with the Westra et al.6 meta-analysis was 1.49 (Figure 3)

and thus, the CAGE data have c2 statistics for sentinel

SNPs across 3,450 probes that are on average approxi-

mately 50% greater than the meta-analysis c2 statistics.

This increase in c2 statistics is partially due to an increase

in estimated effect sizes. A regression slope of 1.20 was

observed when regressing bbjm statistics from the PLINK

and GEMMA-LMM analyses in the CAGE data on those

from the approximate effects calculated from the meta-

analysis z values (Figures S14E and S14F).
Discussion

We have presented results from the examination of the

genetic architecture of gene expression in blood tissue

from 2,765 individuals. We identified 11,204 cis- and

3,791 independent trans-eQTLs using a two-step analysis

of all 36,778 probes in CAGE, with multiple independent
The America
eQTLs detected for 2,306 probes in cis and 306 in trans.

Using information on both closely and distantly related in-

dividuals, we estimated heritability for all probes in the

CAGE dataset. We showed that across overlapping ex-

pressed probes from the study of Kirsten et al.4 that had a

h2� estimate greater than zero (10,580), on average h2
COJO

explained 31% (0.060/0.192) of h2, suggesting that 69%

is missing. For this same set of probes, on average 48%

(0.093/0.192) of h2 could be attributed to additive genetic

values captured by genome-wide HapMap 3 SNPs (h2
g ), sug-

gesting that approximately half of the heritability of gene

expression is ‘‘still’’ missing38 for these probes. Addition-

ally, 65% (0.060/0.093) of the variance explained by

genotyped SNPs (h2
g ) could be detected at a genome-wide

significance threshold; this value increased to 90%

(0.273/0.304) for transcripts with bh2�
> 0.4. Therefore,

for this set of transcripts, approximately half of the vari-

ance for gene expression is not tagged by common SNPs,

while the majority of variance that is tagged is due to de-

tected eQTL. Additionally, we observed a positive linear

relationship between the heritability of probes and the

proportion of phenotypic variance that can be explained

by COJO-eQTL, implying that, on average, more heritable

probes have larger effects. This is in contrast to what is

observed for the majority of complex traits and common

diseases.40

There is the potential for h2 estimates to be inflated due

to effects such as dominance, shared environment, and

epistatic variance,16,41 although there is little evidence

that non-additive genetic variation contributes consider-

ably to variation in gene expression.8 In addition to these

sources of bias, we acknowledge that the presented mean

Big K/Small K heritability estimates across probes are

biased due to sampling variance. The estimates of h2
COJO

and h2
S also contain a contribution from overestimated ef-

fects due to the winner’s curse, although the contribution

to the mean is likely to be small given that the effects are

large for the majority of expression traits. Furthermore,

the heritability estimates from the constrained REML algo-

rithm are potentially biased due to the bounded variance

component parameter space, which is alleviated by the

reporting of the estimates from the unconstrained REML

algorithm. Schweiger et al.42 showed that the reported

standard errors from the constrained REML algorithm led

to the construction of confidence intervals with inaccurate

coverage probabilities. However, the reported mean stan-

dard error from the constrained REML algorithm is amean-

ingful measure of the uncertainty in these estimates due to

the law of large numbers. Additionally, the array technol-

ogy used in this study may lack sufficient resolution to

identify variation in lowly expressed genes, which may

be abated by studying large cohorts with RNA-seq. The

ideal set for making conclusions about missing heritability

would be the set of probes with a genetic contribution to

gene expression variation in peripheral blood. In reality,

no selection of probes is perfect for comparison and thus

we made a selection based upon external data, where
n Journal of Human Genetics 100, 228–237, February 2, 2017 233



Figure 2. Missing Heritability
Scatterplot and density summaries of narrow-sense heritability estimates (constrained REML algorithm) from the Big K/Small K method
(h2), the proportion of phenotypic variance explained by COJO eQTL (h2

COJO), and the proportion of phenotypic variance explained by
the sentinel SNP (h2

S ). Displayed summaries are across 15,966 overlapping expressed probes from the Kirsten et al.4 study.
(A) Scatterplot of Big K/Small K heritability estimates versus the proportion of phenotypic variance explained by the sentinel SNP.
(B) Scatterplot of Big K/Small K heritability estimates versus the proportion of phenotypic variance explained by the COJO eQTL.
(C) Histogram of the difference between Big K/Small K heritability estimates and the proportion of phenotypic variance explained by the
COJO eQTL.
(D) Scatterplot of Big K/Small K heritability estimates versus the difference from (C).
For (A), (B), and (D), the fitted regression line (red) and 95% confidence interval (shaded) is plotted with the key statistics of this regres-
sion (no intercept term fitted) displayed at the top of the panels. The light gray line represents the y¼ x line. The p value is with regard to
the regression slope.
each probe had evidence for variation of which additive ge-

netic variation could be a potential contributor. The set of

probes chosen showed a greater than 2-fold enrichment for

identified eQTLs, which reinforced our preselection of this

set of probes.

The estimated value of h2
g is an upper bound on the pro-

portion of variation that can be attributed to all SNPs on a

given genotyping platform and is almost entirely made up

of common variation. One potential reason for the differ-

ences between h2
g and h2 is that rare variation accounts

for a significant fraction of the total narrow-sense heritabil-

ity. Recently, Zhao et al.43 showed that an excess of rare

variants contributed to both the high and low expression

levels of many genes in blood. It is important to recognize

that blood is a heterogenous tissue made up of multiple

cell types, and although it is likely that cis effects will be

shared across cell types,9 we expect some variability in

average heritability estimates for expression transcripts

across blood cell types, meaning that our estimates are

likely to reflect averaged effects. This heterogeneity may

be particularly evident for immune-specific cells, where

Brodin et al.44 showed that for many of the component

parts of the immune system, a considerable amount of

the variation in humans is driven by non-heritable factors.

The individual-level data of the CAGE resource allowed

for a genome-wide eQTL analysis to be performed using a
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LMM, which accounts for population stratification and

cryptic relatedness and improves statistical power due to

joint modeling of all genotyped markers. Additionally,

the LMM methodology used has increased flexibility to

model SNPs of large effect, which are often present for

gene expression phenotypes. The results from the COJO-

eQTL analysis allowed for a characterization of indepen-

dent eQTL signals with 17,608 eQTLs identified for

11,829 transcripts (9,190 unique genes). The majority of

the identified eQTL are located in ciswith 25% of the iden-

tified eQTL being in trans. A similar percentage (29%) of

genes were identified as being trans-regulated (relative to

all genes with an eQTL) in the study of Kirsten et al.4 While

the majority of COJO eQTLs are likely to tag independent

causal variants, there is the possibility that multiple eQTLs

could be in LD with a single causal variant of very large

effect.32 The meta-analysis comparison also showed that

linear mixed model methods that reduce computational

burden by assuming that the variance components esti-

mated under the null model of no effect at the candidate

marker,45 or the variance explained by a single SNP is

small, may not be adequate for gene expression traits

because many loci can explain a large amount (>10%) of

the phenotypic variance. We demonstrated that using in-

dividual-level data can increase the c2 statistics for eQTLs

on average, with a 50% increase in c2 statistics compared
y 2, 2017



Figure 3. Mega- versus Meta-analysis Chi-Square Statistics
Comparison of association c2 statistics for the sentinel SNP from the top 3,450 cis probes generated from a subset of the meta-analysis of
Westra et al.6 (n ¼ 1,749) and analyses of CAGE data using European unrelated individuals (n ¼ 1,748).
(A) Comparison of the set of association c2 statistics generated using a linear model analysis of sentinel SNPs from the CAGE dataset
(analyzed in PLINK and corrected for ten PCs) versus those from the meta-analysis.
(B) Comparison of the association c2 statistics for sentinel SNPs from the GEMMA-LMM analysis (GRM generated fromHapMap 3 SNPs)
and themeta-analysis. All panels include the fitted regression line (red) and its 95% confidence interval (shaded) with the key statistics of
this regression (no intercept term fitted) displayed at the top of each panel. The p value is with regard to the regression slope. Addition-
ally, the y ¼ x line (black) line is plotted for reference.
with a meta-analysis. However, it is important to note that

the meta-analysis of Westra et al.6 is more powerful given

its larger sample size. The information differences shown

here may be caused by the difficulties inherent in sharing

summary statistics and the heterogeneity caused in cohort

processing.46 A final additional benefit of using raw-level

data is the ability to employ a variety of data normalization

pipelines and more complex analyses such as the LMM, to

account for cryptic relatedness and population structure,

and conditional single SNP modeling.

This resourcehas allowed for an exhaustive eQTL analysis

and has characterized the heritability of gene expression by

studying thousands of mRNA profiles using contrasting

methods. Our eQTL results are a valuable resource to

explore the relevance of SNPs identified in current as well

as future GWASs. These results and data will form the basis

of further study into the genetic basis of gene expression

with the dataset opening the door to explore questions,

such as multivariate modeling of joint cis effects of SNPs

on gene expression variation, genetic co-regulation of

mRNA transcriptswithin peripheral blood across all probes,

and sexual dimorphism in gene expression.
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Supplemental Data include 14 figures, 4 tables, and a supple-
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Supplemental note

Gene expression normalisation

Data summary

The initial (Phase 1) CAGE dataset contains expression data from seven unique cohorts:

The Brisbane Systems Genetics Study (BSGS) main and pilot studies20,21(Gene Expression

Omnibus number GSE33321); Coronary Artery Disease (CAD)15 (GSE49925); The Centre

for Health Discovery and Well-Being (CHDWB)22 (GSE35846); The Estonian Genome

Centre - University of Tartu (EGCUT)18 (GSE48348); Morocco13 (GSE17065); and The

Multiple Tissue Human Expression Resource Consortium (MuTHER)9 (ArrayExpress

archive under accession E-TABM-1140).

A summary of the original, uncombined data from these cohorts is given in Table S1.

The MuTHER and BSGS pilot LCL cohorts were not taken forward, as the expression levels

were not measured from whole blood. Genotype data were not available for the CAD

batch 2 cohort, and thus these samples were excluded from further analysis.

Quality Control and Normalisation

The CAGE data set comprises multiple cohorts with gene expression levels measured

in whole blood. Due to variation in microarray gene assaying processes such as sample

treatment, labelling, dye hybridisation and detection, the gene expression levels (measured

in array fluorescence intensities) cannot, in general, be compared directly without first

performing normalisation steps. Most approaches to normalising gene expression levels

from microarray data assume that the overall distribution of mRNA does not vary much

between samples. This seems reasonable for most laboratory treatments, however, within

and between laboratories large systemic error effects may arise—i.e. between laboratory

batch effects. The expression normalisation method implemented here consists of six steps,

with a subset of the steps carried out on the individual data cohorts (Table S1), followed

by concatenation into a single dataset and subsequent final normalisation.



• Variance stabilisation – an alternative to log2 transformation that more adequately

corrects for the fact that the variance of microarray measured spot intensities increases

with mean signal intensity

• Quantile normalisation – coerces the intensity values for all probes on a chip to a

single common distribution

• Age, cell counts and batch effect correction along with correction for other unob-

served heterogeneous sources of variability using the PEER27 software

• PEER residual phenotypes standardised to z-scores within cohort and concatenation

of all cohorts to a final matrix

• PEER and gender correction of final concatenated residual matrix

• Rank normal transformation of PEER residuals to a normal distribution with mean 0

and variance 1

All of the expression normalisation steps were carried out in the statistical computing

software, R24, using a combination of native functions, the PEER27 program, and functions

made available by Bioconductor packages11.

Variance stabilisation

It is common practice to transform microarray data to a logarithmic (usually base 2) scale.

This transformation collapses the original range of the signal and, moreover, it decouples a

random multiplicative error term from the true signal intensity. This is desirable because it

is well known that the variance of microarray signal intensities increases with the mean

signal intensity17. However, this transformation assumes a multiplicative model which

predicts that measurement error vanishes for very small signals, whereas microarray

data will always contain background noise. Thus, the logarithmic transform does not

adequately adjust the variance for low-intensity signals with the post transformation

variances being larger than expected. A more realistic model allows for both an additive

and a multiplicative error term.

The method of Huber et al. 12 includes both an additive and a multiplicative error term,

and has been shown to be more successful at decoupling the signal variance and signal



mean intensity in real data. As an alternative to performing log2 transformation, we used

the method of Huber et al. 12 as implemented in the vsn package in Bioconductor.

Quantile normalisation

In order to allow for a fair comparison of intensities between probes, the distribution of

expression intensities are mapped to a standard distribution (generated from the data) via

a process known as quantile normalisation3. This procedure explicitly assumes that the

distribution of gene expression measures does not change across samples. We used the

function normalizeBetweenArrays, from the limma package26 to implement this method.

While quantile normalisation is a fast solution, one potential problem is that the genes in

the upper range of intensity are forced into a common distribution shape, leading to a

reduction in both biological and technical variation25.

PEER correction analysis

Age, gender, cell counts and batch effects are known to be large sources of variation in gene

expression array data8. Not all cohorts had recorded values for age, cell counts and batch

information such as Illumina Sentrix ID, Sentrix position, and extraction date. Therefore,

we utilised the PEER software27 to account for such sources of variation in the absence

of these measurements. The algorithm used by the PEER software reduces overfitting

by estimating a suitable number of factors that explain a broad amount of the variation.

The software also allows for known covariates, such as age, gender, cell counts and batch

effects, to be included in the variance correction analysis concurrently. Relevant covariate

measurements available for some cohorts, included age, gender, cell counts for basophils,

eosinophils, neutrophils, lymphocytes, monocytes, and array scan date, scan order, Sentrix

ID, and Sentrix position. If any such covariates were available for an individual cohort

they were included in the PEER correction analysis. Correction for hidden sources of

variation via principal components analysis (PCA) is less effective than PEER in the sense

that the number of unobserved factors is often pre-specified, whereas PEER uses automatic

relevance determination to choose a suitable effective number of factors27. Hence, the



number of factors initially specified for the PEER analysis only needs to be sufficiently

large. For all cohorts we chose the maximum number of relevant factors to be 50. The

PEER correction analysis was performed on all cohorts separately with residuals from

the analysis standardised to z-scores across individuals to form the new within cohort

expression phenotypes.

Concatenation, final PEER correction and rank normal transformation

Residual phenotypes for each cohort from the previous step were concatenated to form a

large expression matrix with n = 2, 765 individuals. To create a combined gene expression

matrix, it was necessary to retain only those probes that are common to all cohorts. In the

case of blood samples, this meant reducing the total number of examined probes from

approximately 47, 000 to 38, 624.

Post concatenation, the expression matrix was again PEER corrected, using a potential

of 50 factors and gender as a covariate. Gender was included at this stage of the analysis

because it was the only covariate measured on all individuals in CAGE. The residuals

for each probe from this final PEER analysis were transformed using the rank normal

transformation of Blom 2 , which alters the distribution of scores to be normally distributed

with a mean of 0 and a standard deviation of 1.

Removal of probes on sex chromosomes

Probes measuring expression levels of genes located on the X and Y chromosomes were

removed from the analysis. The analysis was restricted to autosomal probes because of the

difficulties in adequately modelling the potential sex biases in gene expression, which are

primarily driven by escape from X chromosome inactivation and male-only expression

on the Y chromosome. Illumina probe identifiers were mapped to a genomic location

using the re-annotated Illumina Human HT12v4 probe sequences in the Bioconductor

illuminaHumanv4.db database6, and if they mapped to the X and Y chromosomes they

were removed. Of the 38,624 probes present after cohort concatenation, 1,846 were mapped

to positions on the sex chromosomes leaving 36,778 for analysis.



Expression matrix quality control

To verify the performance of the normalisation steps, and to identify any cohorts that

contained irregularities, PCA was performed on the final normalised expression matrix.

The results of the analysis for the first four PCs can be seen in Figure S1, where all of the

samples are distributed with no unique patterns across cohorts, implying that the main

sources of variation are not generated by cohort differences. This check is qualitative in the

sense that if individual within cohorts are seen to cluster, it would indicate between cohort

differences in variance structure. The same pattern was observed for all combinations

of PCs 1-20 (figures not shown), suggesting that no single cohort has a unique variance

structure across probes for the first 20 PCs.

To verify the correction for covariates within the PEER analysis, we performed linear

regression (in the R programming language) of the normalised gene expression measure-

ments for all 36,778 probes on the covariates age, cohort, gender, cell counts, the first 10

principal components (multiple regression) of the genotype matrix from all individuals,

and the first 10 principal components (multiple regression) from the genotype matrix

of European individuals (defined in Supporting Material). The regression for age, and

cell counts was only performed on those individuals that had these measurements (age

- n = 1, 164, cell counts - n = 793). The adjusted R-squared values from these 36,778

regressions were visualised as a histogram for each covariate (Figure S2). These analyses

indicate that the PEER analysis has adequately adjusted for age, gender, cell counts and

cohort differences with means and medians across all probes for these covariates being 0

(Figure S2). The first 10 PCs of the genotype matrix have an on average adjusted R-squared

greater than 0 and thus when performing genetic analyses we used a combination of linear

mixed models and genotype PC adjustment to account for population stratification.



Genotype imputation and quality control

In addition to the imputation process itself, it was necessary to perform quality control

steps on both pre- and post-imputation data, for example, filtering on data features such

as minor allele frequency (MAF), genotype missing rate, and Hardy-Weinberg equilibrium.

The entire imputation process, and its associated quality control steps were performed us-

ing the following publicly available pipeline <https://github.com/CNSGenomics/impute-pipe>.

The imputation pipeline comprised the following steps:

• Pre-imputation quality control, and data-consistency checks

• Imputation to reference panel

• Post-imputation quality control – filtering

• Merging datasets on common SNPs

Pre-Imputation quality control, and imputation to the reference panel

In order to perform imputation, it was necessary to supply a “strand file” for the genotype

chip used on each cohort, in order to correctly align alleles to a common strand (i.e. positive

or negative). In cases where this information had been supplied by the data providers, the

necessary strand file was taken from <http://www.well.ox.ac.uk/∼wrayner/strand/>.

This process ensures that the strand from the 1000 Genomes reference panel and the data

set being imputed are the same.

For each dataset, a strand summary table with key statistics on SNP allele alignment

with the 1000 Genomes Phase 1 Version 34 imputed (in house) Health and Retirement

Study (HRS) data set used as a reference (dbGaP Study Accession: phs000428.v1.p1) was

produced. Strand alignment was checked using the Genotype Harmoniser software Deelen

et al. 5 .

Once the pre-imputation quality control was completed, imputation was performed

as per the protocol outlined at <https://github.com/CNSGenomics/impute-pipe>. The

reference panel used was the 1000 Genomes Phase 1 Version 3.



Imputed data merging

After imputation each cohort contained approximately 38 million SNPs. A post imputation

check for an adequate proportion of SNPs with high ‘info’ score was conducted for each

cohort; the prior expectation for this proportion was driven by previous experience with

imputation. The info score is a quality metric output by IMPUTE210 (a component of

the imputation pipeline) that ranges between 0 and 1 – where a higher value indicates

greater certainty of imputation. To merge these datasets it was necessary to identify the

subset of SNPs that were common to all cohorts. To reduce the computational cost of

this process, we applied initial filtering on two info score thresholds: 0.9 and 0.3. Two

thresholds allow for more flexibility in downstream analyses. Matching over common

SNPs yielded approximately 5.4 millions SNPs for the 0.9 threshold, and 8.2 million SNPs

for the 0.3 threshold.

Once the common SNP lists were determined, we used PLINK23 to merge the datasets

to form the final genotype dataset. During this process approximately 500 SNPs were

removed due to multi-allelic differences between cohorts. These are likely to be a mix of

true multi-allelic SNPs and so-called “palindromic SNPs” that were not flipped correctly

during the imputation process.

The BSGS and EGCUT cohorts consisted of multiple data sets and were found to contain

some duplicates IDs (89 in total). BSGS contained 10 duplicate IDs between the main and

pilot studies. For BSGS, the genotype data were subsetted to the duplicate individuals

and a subset of 10,000 SNPs; correlations between the genotypes of the individuals with

duplicate IDs across these SNPs showed that these individuals were either monozygotic

(MZ) twins or the same individual (i.e., they had correlations across the 10k SNPs of >

0.95). To differentiate these samples further, we performed a correlation analysis of the

gene expression data across all common probes for the duplicate ID individuals. The

BSGS main and pilot data were generated from distinct samples at two time instances with

procedural and microarray differences. The gene expression correlation results showed

that these individuals had a high correlation (average of approximately 0.9). The values



were lower than expected for a duplicate individual but this could be accounted for by

the differences in procedure between the main and pilot studies. Further investigation of

the empirical distribution of correlations generated by comparing all individuals across

these two data sets was carried out; given this distribution we could not conclude with

certainty that these individuals were the same. Further correspondence with the laboratory

established that approximately 10 individuals were duplicated across the main and pilot

studies. Given this evidence, we decided to retain one set of these individuals with the

genotype and expression data kept from the main study. The main study was chosen

because it was a more recent study, from a larger cohort, and from the more recent array

(Table S1)

For EGCUT, the data provided consisted of one expression data set containing 1,065

individuals, and two sets of genotypes containing 1,144 total (non-unique) individuals

(Tables S1 and S2). A total of 79 duplicate IDs were identified between the two genotype

datasets, accounting for the difference in total individuals observed between the expression

and genotype data. A similar correlation study (to BSGS above) was carried out for the

genotype data and again we concluded that these individuals were either MZ twins or the

same individuals. As no expression duplicates IDs were found, we concluded that these

individuals were very likely to have been duplicated across the two data sets and thus

we carried forward the genotype data from the newer chip (i.e. the HumanOmniExpress

12v1).



Post-merge quality control

Post merging of the genotype data, allele frequency checks were performed within cohort

(by subsetting the merged genotype matrix) to remove any potential SNPs with large allele

frequencies differences from the 1000 Genomes reference. This analysis was performed by

comparing the allele frequencies for all SNPs in the merged CAGE data with European

allele frequencies (n = 379) in the 1000 Genomes Phase 1 Version 34. These analyses were

performed on the 8.2 million SNPs for the 0.3 threshold data set as the 0.9 (info score

threshold) set of SNPs was a subset of the 0.3 set. To make these comparisons, the allele

used to calculate the allele frequency was updated for each cohort to the allele in the 1000

Genomes using the GCTA software30, to ensure comparison of allele frequencies for the

same allele. If SNP allele frequencies within cohort differed by more than 0.2 (absolute

value) from those in the 1000 Genomes then they were removed from the CAGE genotype

data set using the PLINK 2 software. The choice of a 0.2 allele frequency difference

cutoff was based on the standard used for the Haplotype Reference Consortium’s19 data

preparation toolbox. The BSGS, CAD, CHDWB, and EGCUT cohorts contained individuals

of predominantly European ancestry, and therefore the variation in allele frequencies in

these cohorts relative to the 1000 Genomes European reference was smaller than that

of the Moroccan cohort (Figure S3). As the Moroccan cohort was relatively small (n =

188) and is ancestrally diverged from Europe there was greater variation in the allele

frequencies relative to the 1000 Genomes European reference. This led to many more SNPs

being removed due to allele frequency differences in the Moroccan cohort (Figure S3F) .

Approximately 300,000 SNPs were remove from the CAGE genotype data set due to allele

frequency differences across all the cohorts, with nearly all of these removed due to the

Moroccan cohort. The 0.2 allele frequency threshold was kept for the Moroccan cohort

for consistency, and although a large number of SNPs were removed it was a relatively

small number of the 8.2 million available. Post removal of allele frequency outlier SNPs, a

final check of allele frequencies versus the 1000 Genomes in the whole CAGE data set was

performed. No allele frequency outliers were detected with this comparison (Figure S4).



Final quality control on the genotype matrix was implemented, with a minor allele

frequency threshold of 0.01, a Hardy-Weinberg equilibrium p-value threshold of 1 × 10−6,

and a genotype call rate threshold of 99% applied to the genotype datasets using the

PLINK 2 software. The two final CAGE genotype datasets contained 2, 765 individuals

with 5,083,862 SNPs for info score threshold 0.9, and 7,763,174 SNPs for info score threshold

0.3.

Post merge we conduced final checks to investigate the quality of the imputed data.

To investigate cohort differences in the merged genotype matrix, we generated the first

20 principal components of the genotype matrix using PLINK. These were visualised

by plotting successive pairs of PCs against each other. For the 0.3 threshold data the

cohorts separate on the first three principal components plots and by the fourth-versus-

fifth comparison, separation is reduced (Figure S5). This trend of reduced separation

is observed in the remaining PC plots. These plots show that much of the variation in

the genotype data can be explained by differences between cohorts. Depending on their

research objectives, it will be up to the analysts using these data to decide whether to

correct for these differences or not.

Matching expression and genotype data

The final stage of the data preparation process was to match samples between the nor-

malised gene expression and the imputed genotype files. Ensuring the samples’ IDs match

correctly is vital to ensuring the integrity of downstream analyses. This required three

main steps:

• Encode the merged and normalised gene expression matrix with unique CAGE

sample identifiers

• Map CAGE sample identifiers to their respective genotype entries, stripping expres-

sion samples that lack genotype data

• Verify correctness of identifier mapping

Step one was achieved by simply generating a six-digit, zero-padded numeric identifier



for each unique sample ID in the merged gene expression matrix. This identifier was

then prepended with the prefix “CAGE”, and appended with an abbreviated dataset code

(the inclusion of which simplifies the process of tracing a CAGE-encoded sample back to

its parent dataset). The resulting identifiers are of the form CAGE000123_BSGS_M—where

BSGS_M is the abbreviated code for the main BSGS cohort.

The second step was performed by using PLINK to recode (–update-ids) the family

information of individuals in each of the imputed datasets. A plaintext file was used to

map the original sample identifiers to their respective CAGE identifiers, thus creating a

list of IDs for PLINK to update. In the cases where a sample did not have a unique family

identifier (i.e. their individual ID and family ID were the same in PLINK’s .fam file), it was

assigned as the sample’s original ID – again, in an attempt to keep the recoding process

transparent. Genotyped samples lacking a unique CAGE identifier – indicating they had

no associated expression data – were also found during this process, and were dropped

via PLINK’s –remove option.

Finally, it was necessary to determine whether the expression and genotype sample

identifiers still mapped individuals correctly. In order to perform this check, we made use

of a software tool, MixupMapper28. MixupMapper makes use of known eQTL in combi-

nation with the genotypic information of each sample in the supplied data to calculate

the expected expression level for a number of genes. These estimates are then compared

against the observed gene expression levels, and discordance between the two values is

taken to be indicative of a “mixup”—i.e. an individual whose label in the genotype data

does not match the expression data entry of the same label.

The output of MixupMapper is a plaintext report, with one row for each individual in

the supplied dataset. Each individual’s original expression and genotype IDs are listed,

with a score describing their relationship, the ID of the “best-matched” sample in the

supplied dataset, and its score. If the best-matched ID aligns with the original genotype

ID, the mixup verdict “false” is reported—otherwise, the verdict is “true”, suggesting that

the samples are mislabelled.



The final report from MixupMapper gave very few ‘true’ results suggesting that only a

small subset were potentially mixed up. Upon investigation these were found to be the

monozygotic twins from the BSGS pilot study.

Replication of eQTLs from Westra et al.29

As a final check that the genotype and expression data have been aligned well throughout

the quality control processes, we attempted to replicate the top 3,202 sentinel SNPs (SNP

with the greatest evidence for association for each probe) from Westra et al. 29 study. This

was done for the whole CAGE blood dataset, as well as for the individual cohorts to

help diagnose if any individual cohorts had errors. For each of the sentinel SNP-probe

combinations regression analysis was performed using the PLINK2 software, with 10 PCs

of the genotype matrix fitted. Chi-squared statistics were calculated from the summary

statistics provided from the study of Westra et al. 29 and the CAGE analysis and compared

via a scatter plot (Figure S6).

For the combined individual data, the Westra et al. 29 sentinel SNPs replicated well with

chi-squared statistics nearing those in the Westra et al. 29 study. Given that the Westra

et al. 29 study contained 5,311 individuals, which is nearly two times those in CAGE, the

chi-squared statistics across these probes suggest that the CAGE data have more power

per individual.

The final CAGE blood dataset consists of expression and genotypes for 2,765 individuals,

has 36,778 expression probes, and 7,763,174 or 5,083,862 SNPs (dependent upon info score

filtering). These data form CAGE release 2.0.

Annotation of Illumina HT12 v4 array probes to the genome

Entrez gene identifiers were taken from the Bioconductor illuminaHumanv4.db_1.26.0

data base, which follows the probe remapping protocols of Barbosa-Morais et al. 1 and

were based on gene data from NCBI from 17 March 2015. Transcription start and stop site

information was retrieved for each of the Entrez gene identifiers from the Bioconductor

org.Hs.eg.db data base, which was built on data from NCBI from 27 September 2015.



Genomic location mappings were based on data provided from UCSC Genome Bioinfor-

matics (Homo sapiens) on hg19 coordinates. Mappings based on the illuminaHumanv4.db

database were only accepted if the chromosome of the probe was on the same chromosome

as that of TSS/TES information provided from the org.Hs.eg.db data base. Each probe

maps to multiple transcripts and thus the median of the transcription start and stop site

was used as a summary measure. Of the the 36,778 probes present in the CAGE data set

31,690 had Entrez gene identifiers, which corresponded to 19,505 genes. These mappings

are available to download from <http://cnsgenomics.com/shiny/CAGE/>.

For those CAGE probes that had a COJO eQTL, probe quality was determined as per the

re-annotated results in the Bioconductor illuminaHumanv4.db database, which follows

the protocols of Barbosa-Morais et al. 1 . Under the protocols of Barbosa-Morais et al. 1 ,

a probe is considered specific if all its transcriptomic matches align to a single genomic

location, regardless of the number of isoforms for the targeted genes and differences

between gene model sources. These probes are given a quality score of "good" to "perfect"

(please see Barbosa-Morais et al. 1 for stricter definitions). Probes are deemed "bad" if the

probe matches repeat sequences, intergenic or intronic regions, or if probes target multiple

(≥ 3) transcripts from different locations in the genome. The "no match" score is given to a

probe if it does not significantly match any transcript or genomic location1. We tested for

genomic location "match back"1 for these probes, and identified 40 that did not map to a

known genomic location. A further 1,822 probes had a genomic annotation score of "bad"

and were not included in the presentation of eQTL results. Probes with "good" or "perfect"

quality score were deemed reliable. All "bad" and "no match" probes are still reported in

the nominal association database and COJO eQTL results but do not contain information

on probe genomic location or transcript start and stop sites.



Supplemental Figures and Tables

Figure S1 Principal component plots of normalised CAGE expression dataset. Plots
depict the first four principal components from a PCA analysis on the whole CAGE
expression data set (38,624 probes) after the completion of the normalisation pipeline.
Colours indicate the individuals from each cohort and are classified in the legend.



Figure S2 Covariates explaining variation in gene expression. Histograms of adjusted
R-squared values from regression of normalised expression measurements of 36,778
probes on covariates gender, age, cell counts, cohort, genotype PCs from all n = 2, 765
individuals, and genotype PCs from European individuals n = 2, 454.
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Figure S3 Cohort allele frequency quality control post impuatation. Allele frequency
plots of individual cohorts (y-axes) versus the 1000 Genomes Phase 1 Version 3 reference
(allele frequencies calculated from European individuals) post removal of SNPs with a
frequency difference greater than 0.2 (approximately 7.8 million SNPs plotted). Panel (A)
depicts the BSGS main cohort, (B) BSGS pilot, (C) CAD, (D) CHDWB, (E) EGCUT, and
panel (F) depicts the Moroccan cohort.



Figure S4 Allele frequency quality control post imputation for the whole CAGE data
set. Allele frequency plot of whole CAGE data (y-axis) versus the 1000 Genomes Phase
1 Version 3 reference (allele frequencies calculated from European individuals) post
removal of SNPs with a frequency difference greater than 0.2 (approximately 7.8 million
SNPs plotted).



Figure S5 Principal component plots of genotype dataset. Plots depict the first four
principal components from a PCA analysis on the whole CAGE genotype data set (7.8
million SNPs) after the completion of the imputation pipeline and merge. Colours indi-
cate the individuals from each cohort and are classified in the legend.



Figure S6 Meta-analysis chi-squared statistics comparison. Scatterplot of chi-squared
statistics for 3,202 sentinel SNPs (cis) from the Westra et al. 29 study versus chi-squared
statistics from CAGE data (all individuals n = 2, 765) generated using a linear model
in PLINK with 10 PCs fitted as additional fixed effects. The fitted regression line (red)
is plotted with the key statistics of this regression (no intercept term fitted) is displayed
at the top of panels. The light grey line represents the y = x line. The p-value is with
regard to the regression slope.



Figure S7 Ancestry investigation. Projected principal component (PPC) plot (PPC1 versus PPC2) of Hap Map 3 cohorts (green)
and CAGE data (n = 2, 765) (purple). The Utah residents of northern and western European ancestry (CEU) cohort from Hap
Map 3 formed the European sample, the Yoruba trios from Ibadan, Nigeria (YRI) formed the African cohort, and the Han Chinese
individuals from Beijing, China were used for the Asian cohort. Solid vertical lines indicate the bounds for removing European
ancestry outliers. The bounds were [lower quartile - 1.5× IQR, upper quartile + 1.5× IQR] of the first projected PC (where IQR is
the inter-quartile range).



Figure S8 Genetic relationship matrix for all of CAGE. Summary of elements of the genetic relationship matrix (GRM) built
using overlapping Hap Map 3 SNPs (893,626) and all individuals (n = 2, 765) in CAGE. Means and variances are summarised
for the histogram displayed. The GRM off diagonals are partitioned into those elements greater and less than 0.05 for ease of
interpretation.



Figure S9 Genetic relationship matrix for European individuals. Summary of elements of the genetic relationship matrix (GRM)
built using overlapping Hap Map 3 SNPs (893,626) and European individuals (n = 2,454). Means and variances are summarised
for the histogram displayed. The GRM off diagonals are partitioned into those elements greater (or equal to) and less than 0.05
for ease of interpretation.



Figure S10 Distributions of heritability estimates for all probes. Histogram of heritability estimates across 36,778 probes generated using
the Big K/Small K method, and estimates of h2

COJO and h2
S. Panels (A) and (B) display histogram summaries of the narrow-sense heritability

estimates using the constrained and unconstrained REML algorithms respectively. Panels (C) and (D) display histogram summaries of the
heritability estimates of the proportion of phenotypic variance explained by genome-wide Hap Map 3 SNPs using the constrained and un-
constrained REML algorithms respectively. Panels (E) and (F) display histogram summaries of the estimates of the proportion of phenotypic
variance explained by COJO eQTL (h2

COJO) and the sentinel SNP (h2
S) respectively.



Figure S11 Comparison of heritability estimates for expressed probes. Summary of heritability estimates (unconstrained) using only the
KIBS>t matrix of estimated relatedness (h2

AE), h2
g (constrained) and h2∗

g (unconstrained) of Big K/Small K method, proportion of phenotypic
variance explained by COJO SNPs (h2

COJO), and the proportion of phenotypic variance explained by the sentinel SNP (h2
S). Displayed sum-

maries are across 15,966 overlapping probes from the study of Kirsten et al. 16 , except for panel (A), which displays estimates for all 36,778
probes. Panel (A) displays the scatter plot of the AE model estimates of narrow-sense heritability versus Big K/Small K heritability estimates
using the unconstrained REML algorithm. Panel (B) is a scatter plot of Big K/Small K heritability estimates of h2∗

g versus Big K/Small K her-
itability estimates of h2∗. Panel (C) is a scatter plot of h2

g estimates versus the proportion of phenotypic variance explained by the sentinel
SNP. Panel (D) is a scatter plot of h2

g estimates versus the proportion of phenotypic variance explained by COJO eQTL. Panel (E) displays a
histogram plot of the difference between h2

g estimates and the proportion of phenotypic variance explained by COJO eQTL. Panel (F) displays
a scatterplot of h2

g estimates versus the difference between h2
g and the proportion of phenotypic variance explained by the COJO SNPs. For

panels (A), (B), (C) (D) and (F), the fitted regression line (red) and 95% confidence interval (shaded) is plotted with the key statistics of this
regression displayed at the top of panels. The p-value is with respect to the regression slope.



Figure S12 Distributions of heritability estimates for expressed probes. Histogram of heritability estimates across 15,966 expressed probes
generated using the Big K/Small K method, and estimates of h2

COJO and h2
S. Panels (A) and (B) display histogram summaries of the narrow-

sense heritability estimates using the constrained and unconstrained REML algorithms respectively. Panels (C) and (D) display histogram
summaries of the heritability estimates of the proportion of phenotypic variance explained by genome-wide Hap Map 3 SNPs using the con-
strained and unconstrained REML algorithms respectively. Panels (E) and F) display histogram summaries of the estimates of the proportion
of phenotypic variance explained by COJO eQTL (h2

COJO) and the sentinel SNP (h2
S) respectively.



Figure S13 Distributions of standard errors of heritability estimates for expressed probes. Histogram of standard errors of
heritability estimates across 15,966 probes generated using the Big K/Small K method. Panels (A) and (B) display histogram sum-
maries of the standard errors for narrow-sense heritability estimates using the constrained and unconstrained REML algorithms
respectively. Panels (C) and (D) display histogram summaries of the standard errors for heritability estimates of the proportion
of phenotypic variance explained by genome-wide Hap Map 3 SNPs using the constrained and unconstrained REML algorithms
respectively.



Figure S14 Comparison of mega- versus meta-analysis chi-squared statistics and effect sizes. Comparison of χ2 statistics for
the sentinel SNPs of 3,450 cis probes generated from the meta-analysis of Westra et al. 29 (n = 1,749) and an eQTL analysis using
European unrelated individuals (n = 1,748) from CAGE. Panels (A), (B), and (C) compare the same set of sentinel SNP χ2 statistics
generated using a single SNP analysis in PLINK corrected for 10 PCs (PLINK), eQTL analysis in BOLT-LMM (HapMap 3 SNPs
used as model SNPs), eQTL results from GEMMA (GRM generated from Hap Map 3 SNPs), and the meta-analysis χ2 statistics.
Panel (D) displays a zoomed view of panel (C) to investigate the point at which the χ2 statistics from the PLINK analysis de-
viated from those from the BOLT-LMM analysis. Panels (E) and (F) show the approximate effects sizes from the meta-analysis
versus those generated using PLINK and GEMMA-LMM. All panels include the fitted regression line (red) and 95% confidence
interval (shaded) is plotted and y = x line (black) for reference with the key statistics of this regression (no intercept term fitted)
displayed at the top of each panel. The p-value is with respect to the regression slope.



Cohort Probes Individuals Array

BLOOD

BSGS main 47323 846 Illumina HumanHT-12 v4.0

BSGS pilot 48760 80 Illumina HumanHT-12 v3.0

CAD (batch 1) 47231 147 Illumina HumanHT-12

CAD (batch 2) 46331 163 Illumina HumanHT-12

CHDWB (batch 1) 46328 176 Illumina HumanHT-12

CHDWB (batch 2) 46328 141 Illumina HumanHT-12

CHDWB (batch 3) 46328 132 Illumina HumanHT-12

EGCUT 48803 1065 Illumina HumanHT-12 v3.0

Morocco 48803 188 Illumina HumanHT-12

LYMPHOBLASTOID CELL LINES

BSGS pilot (LCL) 48760 95 Illumina HumanHT-12 v3.0

MuTHER (LCL) 48638 825 Illumina HumanHT-12 v3.0

FAT

MuTHER 48638 826 Illumina HumanHT-12 v3.0

SKIN

MuTHER 48646 705 Illumina HumanHT-12 v3.0

Total 5302

Table S1 CAGE cohort sizes and expression arrays. Summary of gene expression data
sets in phase 1 of CAGE. Array versions were not available for all cohorts; array infor-
mation was gathered from the relevant citations.



Dataset Individuals

BSGS main 846

BSGS pilot 80

CAD (batch 1) 147

CHDWB (batch 1) 176

CHDWB (batch 2) 141

CHDWB (batch 3) 132

EGCUT-CNV 982

EGCUT-Omni 162

Morocco 188

Total 2,854

Duplicates 89

Total post-merge 2,765

Table S2 Contributing individuals to CAGE peripheral blood data set. Summary of
CAGE cohort data dimensions post imputation and merge



Individuals

Number Analyses Description

2,765 BOLT-LMM Total number of individuals in CAGE with expression and genotypes across contributing

cohort data sets

2,454 Big K/Small K Set of individuals with European ancestry, which includes both related and unrelated

individuals. Non-Europeans were excluded via an outlier analysis of projected PC 1.

1,748 Westra et al. 29 comparison Set of unrelated European individuals. Unrelated status was determined via a

relatedness threshold of 0.05 on the genetic relationship matrix off diagonals

Probes

Number Analyses Description

36,778 BOLT-LMM/GREML Total number of overlapping probes passing quality control across contributing cohort data sets

used for eQTL analysis

11,829 COJO Number of probes with a SNP-probe association (BOLT-LMM) p-value < 5 × 10−8

carried forward for COJO analysis

15,966 h2 comparison Number of overlapping expressed probes from the set of 18,738 probes from the study of Kirsten et al. 2015

that mapped uniquely to the genome and had a probe annotation quality score of at least ‘good’ as per

the protocol of Barbosa-Morais et al. 1 2010

3,450 Mega vs Meta Subset of overlapping probes with cis-eQTLs from Westra et al. 29 with z-values contributing from both the

DILGOM cohort14 (n = 509) and Fehrmann cohorts7 (n = 1, 240)

Table S3 Summary of data subsets and thresholds used in CAGE analysis. Summary of the number of individuals and probes
used for different analyses. Descriptions outline the reasons or thresholds used to come to this number of individuals or probes.



Multiple 1 2 3 4 5 6 7 8 9 ≥ 10

No. probes (all) 6,617 2,231 754 242 78 27 12 5 0 1

No. cis probes 5,551 1,588 503 148 42 16 4 4 0 1

No. trans probes 2,978 289 52 17 1 1 0 0 0 0

Table S4 Multiple eQTL. Summary of the number (No.) of probes with a particular
multiple of COJO eQTLs for 9,967 probes (excluding probes with a genomic annotation
quality score of less than ‘good’). Cis and trans-eQTL probes were separated if the SNP
and gene were located on different chromosomes. Column sums of cis and trans do not
sum to equal the ’all’ row value because, for example, if a probe has 3 cis-eQTL and 1
trans-eQTL then the count would be incremented in the three column for cis, the one
column for trans, and the four column for ’all’.
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