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Practical Approaches for Whole-Genome Sequence
Analysis of Heart- and Blood-Related Traits

Alanna C. Morrison,1,* Zhuoyi Huang,2 Bing Yu,1 Ginger Metcalf,2 Xiaoming Liu,1

Christie Ballantyne,3,4 Josef Coresh,5 Fuli Yu,2 Donna Muzny,2 Elena Feofanova,1 Navin Rustagi,2

Richard Gibbs,2 and Eric Boerwinkle1,2,*

Whole-genome sequencing (WGS) allows for a comprehensive view of the sequence of the human genome. We present and apply

integrated methodologic steps for interrogating WGS data to characterize the genetic architecture of 10 heart- and blood-related

traits in a sample of 1,860 African Americans. In order to evaluate the contribution of regulatory and non-protein coding regions

of the genome, we conducted aggregate tests of rare variation across the entire genomic landscape using a sliding window, comple-

mented by an annotation-based assessment of the genome using predefined regulatory elements and within the first intron of all

genes. These tests were performed treating all variants equally as well as with individual variants weighted by a measure of predicted

functional consequence. Significant findings were assessed in 1,705 individuals of European ancestry. After these steps, we identified

and replicated components of the genomic landscape significantly associated with heart- and blood-related traits. For two traits,

lipoprotein(a) levels and neutrophil count, aggregate tests of low-frequency and rare variation were significantly associated across

multiple motifs. For a third trait, cardiac troponin T, investigation of regulatory domains identified a locus on chromosome 9. These

practical approaches for WGS analysis led to the identification of informative genomic regions and also showed that defined non-

coding regions, such as first introns of genes and regulatory domains, are associated with important risk factor phenotypes. This

study illustrates the tractable nature of WGS data and outlines an approach for characterizing the genetic architecture of complex

traits.
Introduction

Common complex traits, such as blood glucose and

cholesterol levels, underlie some of the most common dis-

eases burdening human health. Genetic analysis of these

complex traits has followed the development of the fields

of genetics and genomics, beginning with familial ag-

gregation and linkage, transitioning through candidate

genes and genome-wide association studies (GWASs),

and arriving at the emerging promise of whole-genome

sequencing (WGS). Declining costs have catalyzed acceler-

ated adoption of WGS in large-scale genetics studies.

However, few studies have utilized WGS to assess the

contribution of low-frequency and rare genetic variation

to complex traits.

Morrison et al.1 conductedWGS analysis of high-density

lipoprotein cholesterol and described initial steps for an

unbiased and coordinated approach to evaluating WGS

data in a population-based sample of European Americans

(EA). The UK10K Consortium explored association testing

of common, low-frequency, and rare variants for quantita-

tive traits using WGS data among European individuals.2

These initial studies, along with the results of numerous

GWASs, support more comprehensive evaluation of non-

coding regions in relation to complex quantitative traits,

and also suggest that tests of association involving WGS

would benefit from variant selection strategies that incor-
1Human Genetics Center, University of Texas School of Public Health, Housto

Medicine, Houston, TX 77030, USA; 3Section of Cardiovascular Research, Bayl

bakey Heart and Vascular Center, Houston, TX 77030, USA; 5Department of Ep

MD 21287, USA

*Correspondence: alanna.c.morrison@uth.tmc.edu (A.C.M.), eric.boerwinkle@

http://dx.doi.org/10.1016/j.ajhg.2016.12.009.

The America

� 2016 American Society of Human Genetics.
porate annotation of functional genomic elements. In

fact, WGS analyses conducted in deeply phenotyped

sample sets may be an efficient strategy for fine-mapping

established GWAS signals. However, association studies

involving WGS are challenged by the large number of

very rare variants, especially singletons,3 and tests that

aggregate the cumulative effects of rare variants have been

proposed and implemented.4 These aggregate tests require

an a priori defined region of the genome within which the

combined effect of rare variants are assessed, and by far

the most common units are the protein-encoding genes.

WGS data offer the opportunity to aggregate variants over

the full spectrum of annotated motifs, from specifically

defined regulatory domains to an agnostic sliding window.

In this study, we offer practical approaches toWGS analysis

of complex traits using aggregate tests across a variety of an-

notated functional motifs. We also show howWGSmay be

informative for fine-mapping loci associated with traits of

interest and identification of presumed single-nucleotide

variants (SNVs) responsible for the observed associations.

In addition, we consider weighted analyses using nucleo-

tide-specific information and provide guidance on p values

for defining thresholds of statistical significance. Because

previous applications have focused on samples from popu-

lations of European descent, we provide an example appli-

cation in a sample of African Americans (AA) measured for

multiple cardiovascular risk factors.
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Figure 1. Overall Analytic Approach
Subjects and Methods

Study Population and Phenotype Measurements
The Atherosclerosis Risk in Communities (ARIC) study has been

described in detail previously.5 In brief, participants aged 45 to

64 years at baseline were recruited from four communities: Forsyth

County, North Carolina; Jackson, Mississippi; Minneapolis, Min-

nesota; and Washington County, Maryland. A total of 15,792

individuals, predominantly of European and African ancestry,

participated in the baseline examination in 1987–1989, with

four follow-up examinations. The example application presented

here focuses on 1,860 AA study participants with WGS data and

measurements for 10 heart- and blood-related factors, including

circulating neutrophil count, platelet count, and levels of hemo-

globin, lipoprotein(a) (Lp(a)), magnesium (Mg), and phosphorus

(P) that were measured at the baseline exam. Small dense low-den-

sity lipoprotein cholesterol (sdLDL-C), C-reactive protein (CRP),

cardiac troponin T (cTnT), and N-terminal pro-B-type natriuretic

peptide (NT-proBNP) were measured at the fourth examination

between 1996 and 1998. Detailed descriptions of the methods

for each phenotype measurement are summarized in the Supple-

mental Note. A sample of 1,705 EA individuals with WGS and

measures for the 10 heart- and blood-related factors were available

for replication analyses. The ARIC study has been approved by

Institutional Review Boards (IRBs) at all participating institutions:

University of North Carolina at Chapel Hill IRB, Johns Hopkins

University IRB, University of Minnesota IRB, and the University

of Mississippi Medical Center IRB. Study participants provided

written informed consent at all study visits.

Whole-Genome Sequencing, Variant Calling, and

Quality Control
WGS data were generated by the Baylor College of Medicine Hu-

man Genome Sequencing Center. DNA samples were constructed

into Illumina paired-end libraries according to the manufacturer’s

protocol (Illumina Multiplexing_SamplePrep_Guide_1005361_D)

and sequenced on the Hiseq 2000 (Illumina) in a pooled format

to generate a minimum of 18 unique aligned Gbp per sample.
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Methods for WGS of ARIC study participants have been described

in detail in Morrison et al.1 Individuals of African and European

ancestry were sequenced at 7.4-fold average depth on Illumina

HiSeq instruments and variant calling was completed using

goSNAP, which employed GATK, SNPTools, and GotCloud as cal-

lers, each in joint calling mode, and took an ensemble consensus

approach to generate a high-quality variant call set. Per-sample

genotyping and reference-panel-independent imputation and

phasing were done using SNPTools. The majority (59.7%) of the

SNVs were novel compared to dbSNP v142. Compared to a subset

of the samples with whole-exome sequencing, the sensitivity and

specificity of the WGS call set is 63.6% and 99.9%, respectively,

and compared to an overlapping set of single-nucleotide poly-

morphism (SNP) array data, the false discovery rate (FDR) is

1.6%. Variant-level quality assurance was achieved by excluding

variants with a site level inbreeding coefficient < �0.9. Variants

not meeting Hardy-Weinberg equilibrium exact test expecta-

tions in ancestry-specific groups (p value < 1 3 10�14) were also

excluded. Sample-level quality control and quality assurance

checks included principal-component analysis (PCA) to identify

possible population substructure and sample abnormalities. The

set of variants for PCA was restricted to variants with minor allele

frequency (MAF) >5% and linkage disequilibrium between vari-

ants of r2 < 0.30. A total of 40 ARIC AA individuals identified as

outliers by PCAwere removed from further analyses. Higher-order

principal components showed minor levels of population struc-

ture. After sample-level quality control, a total of 1,860 AA and

1,705 EA from the ARIC study were available for the genotype-

phenotype analyses reported here.
Statistical Analyses
Each of the ten cardiovascular risk factors were analyzed sepa-

rately. Figure 1 shows each step for the overall analytic approach.

Because our primary focus was on rare variant sequence analysis,

analyses within annotated functional motifs considered only

low-frequency and rare variants (MAF % 5%), and we required

that the aggregate set of SNVs had an overall minor allele count

(MAC) of R3. Within each annotated functional motif, a burden

test (T56) and the Sequence Kernel Association Test (SKAT7) were

used adjusting for age, sex, and the first three principal compo-

nents (PCs), with additional adjustment of body mass index

(BMI) for CRP and current smoking status (yes or no) for neutro-

phil counts. The T5 test collapses variants with MAF % 5% into

a single genetic score, while SKAT takes into account the possibil-

ity that the effects of the SNVs are in both directions. As a default,

SKAT weights the variants according to their MAF using beta

density weights with parameters 1 and 25. For completeness, we

also conducted an additional survey of the genome investigating

all individual variants using an additive genetic model with the

same adjustments, and provide a focused look specifically at those

with MAF > 5%. All analyses were carried out using the R seqMeta

package. The results from the single SNV analyses were used to

conduct focused fine-mapping at significant loci, including condi-

tional analyses as well as to aid in the dissection of the SNVs

underlying the signal from the aggregate tests.

We evaluated the WGS data using the Combined Annotation

Dependent Depletion (CADD) scores8 as variant weights. The

CADD algorithm integrates multiple functional annotations

including conservation scores, functional prediction scores for

missense SNVs, epigenomic markers, and others. CADD scores

are available for both coding and non-coding variants. The
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Figure 2. Annotated Functional Motifs
weights were defined as the difference between raw CADD scores

and the minimum CADD score scaled by the range of the raw

CADD scores and were introduced into both the T5 test and

SKAT. Previous studies show that using the quartic form of predic-

tion scores as a variant weight can improve the discriminative

power,9 so the quartic form of the CADD score was also used in

the aggregate tests. The analytical models were the same as

described above.

We also evaluated the WGS data using Eigen scores10 as variant

weights. Only Eigen scores in non-coding regions were used for

analysis. The weights were defined as the difference between raw

Eigen scores and the minimum Eigen score scaled by the range

of the raw Eigen scores and were introduced into both the T5

and SKAT. The analytical models were the same as described

above.

An initial step for analyzing the association between WGS

data and phenotypes involves defining tractable analytical units

for the proposed aggregate tests. On the one extreme, these units

could simply be annotated protein-encoding genes, which

would approximately recapitulate whole-exome sequence data

without the vagaries of exon capture. On the other extreme, an

agnostic sliding window would consider the whole genome,

regardless of annotation or presumed functionality. Studies

such as ENCODE11 are defining candidate regulatory elements

and helping formulate a better understanding of non-translated

RNA-encoding genes. There is ample and still emerging evidence

of the critical role of the first intron in regulating gene expres-

sion.12,13 Taken together, Figure 2 shows a schematic diagram of

the annotated functional motifs used in the analyses presented

here.We did not conduct analyses focusing only on exons because

they are well known in the literature and have been demonstrated

with much larger sample sizes. Based on our previous experience,1

physical windows were defined as 4 kb in length and begin at

position 0 bp for each chromosome, with a skip length of 2 kb.

WGS variation was annotated across the genome and functional

domains using the Whole Genome Sequencing Annotation

(WGSA) pipeline.14 The first intron of a gene was determined

using SnpEff15 annotation based on the RefSeq16 gene model.

The 30 and 50 untranslated region (UTR) of a gene was determined

using ANNOVAR17 annotations based on the RefSeq gene model.

The promoter of a gene was defined based on the overlap between

the permissive set of CAGE peaks reported by the FANTOM5 proj-

ect18 and the 5 kb upstream region determined by the ANNOVAR

annotation based on the RefSeq gene model. The enhancers and

the target genes of the enhancers were defined based on the

permissive set of enhancers and enhancer-promoter pairs re-

ported by the FANTOM5 project. In the case of an undesignated

enhancer-gene pair, we assigned an enhancer to the nearest

gene. Therefore, the regulatory domainmotif utilized for aggregate

variant tests includes enhancers, the 30 and 50 UTRs, and promoter

of a gene. Variants could be included in multiple groupings in

the case of overlapping genes. For example, we determined that
The America
770,137 SNVs (MAF % 5% and with MAC R 3) are annotated as

belonging to the annotated regulatory domains (i.e., in an

enhancer, promoter, 30 or 50 UTR), and 11.4% (n ¼ 87,718 SNVs)

of the time they also belong to a regulatory domain for a neigh-

boring gene. In order to visualize the contribution from each of

these annotated functional motifs, we utilized the online tool

Lachesis to view any region of interest.

We defined a priori thresholds of statistical significance for each

annotated motif. For the sliding window approach, we considered

668,836 contiguous and non-overlapping windows and 10 traits

and therefore set a significance threshold at p < 7.5 3 10�9 (equal

to 0.05 / 668,836 / 10). We next applied the T5 test and SKAT to

the set of low-frequency and rare variants (MAF % 5%) among

the annotated regulatory domains and also for the first intron of

each gene. Associations were considered significant with p <

2.33 10�7 accounting for 21,414 regulatory domains and 10 traits

for regulatory domain analyses, and p< 3.53 10�7 accounting for

14,202 first introns and 10 traits for first intron analyses. We

restricted our analyses in sliding windows, regulatory domains,

and first introns to MAC R 3 within a motif based on our prior

work.19 Finally, for the common variants with MAF > 5% evalu-

ated individually, a threshold of p < 5 3 10�8 was used for

genome-wide significance accounting for ~1 million independent

common variants.20
Results

WGSwas completed for 1,860 AA and 1,705 EA individuals

from the ARIC study. For these analyses, we selected heart

and blood traits related to cardiovascular outcomes that

were measured across the entire cohort to maximize sam-

ple size. Descriptive characteristics for these ten traits are

provided in Table S1.

Among the AA individuals sequenced at 7.8-fold

depth of coverage, there were 51,350,433 total SNVs.

Figure S1 shows the proportion of variants within fre-

quency bins characterized as very rare (43.6%, MAF %

0.1%), rare (25.7%, 0.1% % MAF % 1%), low-frequency

(13.4%, 1% % MAF % 5%), and common (17.3%, MAF >

5%). This study primarily focuses on low-frequency, rare,

and very rare variants aggregated by various motifs such as

a slidingwindowacross thegenome, inannotated regulatory

domains, or residing in the first intron of coding genes. A

total of 1,337,673 4-kb overlapping windows in AA have a

distribution of 1 to 694 SNVs per window (Figure S2) with

medianMACof 1,131. Among the 21,414 annotated regula-

tory domains in AA, we observed a distribution of 1 to 750

SNVs per domain (Figure S2) and a median MAC of 500. In

comparison, an assessment of the first intron of all 14,202

coding genes in AA showed a range of 1 to 15,552 SNVs

(Figure S2) with a median MAC of 956.
Test Results for Low-Frequency and Rare Variation in

Annotated Functional Motifs

We applied tests aggregating low-frequency and rare varia-

tion within annotated functional motifs: sliding windows,

regulatory domains, and first introns. Index windows are

shown representing the most significant window from
n Journal of Human Genetics 100, 205–215, February 2, 2017 207



Table 1. Index Sliding Windows Demonstrating a Significant Association for the T5 Test in African Americans

Trait Chr. Start Position (bp) Stop Position (bp) cMAF # SNVs p Value

Lp(a) 6 160,928,009 160,932,008 0.2353 40 7.73 3 10�11

Lp(a) 6 160,990,009 160,994,008 0.4608 84 5.01 3 10�11

Lp(a) 6 161,006,009 161,010,008 0.5767 79 2.17 3 10�9

Lp(a) 6 161,068,009 161,072,008 0.4991 92 3.00 3 10�11

Neutrophil count 1 159,174,150 159,178,149 0.2706 56 8.39 3 10�19

Neutrophil count 1 159,290,150 159,294,149 0.1818 38 2.49 3 10�11

Neutrophil count 1 159,316,150 159,320,149 0.2667 74 1.80 3 10�10

Neutrophil count 1 159,410,150 159,414,149 0.4092 54 1.50 3 10�10

Neutrophil count 1 159,446,150 159,450,149 0.2261 62 4.14 3 10�13

Neutrophil count 1 159,478,150 159,482,149 0.1459 26 2.61 3 10�15

Neutrophil count 1 159,514,150 159,518,149 0.2364 44 1.26 3 10�12

Neutrophil count 1 159,540,150 159,544,149 0.4025 82 4.99 3 10�9

Neutrophil count 1 159,546,150 159,550,149 0.1751 45 3.00 3 10�14

Neutrophil count 1 161,664,150 161,668,149 0.2557 48 2.69 3 10�10

Base pair (bp) position based on hg19. Significant: p < 7.5 3 10�9. Abbreviations are as follows: Chr , chromosome; cMAF, cumulative minor allele frequency.
the T5 test (Table 1) or SKAT (Table 2) within a set of contig-

uous sliding windows. We report results for all underlying

significant overlapping windows for the T5 test (Table S2)

and SKAT (Table S3). Significant T5 and SKAT results are

shown for the regulatory domains in Tables 3 and 4,

respectively. Significant SKAT results are detailed for the

first intron in Table 5. There were no significant T5 test

results for the first intron motif. Figure S12 shows the

quantile-quantile (QQ) plots related to the results in Tables

1, 2, 3, 4, and 5.

Significant findings in AAs are investigated by the T5 test

and SKAT in EAs for the sliding window (Tables S2 and S3),

regulatory domains (Tables S4 and S5), and first intron

(Table S6). The key to understanding the genome-pheno-

type relationship for complex traits is to assess the joint

contribution from each annotated functional motif for

each trait. Lachesis plots aid in this visualization and we

review the results in AAs in the following vignettes for

the three heart- and blood-related traits (Lp(a), neutrophil

count, and cTnT) that demonstrated significant findings

across various motifs in AAs.

Test Results for Common Variants

For completeness, we conducted a survey of the genome

investigating all common variants with MAF > 5%. Com-

mon variants in five genomic regions reached our pre-

defined significance threshold for five traits, including

neutrophil count, CRP, Lp(a), P, and sdLDL-c (Figure S3).

The sentinel SNV with the lowest p value for each trait is

shown in Table S7 and results for all significant associa-

tions (p < 5 3 10�8) are shown in Table S8. Four loci—

DARC, CRP, LPA, and APOE—with their corresponding

traits have been reported by previous GWASs.21–27 We
208 The American Journal of Human Genetics 100, 205–215, Februar
identified a signal at 9p21, a well-known cardiovascular

disease locus, associated with serum phosphorus levels.

However, the index SNV, rs60456827 (MAF ¼ 15% in

AA), was not significantly associated with P levels in

ARIC EAs (MAF ¼ 2%, beta ¼ 0.02, p ¼ 0.77).

Lp(a)

A 646-kb region (from 160,660,009 to 161,306,008 bp on

chromosome 6) consisting of 107windows showed a signif-

icant association with Lp(a) (lowest p ¼ 3.03 10�11 for the

T5 test and lowest p¼ 6.183 10�34 for SKAT; Tables S2 and

S3) among AAs. The windows reside in 6q25.3-6q26,

covering 218 kb upstream and 292 kb downstream of LPA,

and include four other genes (PLG, SLC22A2, SLC22A3,

and LPAL2). Investigation of annotated regulatory domain

motifs showed that there are two regulatory domains signif-

icantly associated with Lp(a) levels in this region. The first

regulatory domain involves SLC22A3 (2.29 3 10�7, SKAT;

Table 4) and the signal is driven by three SNVs in the 30

UTR and one intronic SNV that resides in a defined

enhancer, all with p < 0.01 (Table S9). The target for the

FANTOM5 enhancer involving the intronic SNV is un-

known and therefore was assigned to SLC22A3. The first

intron of SLC22A3 (p ¼ 3.24 3 10�11, SKAT; Table 5) was

also significantly associated with Lp(a) levels. The second

regulatory domain involves PLG (p ¼ 5.55 3 10�8, T5 test;

Table 3) and the aggregate test result is largely due to four

SNVs in the 30 UTRwithp< 0.01 (Table S10). Figure 3 shows

the entire genomic landscape of this region, incorporating

all of these test results. An additional regulatory domain

on chromosome 12 was identified near MFAP5 (5.09 3

10�8, SKAT; Table 4) and all four intergenic SNVs included

in the aggregate test reside in an enhancer (Table S11).
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Table 2. Index Sliding Windows Demonstrating a Significant Association for the SKAT Test in African Americans

Trait Chr. Start Position (bp) Stop Position (bp) cMAF # SNVs p Value

Lp(a) 6 160,660,009 160,664,008 0.396 74 4.26 3 10�9

Lp(a) 6 160,710,009 160,714,008 0.740 87 1.58 3 10�10

Lp(a) 6 160,750,009 160,754,008 0.415 62 4.03 3 10�14

Lp(a) 6 160,772,009 160,776,008 0.358 63 3.45 3 10�11

Lp(a) 6 160,794,009 160,798,008 0.323 49 5.08 3 10�9

Lp(a) 6 160,800,009 160,804,008 0.365 58 5.62 3 10�9

Lp(a) 6 160,810,009 160,814,008 0.322 56 4.17 3 10�12

Lp(a) 6 160,824,009 160,828,008 0.392 48 2.38 3 10�10

Lp(a) 6 160,832,009 160,836,008 0.191 49 3.08 3 10�10

Lp(a) 6 160,842,009 160,846,008 0.348 57 9.56 3 10�12

Lp(a) 6 160,852,009 160,856,008 0.349 60 1.55 3 10�14

Lp(a) 6 160,880,009 160,884,008 0.139 40 3.92 3 10�12

Lp(a) 6 160,888,009 160,892,008 0.530 69 8.18 3 10�12

Lp(a) 6 160,900,009 160,904,008 0.416 75 6.23 3 10�15

Lp(a) 6 160,928,009 160,932,008 0.235 40 1.70 3 10�13

Lp(a) 6 160,944,009 160,948,008 0.214 42 4.11 3 10�28

Lp(a) 6 161,008,009 161,012,008 0.457 77 6.18 3 10�34

Lp(a) 6 161,052,009 161,056,008 0.352 49 2.57 3 10�14

Lp(a) 6 161,090,009 161,094,008 0.300 61 4.67 3 10�30

Lp(a) 6 161,100,009 161,104,008 0.338 56 5.25 3 10�11

Lp(a) 6 161,120,009 161,124,008 0.504 71 2.94 3 10�11

Lp(a) 6 161,134,009 161,138,008 0.256 61 2.66 3 10�12

Lp(a) 6 161,178,009 161,182,008 0.417 64 1.43 3 10�14

Lp(a) 6 161,290,009 161,294,008 0.364 65 2.94 3 10�9

Lp(a) 6 161,302,009 161,306,008 0.352 53 2.32 3 10�9

Neutrophil count 1 156,746,150 156,750,149 0.308 60 4.79 3 10�9

Neutrophil count 1 158,764,150 158,768,149 0.234 39 7.64 3 10�12

Neutrophil count 1 159,168,150 159,172,149 0.411 62 3.68 3 10�11

Neutrophil count 1 159,290,150 159,294,149 0.182 38 6.75 3 10�14

Neutrophil count 1 159,370,150 159,374,149 0.424 60 3.77 3 10�11

Neutrophil count 1 159,402,150 159,406,149 0.259 58 1.11 3 10�10

Neutrophil count 1 159,408,150 159,412,149 0.455 59 2.20 3 10�10

Neutrophil count 1 159,416,150 159,420,149 0.731 102 1.48 3 10�9

Neutrophil count 1 159,446,150 159,450,149 0.226 62 3.91 3 10�16

Neutrophil count 1 159,470,150 159,474,149 0.290 46 1.12 3 10�10

Neutrophil count 1 159,488,150 159,492,149 0.164 54 1.82 3 10�13

Neutrophil count 1 159,502,150 159,506,149 0.240 54 2.06 3 10�15

Neutrophil count 1 159,514,150 159,518,149 0.236 44 2.08 3 10�12

Neutrophil count 1 159,520,150 159,524,149 0.289 39 3.76 3 10�11

Neutrophil count 1 159,536,150 159,540,149 0.459 65 5.97 3 10�11

Neutrophil count 1 159,548,150 159,552,149 0.195 45 1.42 3 10�15

(Continued on next page)
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Table 2. Continued

Trait Chr. Start Position (bp) Stop Position (bp) cMAF # SNVs p Value

Neutrophil count 1 159,556,150 159,560,149 0.221 57 3.27 3 10�13

Neutrophil count 1 159,580,150 159,584,149 0.299 73 4.95 3 10�10

Neutrophil count 1 159,798,150 159,802,149 0.350 83 1.23 3 10�12

Neutrophil count 1 161,508,150 161,512,149 0.455 92 1.88 3 10�9

Significant: p < 7.5 3 10�9.
Lp(a) is encoded by LPA, and an intronic SNV of LPA,

rs115848955 (MAF ¼ 5%), showed the strongest signal

with Lp(a) in a recent AA study.21 The Lp(a) sentinel com-

mon SNV, rs41271018 (MAF ¼ 5%), identified in our study

of AA is in linkage disequilibrium with rs115848955 (r2 ¼
0.93). We re-examined our region of interest located

6q25.3-6q26 after adjusting for rs115848955, and several

windows in the region remained significant (lowest p ¼
2.72 3 10�12 for T5 test and lowest p ¼ 7.70 3 10�25 for

SKAT; Table S12). Interestingly, the identified regulatory

domain at PLG increased in significance after conditioning

on rs115848955 and the SLC22A3 regulatory domain and

first intron decreased in significance. Figure 3 depicts these

conditional results in the context of the unconditional re-

sults. We further investigated replication in EA individuals

for each significant motif and showed that many of the

sliding windows were also strongly associated with Lp(a)

levels (Tables S2 and S3). No association was seen in EAs

for the regulatory domains of PLG (p ¼ 0.11, Table S4) or

MFAP5 (p¼ 0.40, Table S5). Replication in EAwas observed

for the regulatory domain of SLC22A3 (p¼ 0.004, Table S5)

and the first intron of SLC22A3 (p ¼ 0.0002, Table S6).

We characterized the overall range of risk across this lo-

cus around LPA by utilizing the most significant driving

SNV from each identified motif, resulting in a total of

seven SNVs: one from each of the four sliding windows (Ta-

ble 2), one from the first intron of SLC22A3 (Table 5), one

from the regulatory domain of SLC22A3 (Table 4), and one

from the regulatory domain of PLG (Table 3). Of the seven

SNVs, three variants had an effect of increasing Lp(a) levels

and they were from the regulatory domain of SLC22A3, the

first intron of SLC22A3, and one of the sliding windows.

These three SNVs constituted a risk score and individuals

with two or more risk alleles were contrasted with the indi-

viduals with no risk alleles (Figure S4). Overall, the magni-

tude of effects considered together shows that individuals

with risk variants related to increased Lp(a) levels across

this region on chromosome 6 have higher Lp(a) levels.

Of the seven SNVs across this region, the other four vari-

ants had an effect of decreasing Lp(a) levels and they

were from the regulatory domain of PLG and the remain-

ing three sliding windows. These four SNVs constituted a

risk score and individuals with two or more risk alleles

were contrasted with the individuals with no risk alleles

(Figure S5). Overall, the magnitude of effects considered

together shows that individuals with risk variants related
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to decreased Lp(a) levels across this region on chromosome

6 generally have lower Lp(a) levels.

Neutrophil Count

For neutrophil count, we observed a 4.92-Mb region span-

ning 1q23 that showed significant association for the

sliding windows (lowest p ¼ 8.39 3 10�19 for the T5 test

and lowest p ¼ 3.91 3 10�16 for SKAT) among AA individ-

uals.Within this region, as shown inTables 3 and 4, the reg-

ulatory domainmotif forDARCwas significantly associated

with neutrophil count in both the T5 test and SKAT and is

driven by three SNVs (p < 0.01) in the 50 UTR of the gene

(Table S13). The regulatory domain of a neighboring gene,

CADM3, also was significantly associated with neutrophil

count and can be explained by four SNVs in the 30 UTR

(Table S14). It is notable that these CADM3 30 UTR SNVs

are also upstream of DARC, and two are suggested to be in

promoter ofDARCby funseq.28 Figure 4 shows the genomic

landscape encompassing DARC and CADM3. DARC is a

well-studied locus for neutrophil count26,27 and a common

SNV (rs2814778, MAF ¼ 0.17, Table S7) was the sentinel

SNV identified in AA from this study. After accounting for

rs2814778, we observed decreased significance for the

nearby windows, regulatory domains, and first introns

(lowest p ¼ 0.02; Tables S4–S6). None of the sliding win-

dows on 1q23 that were significantly associated with

neutrophil count in AA demonstrated a significant associa-

tion in EAs (lowest p ¼ 0.007; Tables S2 and S3). The find-

ings for DARC and CADM3 regulatory domains did not

replicate in EAs (Tables S4 and S5).

Additional significant signal in the 1q23 region comes

from regulatory domains for three overlapping genes

(MNDA, PYHIN1, and IFI16) and is driven by three

SNVs residing in an enhancer for all three genes (Tables

S15–17). Similarly, the significant regulatory domain for

HSPA6 contains two SNVs (p < 0.01) in the 50 UTR and

two in an enhancer targetingHSPA6 and other genes (Table

S18). The first intron of EFNA3 (p ¼ 2.59 3 10�7, SKAT;

Table 5) was also significantly associated with neutrophil

count. None of these additional motifs identified on

1q23 replicated in EAs (Tables S4–S6).

cTnT

A single regulatory motif on chromosome 9 involving the

gene carbonic anhydrase IX (CA9) was significantly associ-

ated with cTnT in AA (p ¼ 9.16 3 10�9; Table 4) and
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Table 3. Regulatory Domains Demonstrating a Significant Association for the T5 Test in African Americans

Trait Gene cMAF # SNVs p Value Beta SE

Lp(a) PLG 0.179 33 5.55 3 10�8 �0.17 0.03

Neutrophil count DARC 0.121 21 3.91 3 10�8 2.71 0.49

Significant: p < 2.3 3 10�7. Abbreviation is as follows: cMAF, cumulative minor allele frequency.
showed modest association in EA (p ¼ 0.03; Table S5). This

motif contained only two SNVs in the 50 UTR of CA9with a

total MAC ¼ 3 in AA, and only one of the SNV in the 50

UTR with a total MAC ¼ 6 was observed in EA. Based on

single SNV results, the primary signal is driven by the

SNV located at 35,673,953 bp (Table S19).

Sliding Window Approach Incorporating CADD or Eigen

Score as a Variant Weight

Tests aggregate low-frequency and rare SNVs within a

motif to increase statistical power, but noise also increases

given the equal consideration for functional and non-

functional SNVs, in particular for non-coding regions.

We evaluated the impact of signal to noise on aggregate

tests of association by introducing CADD score or Eigen

score predictions of nucleotide function as weights. Over-

all, we do not observe a clear enhancement for weighted

tests versus tests that do not use functional predictions as

a weight. As an example, Figure S6 shows the quantile-

quantile (QQ) plots for incorporating CADD score in the

sliding window motif analyses for Lp(a) levels and neutro-

phil counts, the two traits for which we saw genome-wide

significant windows. Figure S7 shows similar plots for

Eigen scores. The T5 test does not show appreciable differ-

ence between tests that do not use functional predictions

as a weight and those weighted by CADD or Eigen score.

The SKAT analysis shows some differences between

CADD or Eigen weighted tests and tests that do not use

functional predictions as a weight. These observations

hold true for analyses including the quartic form of the

CADD score (Figure S8).

We next investigated the average CADD score for all

significant windows for these two traits (from Tables S2

and S3). The average CADD score for each significant win-

dow is shown as a vertical red line in Figures S9A and S9B

for the T5 test and SKAT, respectively, compared to the

distribution of average CADD for all windows. The average

CADD score for these significant windows is signifi-

cantly larger than those of a random sample of windows

(p value ¼ 0.03 for windows in Figure S9A, Kolmo-

gorov-Smirnov test, one-tail; p value ¼ 0.02 for windows

in Figure S9B, Kolmogorov-Smirnov test, one-tail). The

average quartic CADD scores for the sliding windows are

plotted in Figure S10. Similarly, we investigated the average

Eigen score for all significant windows covering non-

coding regions for Lp(a) levels and neutrophil count

from Tables S2 and S3. The average Eigen score for each

significant non-coding window is shown as a vertical red
The America
line in Figures S11A and S11B for the T5 test and SKAT,

respectively, compared to the distribution of average Eigen

scores in non-coding windows. In Figure S11A, the average

non-coding Eigen scores for those significant non-coding

windows in Table S2 is larger than those of a random sam-

ple of non-coding windows, but not significantly different

(p value ¼ 0.067, Kolmogorov-Smirnov test, one-tail). In

Figure S11B, we observe that the average non-coding Eigen

scores for those significant non-coding windows in Table

S3 are significantly larger than those of a random sample

of windows (p value ¼ 1.41 3 10�5, Kolmogorov-Smirnov

test, one-tail).
Discussion

This study provides a practical approach to WGS analysis

of complex traits using aggregate tests across a variety of

annotated functional motifs: sliding window, regulatory

domains, and first introns. Inclusion of annotated regula-

tory domains, such as those from FANTOM5, as a focus

of aggregate tests and use of predicted functional scores

(e.g., CADD and EIGEN) as variant weights in the tests

represent important additions to the series of analysis steps

outlined in this practical approach to WGS analysis.

Considering the current results, the relationship between

regulatory domains neighboring LPA and Lp(a) level, the

regulatory domains near DARC and neutrophil count, or

the regulatory domain of CA9 and cTnT level would not

have been discovered without conducting motif-based as-

sociation tests of rare variants. Our investigation revealed

that components of the genomic landscape were signifi-

cantly associated with six out of the ten heart and blood

traits related to cardiovascular outcomes. For two traits,

Lp(a) and neutrophil count, aggregate tests of low-fre-

quency and rare variation were significantly associated

across multiple motifs. For a third trait, cTnT, investigation

of regulatory domains may have identified a locus on chro-

mosome 9.

The results presented here outline a series of practical

steps for both analyzing WGS data and synthesizing the

results (Figure 1) with the goal of utilizing as much infor-

mation as possible to identify loci contributing to a com-

plex trait. The results also demonstrate how WGS analyses

can be used to fine-map significantly associated loci and to

identify driver SNVs that may be responsible for the under-

lying observed associations. One key component to this

approach is the ability to visualize the contribution from
n Journal of Human Genetics 100, 205–215, February 2, 2017 211



Table 4. Regulatory Domains Demonstrating a Significant
Association for SKAT in African Americans

Trait Gene cMAF # SNVs p Value

cTnT CA9 0.001 2 9.16 3 10�9

Lp(a) MFAP5 0.001 4 5.09 3 10�8

Lp(a) SLC22A3 0.231 35 2.29 3 10�7

Neutrophil count MNDA 0.324 38 1.10 3 10�9

Neutrophil count IFI16 0.412 54 1.85 3 10�9

Neutrophil count HSPA6 0.460 65 1.69 3 10�8

Neutrophil count DARC 0.121 21 1.89 3 10�8

Neutrophil count CADM3 0.204 54 2.08 3 10�8

Neutrophil count PYHIN1 0.300 34 5.34 3 10�8

Significant: p< 2.33 10�7. Abbreviation is as follows: cMAF, cumulative minor
allele frequency.

Table 5. First Introns Demonstrating a Significant Association for
SKAT in African Americans

Trait Gene cMAF # SNVs p Value

Lp(a) SLC22A3 4.194 757 3.24 3 10�11

Neutrophil count EFNA3 0.250 64 2.59 3 10�7

Significant: p< 3.53 10�7. Abbreviation is as follows: cMAF, cumulative minor
allele frequency.
multiple sources of information. As shown in the Lachesis

plot for Lp(a), the sliding window trace provides a back-

ground context for interpreting the signals observed

from annotated regulatory domains. For Lp(a) levels, the

dominant signal is upstream of LPA, the coding gene for

Lp(a). In the region of interest at 6q25.3-6q26 encompass-

ing LPA, there were distinct signals coming from three

distinct regulatory elements. Our analytic strategy allowed

for inspection of SNVs included in the aggregate tests that

appear to be driving the regulatory domain signals. In this

way, we could determine that the four most significant

SNVs (p < 0.01) contributing to the significant T5 test

results for Lp(a) are located in the 30 UTR of PLG (upstream

of LPA) and range in MAF from 0.05% to 4%. This defined

regulatory domain increased in significance after condi-

tioning on the most significant common variant, unlike

the other two regulatory domain signals in the region

near SLC22A3 that decreased in significance. These asso-

ciation results for Lp(a) also highlight that an existing

knowledge gap in the field is the need for additional refine-

ment of enhancer-gene target pairing. We identified that

the regulatory domain motif for SLC22A3 is in part signif-

icantly driven by an intronic SNV residing in an enhancer

with unknown target, and therefore was assigned as an

enhancer of SLC22A3. It is plausible that the reason this

regulatory element is identified in our analysis of Lp(a) is

because it may indeed be an enhancer for LPA.

Using the outlined analytic strategy, we were also able to

identify and interpret genomic regions contributing to

neutrophil count in AA. For neutrophil count, the Lachesis

plot clearly shows how the regulatory motif signal is also

picked up by the sliding window and involves the known

gene DARC, emphasizing again that the sliding window

approach provides an informative background context

for overall elucidation of the genomic contribution to

complex traits.

The results for cTnT identified a locus downstream of the

9p21 region associated with cardiovascular disease.29 CA9
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is induced by hypoxia in humans and is a significant sero-

logic predictor of right ventricular dysfunction in patients

with pulmonary embolism along with cTnT.30 This is a

promising finding, but also an example of how results

fromWGSmust be interpreted with caution as the primary

signal comes from a single SNV (at 35,673,953 bp) with a

total MAC of 2 (Table S19). This SNV was monomorphic

in EA. To further evaluate the validity of these findings

for CA9, we conducted a permutation test whereby cTnT

levels were permutated 1 million times and the SKAT test

was repeated, resulting in the ranking of the original

p value 165th out of the million tests for a permutation

test p value 165 / 1,000,001 ¼ 1.65 3 10�4. For WGS ana-

lyses employing aggregate tests of association involving

rare variants, we recommend that investigators set a lower

bound on the MAC that takes into account sample size for

their study.

More than GWASs or exome sequencing, careful anno-

tation is a key feature of WGS analysis. In the analyses

presented here, annotation provided different sources of

information. First, annotation provided the boundaries

of units for aggregate testing, such as the regulatory

domain motif. In this context, linked databases (e.g.,

RefSeq) and national efforts to define functional genome

elements (e.g., ENCODE) are invaluable. In this analysis,

aggregate tests of annotated regulatory elements yielded

few novel significant results. This result may be specific

to the traits analyzed in this study. The full value of aggre-

gate tests of annotated functional motifs remains to be

seen and may rely on improved annotation and statistical

methods or increased sample sizes. The second type of

information gained from annotation was whether or not

a variant was predicted to have a functional impact on

protein or genome function. The most obvious examples

include nonsynonymous substitutions and nonsense

mutations, although more subtle examples exist, such as

splice variants. Related to predicted function, but more

nuanced, was our use of predicted deleteriousness (i.e.,

CADD score) as weights for the genotype-phenotype ana-

lyses. Such weights take into account the fact that all

amino acid substitutions or all promotor variants are not

equal, and one can predict the impact based on knowledge

of the location and type of substitution. Studies validating

these predictions for protein-encoding genes have been

carried out with mixed success,19,31,32 and studies vali-

dating such predictions for regulatory elements are almost

nonexistent. Databases of weights such as MetaLR33 and

CADD score8 have been linked to popular annotation
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Figure 3. Survey of the Genomic Landscape on Chromosome 6q25.3-6q26 for Lp(a) Levels via Lachesis
The sliding window trace shows the results from tests (SKAT and T5) aggregating low-frequency and rare variation within overlapping
physical windows of 4 kb. Significant results are shown for regulatory domains in SLC22A3 (SKAT) and PLG (T5) and the first intron of
SLC22A3 (SKAT). Results after conditioning on rs115848955 in LPA are also shown.
tools. In the analyses presented here, we did not see

marked benefit of weighted analyses across the full range

of weights, nor did we observe improved benefit of weights

scaled to accentuate predicted highly impactful delete-

rious variants. Others have enthusiastically argued that

predicted functional annotation must take into account

population genetic principles and the effects of natural
Figure 4. Survey of the Genomic Landscape on Chromosome 1q2
The sliding window trace shows the results from tests (SKAT and T5)
physical windows of 4 kb. Significant results are shown for regulatory
conditioning on rs2814778 in DARC are also shown.

The America
selection34 and some progress has been made in this

area.35,36 Clearly, more work is necessary in the area of

whole-genome annotation and the success of whole-

genome sequencing for understanding the genetic archi-

tecture of complex disease may indeed depend on it. In

converse, the results of whole-genome sequence analysis

may become the fodder of future annotation tools.
3 for Neutrophil Count via Lachesis
aggregating low-frequency and rare variation within overlapping
domains inDARC (T5 and SKAT) and CADM3 (SKAT). Results after
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This study provides an example application of WGS

analysis in a sample of AAmeasured for multiple cardiovas-

cular-related traits. As such, we included EA individuals

withWGS only as a source of replication for the top signals

from AA. Future studies may wish to consider WGS ana-

lyses that pool data from multiple ethnicities under the

assumption of similar effect sizes on the traits of interest

for causal rare variants in each ethnicity. This is in contrast

with common-variant GWASs, where variants were not

expected to be causal but rather in linkage disequilibrium

with causal variants, and therefore the effects in each

ethnic group were expected to be different because of

differences underlying linkage disequilibrium across

populations. For many traits, the majority of GWASs

have detected significant loci located in non-coding re-

gions, with a much smaller percentage of significant loci

lying in coding sequences. Therefore, the practical

approach for evaluating WGS outlined here focuses on

motifs involving primarily non-coding functional do-

mains. However, our strategy can easily extend to analysis

of only exonic regions, thereby recapitulating previous

exome studies, or incorporate exonic information into

regulatory domain motifs. Where large effect sizes are

present for coding elements, the sliding window is likely

to capture this signal as well. Additionally, as studies

continue to accrue WGS, sample sizes will increase such

that the sliding window motif will begin to characterize

novel loci.

In conclusion, we demonstrate a guideline for analyzing

and interpreting WGS for complex traits and demonstrate

the tractable nature ofWGS for characterizing the architec-

ture of complex traits.
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Supplemental Note: ARIC study 

This study investigates 10 heart and blood-related factors measured in Atherosclerosis Risk 

in Communities (ARIC) study participants. Fasting blood was drawn at baseline and processed 

according to a standard protocol.1 Platelet count was obtained within 24 hours after blood 

collection. Blood was stored at 4 0C between the venipuncture and the platelet count 

measurement, conducted using automated particle counters (Coulter Diagnostics, Hialeah, 

Florida, in three field centers; Technicon H‐6000, Technicon Corporation, Tarrytown, New York, 

in one field center).2 Total white blood cell count (WBC) and relative proportion of neutrophils 

were obtained from EDTA-anticoagulated venous blood cells using a Beckman-Coulter Counter 

(Beckman Coulter, Inc., Fullerton, CA). Absolute neutrophil counts were received by multiplying 

the neutrophils percentage by overall WBC.3 For the phosphorus (P) and magnesium (Mg) 

measurements, serum was frozen at −70°C after the blood collection, until analyzed.4 Serum 

Mg was measured by the Gindler and Heth procedure using metallochromic dye calmagite (1-

[1-hydroxy-4-methyl-2-phenylazo]-2-napthol-4sulfonic acid).5 Serum P was measured using an 

automated platform (Beckman-Coulter) in which inorganic phosphorus reacts with ammonium 

molybdate in an acidic solution to form a colored phosphomolybdate complex. The reported 

intra-assay coefficient of variation was 5.8%.6 Phosphorus values were set to missing if 

estimated Glomerular Filtration Rate (eGFR) as less than 45. The total protein component of 

lipoprotein (a) [Lp(a), (apolipoprotein(a) + apolipoprotein B)] was measured at the first visit with 

the ‘sandwich’ ELISA assay, with the reliability of 0.90.7 The protein portion constitutes around 

one-third of the total protein component of Lp(a). Natural log-transformation was applied to 

Lp(a) values to normalize their distribution.8 Hemoglobin was measured using automated 

hematology analyzers: Coulter S + IV (calibration S ‐ Cal, Beckman Coulter, Inc, Fullerton, CA) 

at two sites, Coulter S + III and Coulter S + IV (calibration S‐Cal) at one site, and Technicon H‐

6000 (calibration Fisher, Technicon Corporation, Tarrytown, NY) at one site.2 Cardiac troponin 

T (cTnT) levels were measured in plasma samples collected on the fourth examination 



between years 1996–1998. Plasma samples were stored at −70 to −80 °C and thawed before 

testing. cTnT levels were measured with Elecsys Troponin T high sensitive assay (Roche 

Diagnostics, Indianapolis, IN, range of detection: 0.003 – 10 µg/L.
9 For participants with cTnT 

levels below the lowest detectable limit, the value of cTnT was set to 0.003 ug/L. Participants 

with prevalent coronary heart disease or prevalent heart failure at the fourth examination were 

excluded from the analysis.10 Natural log-transformation was applied to cTnT values before the 

analysis. N-terminal pro–B-type natriuretic peptide (NT-proBNP) was measured by an 

electrochemiluminescent immunoassay on an automated Cobas e411 analyzer (Roche 

Diagnostics, Indianapolis, IN) with lower limit of detection ≤5 pg/mL and coefficient of variation 

3.5 – 4.7%.11 Individuals with NT-proBNP below the detection limit were assigned an NT-

proBNP value of 2.5 pg/ml. Participants with prevalent heart failure at the fourth visit were 

excluded from the analysis. NT-proBNP values were natural log-transformed before the 

analysis. C-reactive protein (CRP) levels were also measured at the fourth examination by 

immunoturbidimetric CRP-Latex (II) high-sensitivity assay (Denka Seiken, Tokyo, Japan) on a 

Hitachi 911 analyzer (Roche Diagnostics, Indianapolis, Indiana).12 CRP values were natural 

log-transformed before the analysis. A homogeneous assay method was used for the direct 

measurement of small dense low-density lipoprotein cholesterol (sdLDL-C) in plasma (sd-LDL-

EX “Seiken”, Denka Seiken, Tokyo, Japan) on a Hitachi 917 automated chemistry analyzer, 

with the reliability coefficient of 0.92 (based on 435 blinded quality control replicates).13
 

 

 

 

 

 

 

 



Supplemental Figure Legends 
 
Figure S1. Proportion of single nucleotide variants within frequency bins in African Americans. 
MAF = minor allele frequency. 
 
Figure S2. Distribution of single nucleotide variants (SNVs) per sliding window, regulatory 
domain, and the first intron motifs in African Americans. SNVs included here have MAF<5% and 
MAC≥3 
 
Figure S3. Common variants (MAF>5%), with the significance threshold line at p-value equal to 
5x10-8 
 
Figure S4. Histogram contrasting individuals carrying risk alleles that increase Lp(a) levels 
versus non-carriers. Individuals in red are carriers of 2 or more alleles that increase Lp(a) levels. 
Individuals in grey do not carry any alleles associated with increased Lp(a) levels. 
 
Figure S5. Histogram contrasting individuals carrying risk alleles that decrease Lp(a) levels 
versus non-carriers. Individuals in blue are carriers of 2 or more alleles that descrease Lp(a) 
levels. Individuals in grey do not carry any alleles associated with descreased Lp(a) levels.  
 
Figure S6. QQ plot for unweighted tests involving sliding windows compared to weighted tests 
incorporating CADD scores. Panel A. T5 test for Lp(a) levels. Panel B. SKAT for Lp(a) levels. 
Panel C. T5 test for neutrophil count. Panel D. SKAT for neutrophil count. Blue line is weighted. 
Red line is unweighted. 
 
Figure S7. QQ plot for unweighted tests involving sliding windows compared to weighted tests 
incorporating Eigen scores. Panel A. T5 test for Lp(a) levels. Panel B. SKAT for Lp(a) levels. 
Panel C. T5 test for neutrophil count. Panel D. SKAT for neutrophil count. Blue line is weighted. 
Red line is unweighted. 
 
Figure S8. QQ plot for unweighted tests involving sliding windows compared to weighted tests 
incorporating quartic-scaled CADD scores. Panel A. T5 test for Lp(a) levels. Panel B. SKAT for 
Lp(a) levels. Panel C. T5 test for neutrophil count. Panel D. SKAT for neutrophil count. Blue line 
is weighted. Red line is unweighted. 
 
Figure S9. Average CADD for significant windows compared to all sliding windows. A. Average 
CADD for significant T5 windows. The histogram represents the average CADD for all sliding 
windows. The vertical red lines plot the average CADD for the significant sliding windows in 
Table S2. B. Average CADD for significant SKAT windows. The histogram represents the 
average CADD for all sliding windows. The vertical red lines plot the average CADD for the 
significant sliding windows in Table S3. 
 
Figure S10. Average quartic CADD for significant windows compared to all sliding windows. A. 
Average quartic CADD for significant T5 windows. The histogram represents the average 
quartic CADD for all sliding windows. The vertical red lines plot the average quartic CADD for 
the significant sliding windows in Table S2. B. Average quartic CADD for significant SKAT 
windows. The histogram represents the average quartic CADD for all sliding windows. The 
vertical red lines plot the average quartic CADD for the significant sliding windows in Table S3. 
 
Figure S11. Average Eigen score for significant non-coding windows compared to all non-
coding sliding windows. A. Average Eigen score for significant T5 non-coding windows. The 



histogram represents the average Eigen score for all non-coding sliding windows. The vertical 
red lines plot the average Eigen score for the significant non-coding sliding windows in Table 
S2. B. Average Eigen score for significant SKAT non-coding windows. The histogram 
represents the average Eigen score for all non-coding sliding windows. The vertical red lines 
plot the average Eigen score for the significant non-coding sliding windows in Table S3. 
 
Figure S12. Quantile-quantile (QQ) plots related to the results in Tables 1-5. A. QQ plots 
corresponding to Table 1 (T5 sliding window analyses) and also Supplemental Table S2. B. QQ 
plots corresponding to Table 2 (SKAT sliding window analyses) and also Supplemental Table 
S3. C. QQ plots corresponding to Table 3 (T5 regulatory domain analyses). D. QQ plots 
corresponding to Table 4 (SKAT regulatory domain analyses). E. QQ plots corresponding to 
Table 5 (SKAT first intron analyses). 
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Table S1. Descriptive characteristics of the 10 heart and blood-related traits 
 

Trait EA  (n=1,705) AA  (n=1,860) 
Sex (% male)  47%  36% 

Age (mean, SD) 54.9 (5.7) 52.8 (5.7) 
BMI, kg/m2 (mean, SD) 27.3  (5) 29.7 (6.2) 

Neutrophil count (mean, SD) 61.5 (8.2) 46.5 (12.8) 

Platelet count (mean, SD) 261.1 (66.4) 257.5 (65.4) 

Hemoglobin (mean, SD) 14.1 (1.3) 13.2 (1.5) 

Lp(a), mg/dL (mean, SD) 7.9 (8.9) 15.8 (11.9) 

sdLDL-c, mg/dL (mean, SD) 46.7 (21.5) 36. 6 (17) 

CRP, mg/L (mean, SD) 4.7 (6.9) 6.0 (8.4) 

cTnT, ug/L (mean, SD) 0.008 (0.01) 0.007 (0.01) 

NT-proBNP, pg/ml (mean, SD) 154.1 (268.9) 136.1 (1202.5) 

Mg, meq/L (mean, SD) 1.6 (0.2) 1.6 (0.2) 

P, mg/dL (mean, SD) 3.4 (0.5) 3.4 (0.5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S4. Significant regulatory domain-based T5 test results in European Americans and conditional results in African Americans  

Trait Gene 
European Americans Conditional analysis 

cMAF # SNV p-value Beta SE cMAF # SNV p-value Beta SE 

Lp(a) PLG 0.074 27 0.1123 0.10 0.06 0.179 33 3.79E-09 -0.18 0.03 

Neutrophil count DARC 0.036 14 0.2764 -0.88 0.81 0.121 21 0.8635 0.09 0.50 

Results shown for all associations with p < 2.3E-7 and MAC>3 
cMAF = cumulative minor allele frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S5. Significant regulatory domain-based SKAT results in European Americans and conditional results in African Americans  

Trait Gene 
European Americans Conditional Analysis 

cMAF # SNV p-value cMAF # SNV p-value 

cTnT CA9 0.003 2 0.0388 - - - 

Lp(a) MFAP5 0.001 3 0.4034 - - - 

Lp(a) SLC22A3 0.077 18 0.0044 0.231 35 1.75E-05 

Neutrophil count MNDA 0.132 19 0.1750 0.324 38 0.0231 

Neutrophil count IFI16 0.156 28 0.1957 0.412 54 0.0235 

Neutrophil count HSPA6 0.226 32 0.3427 0.46 65 0.9275 

Neutrophil count DARC 0.036 14 0.3503 0.121 21 0.3927 

Neutrophil count CADM3 0.099 41 0.2484 0.204 54 0.2607 

Neutrophil count PYHIN1 0.108 13 0.3017 0.30 34 0.1276 

Results shown for all associations with p < 2.3E-7 and MAC>3 
cMAF = cumulative minor allele frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S6. Significant first intron-based SKAT results in European Americans and conditional results in African Americans  

Trait Gene 
European Americans Conditional Analysis 

cMAF # SNV p cMAF # SNV p 

Lp(a) SLC22A3 0.697 219 0.0002 4.1943 757 4.03E-10 

Neutrophil count EFNA3 0.127 19 0.7792 0.2499 64 0.0177 

Results shown for all associations with p < 3.5E-7 and MAC>3 
cMAF = cumulative minor allele frequency 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S7. The sentinel SNVs with the lowest p-value for each trait in African Americans  

Trait Chr Position rs# 
Allele 1 / 
Alllele 2 

MAF 
Genomic 
location 

Gene P Beta SE 

Neutrophil count 1 159174683 rs2814778 T/C 0.17 5’ UTR DARC 4x10-44 -8.35 0.6 

CRP 1 159708818 rs112563958 C/T 0.18 intergenic CRP 2x10-17 0.48 0.06 

Lp(a) 6 161019440 rs41271018 A/C 0.05 intronic LPA 6x10-24 0.67 0.07 

P 9 24853029 rs60456827 A/G 0.15 intergenic 9p21 3x10-8 -0.12 0.02 

sdLDL-c 19 45413233 rs1065853 G/T 0.12 upstream APOE 4x10-12 -7.59 1.1 

Chr = chromosome 
Base pair (bp) position based on hg19 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



Table S12. Results from sliding window-based test for Lp(a) in African Americans, for the region 

6q25.3-6q26 adjusted for  rs115848955 

Test 
Start position 

(bp) 

Stop position 

(bp) 
cMAF # SNV p-value* 

T5 160990009 160994008 0.159 43 2.72E-12 

T5 161030009 161034008 0.473 95 2.23E-10 

T5 161070009 161074008 0.499 92 3.13E-09 

T5 161074009 161078008 0.281 52 3.39E-09 

SKAT 160988009 160992008 0.159 43 7.11E-11 

SKAT 160990009 160994008 0.461 84 7.56E-11 

SKAT 160992009 160996008 0.540 72 8.00E-12 

SKAT 160994009 160998008 0.461 55 1.26E-10 

SKAT 161000009 161004008 0.488 73 7.48E-09 

SKAT 161002009 161006008 0.546 73 5.50E-13 

SKAT 161004009 161008008 0.515 71 2.27E-17 

SKAT 161006009 161010008 0.577 79 2.97E-22 

SKAT 161008009 161012008 0.457 77 7.70E-25 

SKAT 161010009 161014008 0.336 70 7.83E-22 

SKAT 161014009 161018008 0.450 71 6.73E-11 

SKAT 161016009 161020008 0.320 69 3.58E-12 

SKAT 161018009 161022008 0.342 76 6.64E-16 

SKAT 161020009 161024008 0.458 64 2.45E-22 

SKAT 161022009 161026008 0.573 62 1.87E-17 

SKAT 161024009 161028008 0.491 78 5.06E-12 

SKAT 161026009 161030008 0.224 85 7.51E-10 

SKAT 161028009 161032008 0.343 88 1.56E-11 

SKAT 161030009 161034008 0.473 95 1.99E-12 

SKAT 161052009 161056008 0.352 49 2.52E-11 

SKAT 161054009 161058008 0.314 54 3.15E-11 

SKAT 161068009 161072008 0.499 92 8.50E-13 

SKAT 161070009 161074008 0.444 54 2.52E-15 

SKAT 161072009 161076008 0.383 42 9.16E-12 

SKAT 161074009 161078008 0.281 52 3.17E-14 

SKAT 161076009 161080008 0.121 32 7.93E-13 

*reporting only associations p < 7.5x10-9 after conditional analysis 
 
 
 
 
 
 
 
 
 
 
 
 



References 
 
1. Newton-Cheh, C., Johnson, T., Gateva, V., Tobin, M.D., Bochud, M., Coin, L., Najjar, S.S., 

Zhao, J.H., Heath, S.C., Eyheramendy, S., et al. (2009). Genome-wide association study 
identifies eight loci associated with blood pressure. Nat Genet 41, 666-676. 

2. Gieger, C., Radhakrishnan, A., Cvejic, A., Tang, W., Porcu, E., Pistis, G., Serbanovic-Canic, 
J., Elling, U., Goodall, A.H., Labrune, Y., et al. (2011). New gene functions in 
megakaryopoiesis and platelet formation. Nature 480, 201-208. 

3. Reich, D., Nalls, M.A., Kao, W.H., Akylbekova, E.L., Tandon, A., Patterson, N., Mullikin, J., 
Hsueh, W.C., Cheng, C.Y., Coresh, J., et al. (2009). Reduced neutrophil count in people of 
African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines 
gene. PLoS Genet 5, e1000360. 

4. The ARIC Investigators. (1987). ARIC: Atherosclerosis Risk in Communities Study: 
operations manual 10. Clinical chemistry determinations. Bethesda, MD: National Heart, 
Lung, and Blood Institute. 

5. Lutsey, P.L., Alonso, A., Michos, E.D., Loehr, L.R., Astor, B.C., Coresh, J., and Folsom, A.R. 
(2014). Serum magnesium, phosphorus, and calcium are associated with risk of incident 
heart failure: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 100, 
756-764. 

6. Kestenbaum, B., Glazer, N.L., Kottgen, A., Felix, J.F., Hwang, S.J., Liu, Y., Lohman, K., 
Kritchevsky, S.B., Hausman, D.B., Petersen, A.K., et al. (2010). Common genetic variants 
associate with serum phosphorus concentration. J Am Soc Nephrol 21, 1223-1232. 

7. Chambless, L.E., McMahon, R.P., Brown, S.A., Patsch, W., Heiss, G., and Shen, Y.L. (1992). 
Short-term intraindividual variability in lipoprotein measurements: the Atherosclerosis Risk in 
Communities (ARIC) Study. Am J Epidemiol 136, 1069-1081. 

8. Virani, S.S., Brautbar, A., Davis, B.C., Nambi, V., Hoogeveen, R.C., Sharrett, A.R., Coresh, 
J., Mosley, T.H., Morrisett, J.D., Catellier, D.J., et al. (2012). Associations between 
lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the 
Atherosclerosis Risk in Communities (ARIC) Study. Circulation 125, 241-249. 

9. Giannitsis, E., Kurz, K., Hallermayer, K., Jarausch, J., Jaffe, A.S., and Katus, H.A. (2010). 
Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem 56, 254-261. 

10. Yu, B., Barbalic, M., Brautbar, A., Nambi, V., Hoogeveen, R.C., Tang, W., Mosley, T.H., 
Rotter, J.I., deFilippi, C.R., O'Donnell, C.J., et al. (2013). Association of genome-wide 
variation with highly sensitive cardiac troponin-T levels in European Americans and Blacks: 
a meta-analysis from atherosclerosis risk in communities and cardiovascular health studies. 
Circ Cardiovasc Genet 6, 82-88. 

11. Olsen, M.H., Hansen, T.W., Christensen, M.K., Gustafsson, F., Rasmussen, S., Wachtell, 
K., Ibsen, H., Torp-Pedersen, C., and Hildebrandt, P.R. (2007). N-terminal pro-brain 
natriuretic peptide, but not high sensitivity C-reactive protein, improves cardiovascular risk 
prediction in the general population. Eur Heart J 28, 1374-1381. 

12. Schick, U.M., Auer, P.L., Bis, J.C., Lin, H., Wei, P., Pankratz, N., Lange, L.A., Brody, J., 
Stitziel, N.O., Kim, D.S., et al. (2015). Association of exome sequences with plasma C-
reactive protein levels in >9000 participants. Hum Mol Genet 24, 559-571. 

13. Hoogeveen, R.C., Gaubatz, J.W., Sun, W., Dodge, R.C., Crosby, J.R., Jiang, J., Couper, D., 
Virani, S.S., Kathiresan, S., Boerwinkle, E., et al. (2014). Small dense low-density 
lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the 
Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol 34, 1069-
1077. 

 


	Practical Approaches for Whole-Genome Sequence Analysis of Heart- and Blood-Related Traits
	Introduction
	Subjects and Methods
	Study Population and Phenotype Measurements
	Whole-Genome Sequencing, Variant Calling, and Quality Control
	Statistical Analyses

	Results
	Test Results for Low-Frequency and Rare Variation in Annotated Functional Motifs
	Test Results for Common Variants
	Lp(a)
	Neutrophil Count
	cTnT
	Sliding Window Approach Incorporating CADD or Eigen Score as a Variant Weight

	Discussion
	Supplemental Data
	Acknowledgments
	Web Resources
	References


